Ecotoxicity Study of Additives Composed of Zinc and Boron
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36548628
PubMed Central
PMC9782054
DOI
10.3390/toxics10120795
PII: toxics10120795
Knihovny.cz E-zdroje
- Klíčová slova
- duckweed, growth inhibition, lettuce, zinc borate,
- Publikační typ
- časopisecké články MeSH
The high use of additives containing zinc borate and their limited solubility in water both lead to its persistence and accumulation in biological systems. On the other hand, soluble forms of boron are easily available to plant roots and are taken up by plants. There are no ecotoxicological data available for zinc borate, the industrial utilization of which is widespread. Therefore, the potential toxicity of zinc borate and its dissociated compounds was evaluated. Based on two different ecotoxicology tests, their effect on plant growth was studied. Firstly, the impact on Lemna minor growth was investigated, including the effect on pigment content. Secondly, the inhibition of the root growth of higher plant species Sinapis alba (mustard), Lactuca sativa (lettuce) and Trifolium pretense (clover) was measured. The growth inhibition test on L. minor was more complex and sensitive compared to the plant seed germination test. Already low concentrations (10 mg/L) of ZnO, B2O3 and Zn3BO6 led to a decrease in frond growth and to an inhibition of the conversion of chlorophyll a to chlorophyll b. These results suggested that the stress caused by these additives caused damage to the photosynthetic apparatus. The highest inhibition of frond growth was detected in fronds treated with B2O3 (92-100%). In ZnO and Zn3BO6, the inhibition of frond growth was between 38 and 77%, with Zn3BO6 being slightly more toxic. In the seed germination test, the most sensitive species was lettuce, the growth of which was inhibited by 57, 83 and 53% in ZnO, B2O3 and Zn3BO6 treatments, respectively. However, the inhibitory effect on each plant was different. In lettuce and clover, the seed germination and root elongation decreased with increasing element concentrations. In contrast, in mustard, low concentrations of ZnO and Zn3BO6 supported the growth of roots. For that reason, more complex tests are essential to evaluate the additive toxicity in the environment.
Zobrazit více v PubMed
Shen K.K., Kochesfahani S., Jouffret F. Zinc borates as multifunctional polymer additives. Polym. Adv. Technol. 2008;19:469–474. doi: 10.1002/pat.1119. DOI
Ma Y., Wang J., Xu Y., Wang C., Chu F. Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42730. DOI
Jonkers N., Krop H., van Ewijk H., Leonards P.E.G. Life cycle assessment of flame retardants in an electronics application. Int. J. Life Cycle Assess. 2016;21:146–161. doi: 10.1007/s11367-015-0999-z. DOI
Yasin S., Behary N., Perwuelz A., Guan J. Life cycle assessment of flame retardant cotton textiles with optimized end-of-life phase. J. Clean. Prod. 2018;172:1080–1088. doi: 10.1016/j.jclepro.2017.10.198. DOI
Pavan M., Netzeva T.I., Worth A.P. Validation of a qsar model for acute toxicity. SAR QSAR Environ. Res. 2006;17:147–171. doi: 10.1080/10659360600636253. PubMed DOI
European Food Safety Authority Review of current practices of environmental risk assessment within efsa. EFSA Support. Publ. 2011;8:116I. doi: 10.2903/sp.efsa.2011.IN-116. DOI
Boethling R.S., Costanza J. Domain of epi suite biotransformation models. SAR QSAR Environ. Res. 2010;21:415–443. doi: 10.1080/1062936X.2010.501816. PubMed DOI
Reuschenbach P., Silvani M., Dammann M., Warnecke D., Knacker T. Ecosar model performance with a large test set of industrial chemicals. Chemosphere. 2008;71:1986–1995. doi: 10.1016/j.chemosphere.2007.12.006. PubMed DOI
Stieger G., Scheringer M., Ng C.A., Hungerbühler K. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: Data availability and quality for 36 alternative brominated flame retardants. Chemosphere. 2014;116:118–123. doi: 10.1016/j.chemosphere.2014.01.083. PubMed DOI
Strempel S., Scheringer M., Ng C.A., Hungerbühler K. Screening for pbt chemicals among the “existing” and “new” chemicals of the EU. Environ. Sci. Technol. 2012;46:5680–5687. doi: 10.1021/es3002713. PubMed DOI
Tanaka M., Fujiwara T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflügers Arch.—Eur. J. Physiol. 2008;456:671–677. doi: 10.1007/s00424-007-0370-8. PubMed DOI
Goldbach H., Amberger A. Influence of boron nutrition on cell wall polysaccharides in cell cultures of Daucus carota L. J. Plant Physiol. 1986;123:263–269. doi: 10.1016/S0176-1617(86)80076-1. DOI
O’Neill M.A., Ishii T., Albersheim P., Darvill A.G. Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 2004;55:109–139. doi: 10.1146/annurev.arplant.55.031903.141750. PubMed DOI
Princz J., Becker L., Scheffczyk A., Stephenson G., Scroggins R., Moser T., Römbke J. Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms. Ecotoxicology. 2017;26:471–481. doi: 10.1007/s10646-017-1789-0. PubMed DOI
Dell B., Huang L. Physiological response of plants to low boron. Plant Soil. 1997;193:103–120. doi: 10.1023/A:1004264009230. DOI
Schoderboeck L., Mühlegger S., Losert A., Gausterer C., Hornek R. Effects assessment: Boron compounds in the aquatic environment. Chemosphere. 2011;82:483–487. doi: 10.1016/j.chemosphere.2010.10.031. PubMed DOI
Camacho-Cristóbal J.J., Rexach J., González-Fontes A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008;50:1247–1255. doi: 10.1111/j.1744-7909.2008.00742.x. PubMed DOI
Davis S.M., Drake K.D., Maier K.J. Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere. 2002;48:615–620. doi: 10.1016/S0045-6535(02)00024-3. PubMed DOI
Cakmak I. Tansley review no. 111—Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x. PubMed DOI
Landa P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem. 2021;161:12–24. doi: 10.1016/j.plaphy.2021.01.039. PubMed DOI
Uruç Parlak K., Demirezen Yilmaz D. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicol. Environ. Saf. 2012;85:52–58. doi: 10.1016/j.ecoenv.2012.08.023. PubMed DOI
Chen X.L., O’Halloran J., Jansen M.A.K. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn. Aquat. Toxicol. 2016;174:46–53. doi: 10.1016/j.aquatox.2016.02.012. PubMed DOI
Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007;41:8484–8490. doi: 10.1021/es071445r. PubMed DOI
Heinlaan M., Ivask A., Blinova I., Dubourguier H.-C., Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008;71:1308–1316. doi: 10.1016/j.chemosphere.2007.11.047. PubMed DOI
Xiong D., Fang T., Yu L., Sima X., Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 2011;409:1444–1452. doi: 10.1016/j.scitotenv.2011.01.015. PubMed DOI
Talsness C.E. Overview of toxicological aspects of polybrominated diphenyl ethers: A flame-retardant additive in several consumer products. Environ. Res. 2008;108:158–167. doi: 10.1016/j.envres.2008.08.008. PubMed DOI
OECD . Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Publishing; Paris, France: 2006. Test No. 208.
OECD . Lemna sp. Growth Inhibition Test. OECD Publishing; Paris, France: 2006. Test No. 221.
Water Quality—Determination of Toxic Effect of Water Constituents and Waste Water to Duckweed (Lemna minor)—Duckweed GROWTH inhibition Test. ISO—International Organization for Standardization; Geneva, Switzerland: 2005.
Lichtenthaler H.K. Methods in Enzymology. Volume 148. Academic Press; Cambridge, MA, USA: 1987. [34] chlorophylls and carotenoids: Pigments of photosynthetic biomembranes; pp. 350–382.
Fargašová A. Plants as models for chromium and nickel risk assessment. Ecotoxicology. 2012;21:1476–1483. doi: 10.1007/s10646-012-0901-8. PubMed DOI
Leitgib L., Kálmán J., Gruiz K. Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere. 2007;66:428–434. doi: 10.1016/j.chemosphere.2006.06.024. PubMed DOI
Soudek P., Katrusakova A., Sedlacek L., Petrova S., Koci V., Marsik P., Griga M., Vanek T. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.) Arch. Environ. Contam. Toxicol. 2010;59:194–203. doi: 10.1007/s00244-010-9480-y. PubMed DOI
Mkandawire M., da Silva J.A.T., Dudel E.G. The Lemna bioassay: Contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. Crit. Rev. Environ. Sci. Technol. 2014;44:154–197. doi: 10.1080/10643389.2012.710451. DOI
Bocuk H., Yakar A., Turker O.C. Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecol. Indic. 2013;29:538–548. doi: 10.1016/j.ecolind.2013.01.029. DOI
Frick H. Boron tolerance and accumulation in the duckweed, Lemna-minor. J. Plant Nutr. 1985;8:1123–1129. doi: 10.1080/01904168509363411. DOI
Marin C., Oron G. Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters. Water Res. 2007;41:4579–4584. doi: 10.1016/j.watres.2007.06.051. PubMed DOI
Megateli S., Semsari S., Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol. Environ. Saf. 2009;72:1774–1780. doi: 10.1016/j.ecoenv.2009.05.004. PubMed DOI
Sofo A., Moreira I., Gattullo C.E., Martins L.L., Mourato M. Antioxidant responses of edible and model plant species subjected to subtoxic zinc concentrations. J. Trace Elem. Med. Biol. 2018;49:261–268. doi: 10.1016/j.jtemb.2018.02.010. PubMed DOI
Bochicchio R., Sofo A., Terzano R., Gattullo C.E., Amato M., Scopa A. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals. Plant Physiol. Biochem. 2015;91:20–27. doi: 10.1016/j.plaphy.2015.03.010. PubMed DOI
Feigl G., Kolbert Z., Lehotai N., Molnár Á., Ördög A., Bordé Á., Laskay G., Erdei L. Different zinc sensitivity of Brassica organs is accompanied by distinct responses in protein nitration level and pattern. Ecotoxicol. Environ. Saf. 2016;125:141–152. doi: 10.1016/j.ecoenv.2015.12.006. PubMed DOI
Scherr C., Simon M., Spranger J., Baumgartner S. Test system stability and natural variability of a Lemna gibba L. Bioassay. PLoS ONE. 2008;3:e3133. doi: 10.1371/journal.pone.0003133. PubMed DOI PMC
Cedergreen N., Streibig J.C. Can the choice of endpoint lead to contradictory results of mixture-toxicity experiments? Environ. Toxicol. Chem. 2005;24:1676–1683. doi: 10.1897/04-362R.1. PubMed DOI
Ito H., Ohtsuka T., Tanaka A. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll (∗) J. Biol. Chem. 1996;271:1475–1479. doi: 10.1074/jbc.271.3.1475. PubMed DOI
Huang J.-H., Cai Z.-J., Wen S.-X., Guo P., Ye X., Lin G.-Z., Chen L.-S. Effects of boron toxicity on root and leaf anatomy in two citrus species differing in boron tolerance. Trees. 2014;28:1653–1666. doi: 10.1007/s00468-014-1075-1. DOI
Kayıhan D.S., Kayıhan C., Çiftçi Y.Ö. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana. Plant Physiol. Biochem. 2016;109:337–345. doi: 10.1016/j.plaphy.2016.10.016. PubMed DOI
Antonopoulou C., Chatzissavvidis C. Chapter 8—Impact of boron and its toxicity on photosynthetic capacity of plants. In: Aftab T., Landi M., Papadakis I.E., Araniti F., Brown P.H., editors. Boron in Plants and Agriculture. Academic Press; Cambridge, MA, USA: 2022. pp. 169–186.
Radic S., Stipanicev D., Cvjetko P., Rajcic M.M., Sirac S., Pevalek-Kozlina B., Pavlica M. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol. Environ. Saf. 2011;74:182–187. doi: 10.1016/j.ecoenv.2010.06.011. PubMed DOI
Türker O.C., Yakar A., Türe C., Saz Ç. Boron (B) removal and bioelectricity captured from irrigation water using engineered duckweed-microbial fuel cell: Effect of plant species and vegetation structure. Environ. Sci. Pollut. Res. 2019;26:31522–31536. doi: 10.1007/s11356-019-06285-6. PubMed DOI
Szopiński M., Sitko K., Gieroń Ż., Rusinowski S., Corso M., Hermans C., Verbruggen N., Małkowski E. Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00748. PubMed DOI PMC
Bechaieb R., Fredj A.B., Akacha A.B., Gérard H. Interactions of copper (II) and zinc (II) with chlorophyll: Insights from density functional theory studies. N. J. Chem. 2016;40:4543–4549. doi: 10.1039/C5NJ03244J. DOI
Nadeem F., Farooq M. Application of micronutrients in rice-wheat cropping system of South Asia. Rice Sci. 2019;26:356–371. doi: 10.1016/j.rsci.2019.02.002. DOI
Lin D., Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243–250. doi: 10.1016/j.envpol.2007.01.016. PubMed DOI
Singh J.P., Dahiya D.J., Narwal R.P. Boron uptake and toxicity in wheat in relation to zinc supply. Fertil. Res. 1990;24:105–110. doi: 10.1007/BF01073228. DOI
Güneş A., Alpaslan M., Çikili Y., Özcan H. Effect of zinc on the alleviation of boron toxicity in tomato. J. Plant Nutr. 1999;22:1061–1068. doi: 10.1080/01904169909365695. DOI
Arif M., Shehzad M.A., Bashir F., Tasneem M., Yasin G., Iqbal M. Boron, zinc and microtone effects on growth, chlorophyll contents and yield attributes in rice (Oryza sativa L.) cultivar. Afr. J. Biotechnol. 2012;11:10851–10858.
Hosseini S.M., Maftoun M., Karimian N., Ronaghi A., Emam Y. Effect of zinc × boron interaction on plant growth and tissue nutrient concentration of corn. J. Plant Nutr. 2007;30:773–781. doi: 10.1080/01904160701289974. DOI
Prasad R., Shivay Y., Kumar D. Interactions of zinc with other nutrients in soils and plants—A review. Indian J. Fertil. 2016;12:16–26.
Choi E., Kolesik P., Mcneill A., Collins H., Zhang Q., Huynh B., Graham R., Stangoulis J. The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.) Plant Cell Environ. 2007;30:984–993. doi: 10.1111/j.1365-3040.2007.01693.x. PubMed DOI
Aquea F., Federici F., Moscoso C., Vega A., Jullian P., Haseloff J.I.M., Arce-Johnson P. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ. 2012;35:719–734. doi: 10.1111/j.1365-3040.2011.02446.x. PubMed DOI
Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; London, UK: 1995. 2—Ion uptake mechanisms of individual cells and roots: Short-distance transport; pp. 6–78.
Sahin S., Kısa D., Göksu F., Geboloğlu N. Effects of boron applications on the physiology and yield of lettuce. Annu. Res. Rev. Biol. 2017;21:1–7. doi: 10.9734/ARRB/2017/38772. DOI
Reid R.J., Hayes J.E., Post A., Stangoulis J.C.R., Graham R.D. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 2004;27:1405–1414. doi: 10.1111/j.1365-3040.2004.01243.x. DOI