Ecotoxicity Study of Additives Composed of Zinc and Boron

. 2022 Dec 17 ; 10 (12) : . [epub] 20221217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36548628

The high use of additives containing zinc borate and their limited solubility in water both lead to its persistence and accumulation in biological systems. On the other hand, soluble forms of boron are easily available to plant roots and are taken up by plants. There are no ecotoxicological data available for zinc borate, the industrial utilization of which is widespread. Therefore, the potential toxicity of zinc borate and its dissociated compounds was evaluated. Based on two different ecotoxicology tests, their effect on plant growth was studied. Firstly, the impact on Lemna minor growth was investigated, including the effect on pigment content. Secondly, the inhibition of the root growth of higher plant species Sinapis alba (mustard), Lactuca sativa (lettuce) and Trifolium pretense (clover) was measured. The growth inhibition test on L. minor was more complex and sensitive compared to the plant seed germination test. Already low concentrations (10 mg/L) of ZnO, B2O3 and Zn3BO6 led to a decrease in frond growth and to an inhibition of the conversion of chlorophyll a to chlorophyll b. These results suggested that the stress caused by these additives caused damage to the photosynthetic apparatus. The highest inhibition of frond growth was detected in fronds treated with B2O3 (92-100%). In ZnO and Zn3BO6, the inhibition of frond growth was between 38 and 77%, with Zn3BO6 being slightly more toxic. In the seed germination test, the most sensitive species was lettuce, the growth of which was inhibited by 57, 83 and 53% in ZnO, B2O3 and Zn3BO6 treatments, respectively. However, the inhibitory effect on each plant was different. In lettuce and clover, the seed germination and root elongation decreased with increasing element concentrations. In contrast, in mustard, low concentrations of ZnO and Zn3BO6 supported the growth of roots. For that reason, more complex tests are essential to evaluate the additive toxicity in the environment.

Zobrazit více v PubMed

Shen K.K., Kochesfahani S., Jouffret F. Zinc borates as multifunctional polymer additives. Polym. Adv. Technol. 2008;19:469–474. doi: 10.1002/pat.1119. DOI

Ma Y., Wang J., Xu Y., Wang C., Chu F. Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42730. DOI

Jonkers N., Krop H., van Ewijk H., Leonards P.E.G. Life cycle assessment of flame retardants in an electronics application. Int. J. Life Cycle Assess. 2016;21:146–161. doi: 10.1007/s11367-015-0999-z. DOI

Yasin S., Behary N., Perwuelz A., Guan J. Life cycle assessment of flame retardant cotton textiles with optimized end-of-life phase. J. Clean. Prod. 2018;172:1080–1088. doi: 10.1016/j.jclepro.2017.10.198. DOI

Pavan M., Netzeva T.I., Worth A.P. Validation of a qsar model for acute toxicity. SAR QSAR Environ. Res. 2006;17:147–171. doi: 10.1080/10659360600636253. PubMed DOI

European Food Safety Authority Review of current practices of environmental risk assessment within efsa. EFSA Support. Publ. 2011;8:116I. doi: 10.2903/sp.efsa.2011.IN-116. DOI

Boethling R.S., Costanza J. Domain of epi suite biotransformation models. SAR QSAR Environ. Res. 2010;21:415–443. doi: 10.1080/1062936X.2010.501816. PubMed DOI

Reuschenbach P., Silvani M., Dammann M., Warnecke D., Knacker T. Ecosar model performance with a large test set of industrial chemicals. Chemosphere. 2008;71:1986–1995. doi: 10.1016/j.chemosphere.2007.12.006. PubMed DOI

Stieger G., Scheringer M., Ng C.A., Hungerbühler K. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: Data availability and quality for 36 alternative brominated flame retardants. Chemosphere. 2014;116:118–123. doi: 10.1016/j.chemosphere.2014.01.083. PubMed DOI

Strempel S., Scheringer M., Ng C.A., Hungerbühler K. Screening for pbt chemicals among the “existing” and “new” chemicals of the EU. Environ. Sci. Technol. 2012;46:5680–5687. doi: 10.1021/es3002713. PubMed DOI

Tanaka M., Fujiwara T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflügers Arch.—Eur. J. Physiol. 2008;456:671–677. doi: 10.1007/s00424-007-0370-8. PubMed DOI

Goldbach H., Amberger A. Influence of boron nutrition on cell wall polysaccharides in cell cultures of Daucus carota L. J. Plant Physiol. 1986;123:263–269. doi: 10.1016/S0176-1617(86)80076-1. DOI

O’Neill M.A., Ishii T., Albersheim P., Darvill A.G. Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 2004;55:109–139. doi: 10.1146/annurev.arplant.55.031903.141750. PubMed DOI

Princz J., Becker L., Scheffczyk A., Stephenson G., Scroggins R., Moser T., Römbke J. Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms. Ecotoxicology. 2017;26:471–481. doi: 10.1007/s10646-017-1789-0. PubMed DOI

Dell B., Huang L. Physiological response of plants to low boron. Plant Soil. 1997;193:103–120. doi: 10.1023/A:1004264009230. DOI

Schoderboeck L., Mühlegger S., Losert A., Gausterer C., Hornek R. Effects assessment: Boron compounds in the aquatic environment. Chemosphere. 2011;82:483–487. doi: 10.1016/j.chemosphere.2010.10.031. PubMed DOI

Camacho-Cristóbal J.J., Rexach J., González-Fontes A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008;50:1247–1255. doi: 10.1111/j.1744-7909.2008.00742.x. PubMed DOI

Davis S.M., Drake K.D., Maier K.J. Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere. 2002;48:615–620. doi: 10.1016/S0045-6535(02)00024-3. PubMed DOI

Cakmak I. Tansley review no. 111—Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x. PubMed DOI

Landa P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem. 2021;161:12–24. doi: 10.1016/j.plaphy.2021.01.039. PubMed DOI

Uruç Parlak K., Demirezen Yilmaz D. Response of antioxidant defences to Zn stress in three duckweed species. Ecotoxicol. Environ. Saf. 2012;85:52–58. doi: 10.1016/j.ecoenv.2012.08.023. PubMed DOI

Chen X.L., O’Halloran J., Jansen M.A.K. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn. Aquat. Toxicol. 2016;174:46–53. doi: 10.1016/j.aquatox.2016.02.012. PubMed DOI

Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 2007;41:8484–8490. doi: 10.1021/es071445r. PubMed DOI

Heinlaan M., Ivask A., Blinova I., Dubourguier H.-C., Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008;71:1308–1316. doi: 10.1016/j.chemosphere.2007.11.047. PubMed DOI

Xiong D., Fang T., Yu L., Sima X., Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 2011;409:1444–1452. doi: 10.1016/j.scitotenv.2011.01.015. PubMed DOI

Talsness C.E. Overview of toxicological aspects of polybrominated diphenyl ethers: A flame-retardant additive in several consumer products. Environ. Res. 2008;108:158–167. doi: 10.1016/j.envres.2008.08.008. PubMed DOI

OECD . Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Publishing; Paris, France: 2006. Test No. 208.

OECD . Lemna sp. Growth Inhibition Test. OECD Publishing; Paris, France: 2006. Test No. 221.

Water Quality—Determination of Toxic Effect of Water Constituents and Waste Water to Duckweed (Lemna minor)—Duckweed GROWTH inhibition Test. ISO—International Organization for Standardization; Geneva, Switzerland: 2005.

Lichtenthaler H.K. Methods in Enzymology. Volume 148. Academic Press; Cambridge, MA, USA: 1987. [34] chlorophylls and carotenoids: Pigments of photosynthetic biomembranes; pp. 350–382.

Fargašová A. Plants as models for chromium and nickel risk assessment. Ecotoxicology. 2012;21:1476–1483. doi: 10.1007/s10646-012-0901-8. PubMed DOI

Leitgib L., Kálmán J., Gruiz K. Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere. 2007;66:428–434. doi: 10.1016/j.chemosphere.2006.06.024. PubMed DOI

Soudek P., Katrusakova A., Sedlacek L., Petrova S., Koci V., Marsik P., Griga M., Vanek T. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.) Arch. Environ. Contam. Toxicol. 2010;59:194–203. doi: 10.1007/s00244-010-9480-y. PubMed DOI

Mkandawire M., da Silva J.A.T., Dudel E.G. The Lemna bioassay: Contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. Crit. Rev. Environ. Sci. Technol. 2014;44:154–197. doi: 10.1080/10643389.2012.710451. DOI

Bocuk H., Yakar A., Turker O.C. Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecol. Indic. 2013;29:538–548. doi: 10.1016/j.ecolind.2013.01.029. DOI

Frick H. Boron tolerance and accumulation in the duckweed, Lemna-minor. J. Plant Nutr. 1985;8:1123–1129. doi: 10.1080/01904168509363411. DOI

Marin C., Oron G. Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters. Water Res. 2007;41:4579–4584. doi: 10.1016/j.watres.2007.06.051. PubMed DOI

Megateli S., Semsari S., Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol. Environ. Saf. 2009;72:1774–1780. doi: 10.1016/j.ecoenv.2009.05.004. PubMed DOI

Sofo A., Moreira I., Gattullo C.E., Martins L.L., Mourato M. Antioxidant responses of edible and model plant species subjected to subtoxic zinc concentrations. J. Trace Elem. Med. Biol. 2018;49:261–268. doi: 10.1016/j.jtemb.2018.02.010. PubMed DOI

Bochicchio R., Sofo A., Terzano R., Gattullo C.E., Amato M., Scopa A. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals. Plant Physiol. Biochem. 2015;91:20–27. doi: 10.1016/j.plaphy.2015.03.010. PubMed DOI

Feigl G., Kolbert Z., Lehotai N., Molnár Á., Ördög A., Bordé Á., Laskay G., Erdei L. Different zinc sensitivity of Brassica organs is accompanied by distinct responses in protein nitration level and pattern. Ecotoxicol. Environ. Saf. 2016;125:141–152. doi: 10.1016/j.ecoenv.2015.12.006. PubMed DOI

Scherr C., Simon M., Spranger J., Baumgartner S. Test system stability and natural variability of a Lemna gibba L. Bioassay. PLoS ONE. 2008;3:e3133. doi: 10.1371/journal.pone.0003133. PubMed DOI PMC

Cedergreen N., Streibig J.C. Can the choice of endpoint lead to contradictory results of mixture-toxicity experiments? Environ. Toxicol. Chem. 2005;24:1676–1683. doi: 10.1897/04-362R.1. PubMed DOI

Ito H., Ohtsuka T., Tanaka A. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll (∗) J. Biol. Chem. 1996;271:1475–1479. doi: 10.1074/jbc.271.3.1475. PubMed DOI

Huang J.-H., Cai Z.-J., Wen S.-X., Guo P., Ye X., Lin G.-Z., Chen L.-S. Effects of boron toxicity on root and leaf anatomy in two citrus species differing in boron tolerance. Trees. 2014;28:1653–1666. doi: 10.1007/s00468-014-1075-1. DOI

Kayıhan D.S., Kayıhan C., Çiftçi Y.Ö. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana. Plant Physiol. Biochem. 2016;109:337–345. doi: 10.1016/j.plaphy.2016.10.016. PubMed DOI

Antonopoulou C., Chatzissavvidis C. Chapter 8—Impact of boron and its toxicity on photosynthetic capacity of plants. In: Aftab T., Landi M., Papadakis I.E., Araniti F., Brown P.H., editors. Boron in Plants and Agriculture. Academic Press; Cambridge, MA, USA: 2022. pp. 169–186.

Radic S., Stipanicev D., Cvjetko P., Rajcic M.M., Sirac S., Pevalek-Kozlina B., Pavlica M. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol. Environ. Saf. 2011;74:182–187. doi: 10.1016/j.ecoenv.2010.06.011. PubMed DOI

Türker O.C., Yakar A., Türe C., Saz Ç. Boron (B) removal and bioelectricity captured from irrigation water using engineered duckweed-microbial fuel cell: Effect of plant species and vegetation structure. Environ. Sci. Pollut. Res. 2019;26:31522–31536. doi: 10.1007/s11356-019-06285-6. PubMed DOI

Szopiński M., Sitko K., Gieroń Ż., Rusinowski S., Corso M., Hermans C., Verbruggen N., Małkowski E. Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00748. PubMed DOI PMC

Bechaieb R., Fredj A.B., Akacha A.B., Gérard H. Interactions of copper (II) and zinc (II) with chlorophyll: Insights from density functional theory studies. N. J. Chem. 2016;40:4543–4549. doi: 10.1039/C5NJ03244J. DOI

Nadeem F., Farooq M. Application of micronutrients in rice-wheat cropping system of South Asia. Rice Sci. 2019;26:356–371. doi: 10.1016/j.rsci.2019.02.002. DOI

Lin D., Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007;150:243–250. doi: 10.1016/j.envpol.2007.01.016. PubMed DOI

Singh J.P., Dahiya D.J., Narwal R.P. Boron uptake and toxicity in wheat in relation to zinc supply. Fertil. Res. 1990;24:105–110. doi: 10.1007/BF01073228. DOI

Güneş A., Alpaslan M., Çikili Y., Özcan H. Effect of zinc on the alleviation of boron toxicity in tomato. J. Plant Nutr. 1999;22:1061–1068. doi: 10.1080/01904169909365695. DOI

Arif M., Shehzad M.A., Bashir F., Tasneem M., Yasin G., Iqbal M. Boron, zinc and microtone effects on growth, chlorophyll contents and yield attributes in rice (Oryza sativa L.) cultivar. Afr. J. Biotechnol. 2012;11:10851–10858.

Hosseini S.M., Maftoun M., Karimian N., Ronaghi A., Emam Y. Effect of zinc × boron interaction on plant growth and tissue nutrient concentration of corn. J. Plant Nutr. 2007;30:773–781. doi: 10.1080/01904160701289974. DOI

Prasad R., Shivay Y., Kumar D. Interactions of zinc with other nutrients in soils and plants—A review. Indian J. Fertil. 2016;12:16–26.

Choi E., Kolesik P., Mcneill A., Collins H., Zhang Q., Huynh B., Graham R., Stangoulis J. The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.) Plant Cell Environ. 2007;30:984–993. doi: 10.1111/j.1365-3040.2007.01693.x. PubMed DOI

Aquea F., Federici F., Moscoso C., Vega A., Jullian P., Haseloff J.I.M., Arce-Johnson P. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ. 2012;35:719–734. doi: 10.1111/j.1365-3040.2011.02446.x. PubMed DOI

Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; London, UK: 1995. 2—Ion uptake mechanisms of individual cells and roots: Short-distance transport; pp. 6–78.

Sahin S., Kısa D., Göksu F., Geboloğlu N. Effects of boron applications on the physiology and yield of lettuce. Annu. Res. Rev. Biol. 2017;21:1–7. doi: 10.9734/ARRB/2017/38772. DOI

Reid R.J., Hayes J.E., Post A., Stangoulis J.C.R., Graham R.D. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 2004;27:1405–1414. doi: 10.1111/j.1365-3040.2004.01243.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...