Immunohistochemical characterization of bipolar cells in four distantly related avian species
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36550622
DOI
10.1002/cne.25443
Knihovny.cz E-resources
- Keywords
- AAV virus, European robin (Erithacus rubecula), bipolar cell, buzzard (Buteo buteo), chicken (Gallus gallus), double cone, magnetoreception, pigeon (Columba livia), retina,
- MeSH
- Retinal Bipolar Cells MeSH
- Retinal Cone Photoreceptor Cells MeSH
- Microscopy, Electron MeSH
- Chickens MeSH
- Retina chemistry MeSH
- Secretagogins * metabolism MeSH
- Synapses metabolism MeSH
- Songbirds * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Secretagogins * MeSH
Visual (and probably also magnetic) signal processing starts at the first synapse, at which photoreceptors contact different types of bipolar cells, thereby feeding information into different processing channels. In the chicken retina, 15 and 22 different bipolar cell types have been identified based on serial electron microscopy and single-cell transcriptomics, respectively. However, immunohistochemical markers for avian bipolar cells were only anecdotally described so far. Here, we systematically tested 12 antibodies for their ability to label individual bipolar cells in the bird retina and compared the eight most suitable antibodies across distantly related species, namely domestic chicken, domestic pigeon, common buzzard, and European robin, and across retinal regions. While two markers (GNB3 and EGFR) labeled specifically ON bipolar cells, most markers labeled in addition to bipolar cells also other cell types in the avian retina. Staining pattern of four markers (CD15, PKCα, PKCβ, secretagogin) was species-specific. Two markers (calbindin and secretagogin) showed a different expression pattern in central and peripheral retina. For the chicken and European robin, we found slightly more ON bipolar cell somata in the inner nuclear layer than OFF bipolar cell somata. In contrast, OFF bipolar cells made more ribbon synapses than ON bipolar cells in the inner plexiform layer of these species. Finally, we also analyzed the photoreceptor connectivity of selected bipolar cell types in the European robin retina. In summary, we provide a catalog of bipolar cell markers for different bird species, which will greatly facilitate analyzing the retinal circuitry of birds on a larger scale.
Department of Zoology Charles University Prague Czech Republic
Institut für Biologie Freie Universität Berlin Berlin Germany
Research Center Neurosensory Science University of Oldenburg Oldenburg Germany
See more in PubMed
Ammermüller, J., & Kolb, H. (1995). The organization of the turtle inner retina. I. ON- and OFF-center pathways. The Journal of Comparative Neurology, 358(1), 1-34. https://doi.org/10.1002/cne.903580102
Ammermüller, J., Muller, J. F., & Kolb, H. (1995). The organization of the turtle inner retina. II. Analysis of color-coded and directionally selective cells. The Journal of Comparative Neurology, 358(1), 35-62. https://doi.org/10.1002/cne.903580103
Baden, T., Euler, T., & Berens, P. (2020). Understanding the retinal basis of vision across species. Nature Reviews. Neuroscience, 21(1), 5-20. https://doi.org/10.1038/s41583-019-0242-1
Behrens, C., Schubert, T., Haverkamp, S., Euler, T., & Berens, P. (2016). Connectivity map of bipolar cells and photoreceptors in the mouse retina. ELife, 5, e20041. https://doi.org/10.7554/eLife.20041
Breuninger, T., Puller, C., Haverkamp, S., & Euler, T. (2011). Chromatic bipolar cell pathways in the mouse retina. The Journal of Neuroscience, 31(17), 6504-6517. https://doi.org/10.1523/JNEUROSCI.0616-11.2011
Caminos, E., Velasco, A., Jarrín, M., Aijón, J., & Lara, J. M. (1999). Protein kinase C-like immunoreactive cells in embryo and adult chicken retinas. Brain Research. Developmental Brain Research, 118(1-2), 227-230. https://doi.org/10.1016/s0165-3806(99)00156-x
Chan, T. L., Martin, P. R., Clunas, N., & Grünert, U. (2001). Bipolar cell diversity in the primate retina: Morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology, 437(2), 219-239. https://doi.org/10.1002/cne.1280
Chetverikova, R., Dautaj, G., Schwigon, L., Dedek, K., & Mouritsen, H. (2022). Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. Journal of The Royal Society Interface, 19(189), 20210877. https://doi.org/10.1098/rsif.2021.0877
Connaughton, V. P., & Nelson, R. (2000). Axonal stratification patterns and glutamate-gated conductance mechanisms in zebrafish retinal bipolar cells. The Journal of Physiology, 524 Pt 1, 135-146. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00135.x
Della Santina, L., Kuo, S. P., Yoshimatsu, T., Okawa, H., Suzuki, S. C., Hoon, M., Tsuboyama, K., Rieke, F., & Wong, R. O. L. (2016). Glutamatergic monopolar interneurons provide a novel pathway of excitation in the mouse retina. Current Biology, 26(15), 2070-2077. https://doi.org/10.1016/j.cub.2016.06.016
DeVries, S. H. (2000). Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron, 28(3), 847-856. https://doi.org/10.1016/S0896-6273(00)00158-6
Dudczig, S., Currie, P. D., & Jusuf, P. R. (2017). Developmental and adult characterization of secretagogin expressing amacrine cells in zebrafish retina. PLOS ONE, 12(9), e0185107. https://doi.org/10.1371/journal.pone.0185107
Dumitrescu, O. N., Pucci, F. G., Wong, K. Y., & Berson, D. M. (2009). Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells. The Journal of Comparative Neurology, 517(2), 226-244. https://doi.org/10.1002/cne.22158
Euler, T., Haverkamp, S., Schubert, T., & Baden, T. (2014). Retinal bipolar cells: Elementary building blocks of vision. Nature Reviews Neuroscience, 15(8), 507-519. https://doi.org/10.1038/nrn3783
Fischer, A. J., Foster, S., Scott, M. A., & Sherwood, P. (2008). Transient expression of LIM-domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina. The Journal of Comparative Neurology, 506(4), 584-603. https://doi.org/10.1002/cne.21578
Fischer, A. J., Stanke, J. J., Aloisio, G., Hoy, H., & Stell, W. K. (2007). Heterogeneity of horizontal cells in the chicken retina. The Journal of Comparative Neurology, 500(6), 1154-1171. https://doi.org/10.1002/cne.21236
Fournel, R., Hartveit, E., & Veruki, M. L. (2021). Differential contribution of gap junctions to the membrane properties of ON- and OFF-bipolar cells of the rat retina. Cellular and Molecular Neurobiology, 41(2), 229-245. https://doi.org/10.1007/s10571-020-00845-y
Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., & Baden, T. (2017). Inhibition decorrelates visual feature representations in the inner retina. Nature, 542(7642), 439-444. https://doi.org/10.1038/nature21394
Ghosh, K. K., Bujan, S., Haverkamp, S., Feigenspan, A., & Wässle, H. (2004). Types of bipolar cells in the mouse retina. The Journal of Comparative Neurology, 469(1), 70-82. https://doi.org/10.1002/cne.10985
Günther, A., Dedek, K., Haverkamp, S., Irsen, S., Briggman, K. L., & Mouritsen, H. (2021). Double cones and the diverse connectivity of photoreceptors and bipolar cells in an avian retina. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 41(23), 5015-5028. https://doi.org/10.1523/JNEUROSCI.2495-20.2021
Günther, A., Einwich, A., Sjulstok, E., Feederle, R., Bolte, P., Koch, K.-W., Solov'yov, I. A., & Mouritsen, H. (2018). Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European Robin cryptochrome 4. Current Biology: CB, 28(2), 211-223.e4. https://doi.org/10.1016/j.cub.2017.12.003
Haug, M. F., Berger, M., Gesemann, M., & Neuhauss, S. C. F. (2019). Differential expression of PKCα and -β in the zebrafish retina. Histochemistry and Cell Biology, 151(6), 521-530. https://doi.org/10.1007/s00418-018-1764-8
Haverkamp, S., Albert, L., Balaji, V., Němec, P., & Dedek, K. (2021). Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. The Journal of Comparative Neurology, 529(12), 3171-3193. https://doi.org/10.1002/cne.25154
Haverkamp, S., Ghosh, K. K., Hirano, A. A., & Wässle, H. (2003a). Immunocytochemical description of five bipolar cell types of the mouse retina. The Journal of Comparative Neurology, 455(4), 463-476. https://doi.org/10.1002/cne.10491
Haverkamp, S., Haeseleer, F., & Hendrickson, A. (2003b). A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neuroscience, 20(6), 589-600. https://doi.org/10.1017/S0952523803206015
Haverkamp, S., & Wässle, H. (2000). Immunocytochemical analysis of the mouse retina. The Journal of Comparative Neurology, 424(1), 1-23.
Haverkamp, S., Wässle, H., Duebel, J., Kuner, T., Augustine, G. J., Feng, G., & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. The Journal of Neuroscience, 25(22), 5438-5445. https://doi.org/10.1523/JNEUROSCI.1117-05.2005
Haverkamp, S., Specht, D., Majumdar, S., Zaidi, N. F., Brandstätter, J. H., Wasco, W., Wässle, H., & Tom Dieck, S. (2008). Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods. J. Comp. Neurol, 507, 1087-101. https://doi.org/10.1002/cne.21612.PMID:18095322
Hellmer, C. B., Zhou, Y., Fyk-Kolodziej, B., Hu, Z., & Ichinose, T. (2016). Morphological and physiological analysis of type-5 and other bipolar cells in the mouse retina. Neuroscience, 315, 246-258. https://doi.org/10.1016/j.neuroscience.2015.12.016
Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168-174. https://doi.org/10.1038/nature12346
Heyers, D., Manns, M., Luksch, H., Güntürkün, O., & Mouritsen, H. (2007). A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PloS One, 2(9), e937. https://doi.org/10.1371/journal.pone.0000937
Hore, P. J., & Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 45, 299-344. https://doi.org/10.1146/annurev-biophys-032116-094545
Hoshi, H., Liu, W.-L., Massey, S. C., & Mills, S. L. (2009). ON inputs to the OFF layer: Bipolar cells that break the stratification rules of the retina. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(28), 8875-8883. https://doi.org/10.1523/JNEUROSCI.0912-09.2009
Hübler, D., Rankovic, M., Richter, K., Lazarevic, V., Altrock, W. D., Fischer, K.-D., Gundelfinger, E. D., & Fejtova, A. (2012). Differential spatial expression and subcellular localization of CtBP family members in rodent brain. PLOS ONE, 7(6), e39710. https://doi.org/10.1371/journal.pone.0039710
Ichinose, T., & Hellmer, C. B. (2016). Differential signalling and glutamate receptor compositions in the OFF bipolar cell types in the mouse retina. The Journal of Physiology, 594(4), 883-894. https://doi.org/10.1113/JP271458
Ivanova, E., & Müller, F. (2006). Retinal bipolar cell types differ in their inventory of ion channels. Visual Neuroscience, 23(2), 143-154. https://doi.org/10.1017/S0952523806232048
Kim, I.-B., Lee, E.-J., Kang, T.-H., Chung, J.-W., & Chun, M.-H. (2003). Morphological analysis of the hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) immunoreactive bipolar cells in the rabbit retina. The Journal of Comparative Neurology, 467(3), 389-402. https://doi.org/10.1002/cne.10957
Koulen, P., Brandstätter, J. H., Kröger, S., Enz, R., Bormann, J., & Wässle, H. (1997). Immunocytochemical localization of the GABAC receptor ρ subunits in the cat, goldfish, and chicken retina. Journal of Comparative Neurology, 380(4), 520-532. https://doi.org/10.1002/(SICI)1096-9861(19970421)380:4/520::AID-CNE8/3.0.CO;2-3
Koulen, P., Fletcher, E. L., Craven, S. E., Bredt, D. S., & Wässle, H. (1998). Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. The Journal of Neuroscience, 18(23), 10136-10149. https://doi.org/10.1523/JNEUROSCI.18-23-10136.1998
Kverková, K., Marhounová, L., Polonyiová, A., Kocourek, M., Zhang, Y., Olkowicz, S., Straková, B., Pavelková, Z., Vodička, R., Frynta, D., & Němec, P. (2022). The evolution of brain neuron numbers in amniotes. Proceedings of the National Academy of Sciences of the United States of America, 119(11), e2121624119. https://doi.org/10.1073/pnas.2121624119
Li, Y. N., Tsujimura, T., Kawamura, S., & Dowling, J. E. (2012). Bipolar cell-photoreceptor connectivity in the zebrafish (Danio rerio) retina. The Journal of comparative neurology, 520(16), 3786-3802. https://doi.org/10.1002/cne.23168
Liedvogel, M., Feenders, G., Wada, K., Troje, N. F., Jarvis, E. D., & Mouritsen, H. (2007). Lateralized activation of Cluster N in the brains of migratory songbirds. The European Journal of Neuroscience, 25(4), 1166-1173. https://doi.org/10.1111/j.1460-9568.2007.05350.x
Mariani, A. P. (1987). Neuronal and synaptic organization of the outer plexiform layer of the pigeon retina. The American Journal of Anatomy, 179(1), 25-39. https://doi.org/10.1002/aja.1001790105
Mataruga, A., Kremmer, E., & Müller, F. (2007). Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. The Journal of Comparative Neurology, 502(6), 1123-1137. https://doi.org/10.1002/cne.21367
Mouritsen, H. (2018). Long-distance navigation and magnetoreception in migratory animals. Nature, 558(7708), 50-59. https://doi.org/10.1038/s41586-018-0176-1
Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., & Jarvis, E. D. (2005). Night-vision brain area in migratory songbirds. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8339-8344. https://doi.org/10.1073/pnas.0409575102
Naito, J., & Chen, Y. (2004). Morphological features of chick retinal ganglion cells. Anatomical Science International, 79(4), 213-225. https://doi.org/10.1111/j.1447-073x.2004.00084.x
Pasteels, B., Rogers, J., Blachier, F., & Pochet, R. (1990). Calbindin and calretinin localization in retina from different species. Visual Neuroscience, 5(1), 1-16. https://doi.org/10.1017/S0952523800000031
Pignatelli, V., & Strettoi, E. (2004). Bipolar cells of the mouse retina: A gene gun, morphological study. The Journal of Comparative Neurology, 476(3), 254-266. https://doi.org/10.1002/cne.20207
Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526(7574), Art. 7574. https://doi.org/10.1038/nature15697
Puller, C., Ivanova, E., Euler, T., Haverkamp, S., & Schubert, T. (2013). OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina. Neuroscience, 243, 136-148. https://doi.org/10.1016/j.neuroscience.2013.03.054
Puller, C., Ondreka, K., & Haverkamp, S. (2011). Bipolar cells of the ground squirrel retina. Journal of Comparative Neurology, 519(4), 759-774. https://doi.org/10.1002/cne.22546
Puthussery, T., Gayet-Primo, J., & Taylor, W. R. (2010). Localization of the calcium-binding protein secretagogin in cone bipolar cells of the mammalian retina. The Journal of comparative neurology, 518(4), https://doi.org/10.1002/cne.22234
Puthussery, T., Gayet-Primo, J., Taylor, W. R., & Haverkamp, S. (2011). Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. Journal of Comparative Neurology, 519(18), 3640-3656. https://doi.org/10.1002/cne.22756
Quesada, A., Prada, F. A., & Genis-Galvez, J. M. (1988). Bipolar cells in the chicken retina. Journal of Morphology, 197(3), 337-351. https://doi.org/10.1002/jmor.1051970308
Ritchey, E. R., Bongini, R. E., Code, K. A., Zelinka, C., Petersen-Jones, S., & Fischer, A. J. (2010). The pattern of expression of guanine nucleotide-binding protein beta3 in the retina is conserved across vertebrate species. Neuroscience, 169(3), 1376-1391. https://doi.org/10.1016/j.neuroscience.2010.05.081
Ritz, T., Adem, S., & Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78(2), 707-718. https://doi.org/10.1016/S0006-3495(00)76629-X
Rogers, J. H. (1989). Two calcium-binding proteins mark many chick sensory neurons. Neuroscience, 31(3), 697-709. https://doi.org/10.1016/0306-4522(89)90434-X
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth.2019
Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk, M., Adiconis, X., Levin, J. Z., Nemesh, J., Goldman, M., McCarroll, S. A., Cepko, C. L., Regev, A., & Sanes, J. R. (2016). Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell, 166(5), 1308-1323.e30. https://doi.org/10.1016/j.cell.2016.07.054
Stanke, J. J., Lehman, B., & Fischer, A. J. (2008). Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina. BMC Developmental Biology, 8, 13. https://doi.org/10.1186/1471-213X-8-13
Wässle, H., Puller, C., Müller, F., & Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(1), 106-117. https://doi.org/10.1523/JNEUROSCI.4442-08.2009
Weltzien, F., Dimarco, S., Protti, D. A., Daraio, T., Martin, P. R., & Grünert, U. (2014). Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. The Journal of Comparative Neurology, 522(2), 435-455. https://doi.org/10.1002/cne.23420
Wiltschko, W., Munro, U., Ford, H., & Wiltschko, R. (1993). Red light disrupts magnetic orientation of migratory birds. Nature, 364(6437), 525-527. https://doi.org/10.1038/364525a0
Wiltschko, W., & Wiltschko, R. (1972). Magnetic compass of European robins. Science (New York, N.Y.), 176(4030), 62-64. https://doi.org/10.1126/science.176.4030.62
Wong, K. Y., & Dowling, J. E. (2005). Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms. Journal of Neurophysiology, 94(1), 265-272. https://doi.org/10.1152/jn.00271.2004
Xu, J., Jarocha, L. E., Zollitsch, T., Konowalczyk, M., Henbest, K. B., Richert, S., Golesworthy, M. J., Schmidt, J., Déjean, V., Sowood, D. J. C., Bassetto, M., Luo, J., Walton, J. R., Fleming, J., Wei, Y., Pitcher, T. L., Moise, G., Herrmann, M., Yin, H., … Hore, P. J. (2021). Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature, 594(7864), 535-540. https://doi.org/10.1038/s41586-021-03618-9
Yamagata, M., Yan, W., & Sanes, J. R. (2021). A cell atlas of the chick retina based on single-cell transcriptomics. ELife, 10, e63907. https://doi.org/10.7554/eLife.63907
Zapka, M., Heyers, D., Hein, C. M., Engels, S., Schneider, N.-L., Hans, J., Weiler, S., Dreyer, D., Kishkinev, D., Wild, J. M., & Mouritsen, H. (2009). Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature, 461(7268), 1274-1277. https://doi.org/10.1038/nature08528