Synthesis and Structural Optimization of 2,7,9-Trisubstituted purin-8-ones as FLT3-ITD Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
Ministry of education, youth and sports, Czech Republic
20-25308S
Czech Science Foundation
21-06553S
Czech Science Foundation
IGA_PrF_2022_007
Palacký University Olomouc
IGA_PrF_2022_022
Palacký University Olomouc
NV19-08-00144
Ministry of Health of the Czech Republic
PubMed
36555810
PubMed Central
PMC9782245
DOI
10.3390/ijms232416169
PII: ijms232416169
Knihovny.cz E-zdroje
- Klíčová slova
- FLT3, acute myeloid leukemia, cyclin-dependent kinase, inhibitor, purine,
- MeSH
- akutní myeloidní leukemie * farmakoterapie MeSH
- apoptóza MeSH
- fosforylace MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proliferace buněk MeSH
- tyrosinkinasa 3 podobná fms MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- FLT3 protein, human MeSH Prohlížeč
- inhibitory proteinkinas MeSH
- tyrosinkinasa 3 podobná fms MeSH
Therapy of FLT3-positive acute myeloid leukemia still remains complicated, despite the availability of newly approved kinase inhibitors. Various strategies to avoid the reduced efficacy of therapy have been explored, including the development of dual targeting compounds, which inhibit FLT3 and another kinase necessary for the survival and proliferation of AML cells. We have designed new 2,7,9-trisubstituted 8-oxopurines as FLT3 inhibitors and report here the structure-activity relationship studies. We demonstrated that substituents at positions 7 and 9 modulate activity between CDK4 and FLT3 kinase, and the isopropyl group at position 7 substantially increased the selectivity toward FLT3 kinase, which led to the discovery of compound 15a (9-cyclopentyl-7-isopropyl-2-((4-(piperazin-1-yl)phenyl)amino)-7,9-dihydro-8H-purin-8-one). Cellular analyses in MV4-11 cells revealed inhibition of autophosphorylation of FLT3 kinase in nanomolar doses, including the suppression of downstream STAT5 and ERK1/2 phosphorylation. We also describe mechanistic studies in cell lines and activity in a mouse xenograft model in vivo.
Zobrazit více v PubMed
Daver N., Schlenk R.F., Russell N.H., Levis M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia. 2019;33:299–312. doi: 10.1038/s41375-018-0357-9. PubMed DOI PMC
Kayser S., Levis M.J. Updates on targeted therapies for acute myeloid leukaemia. Br. J. Haematol. 2022;196:316–328. doi: 10.1111/bjh.17746. PubMed DOI
Ahn J.S., Kim H.J. FLT3 mutations in acute myeloid leukemia: A review focusing on clinically applicable drugs. Blood Res. 2022;57:32–36. doi: 10.5045/br.2022.2022017. PubMed DOI PMC
Scholl S., Fleischmann M., Schnetzke U., Heidel F.H. Molecular Mechanisms of Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia: Ongoing Challenges and Future Treatments. Cells. 2020;9:2493. doi: 10.3390/cells9112493. PubMed DOI PMC
Ma J., Zhao S., Qiao X., Knight T., Edwards H., Polin L., Kushner J., Dzinic S.H., White K., Wang G., et al. Inhibition of Bcl-2 Synergistically Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Clin. Cancer Res. 2019;25:6815–6826. doi: 10.1158/1078-0432.CCR-19-0832. PubMed DOI PMC
Zhu R., Li L., Nguyen B., Seo J., Wu M., Seale T., Levis M., Duffield A., Hu Y., Small D. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal. Transduct. Target Ther. 2021;6:186. doi: 10.1038/s41392-021-00578-4. PubMed DOI PMC
Ohanian M., Garcia-Manero G., Levis M., Jabbour E., Daver N., Borthakur G., Kadia T., Pierce S., Burger J., Richie M.A., et al. Sorafenib Combined with 5-azacytidine in Older Patients with Untreated FLT3-ITD Mutated Acute Myeloid Leukemia. Am. J. Hematol. 2018;93:1136–1141. doi: 10.1002/ajh.25198. PubMed DOI
Djamai H., Berrou J., Dupont M., Kaci A., Ehlert J.E., Weber H., Baruchel A., Paublant F., Prudent R., Gardin C., et al. Synergy of FLT3 inhibitors and the small molecule inhibitor of LIM kinase1/2 CEL_Amide in FLT3-ITD mutated Acute Myeloblastic Leukemia (AML) cells. Leuk. Res. 2021;100:106490. doi: 10.1016/j.leukres.2020.106490. PubMed DOI
Inaba H., van Oosterwijk J.G., Panetta J.C., Li L., Buelow D.R., Blachly J.S., Shurtleff S., Pui C.H., Ribeiro R.C., Rubnitz J.E., et al. Preclinical and Pilot Study of Type I FLT3 Tyrosine Kinase Inhibitor, Crenolanib, with Sorafenib in Acute Myeloid Leukemia and FLT3-Internal Tandem Duplication. Clin. Cancer Res. 2022;28:2536–2546. doi: 10.1158/1078-0432.CCR-21-4450. PubMed DOI PMC
Qiao X., Ma J., Knight T., Su Y., Edwards H., Polin L., Li J., Kushner J., Dzinic S.H., White K., et al. The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J. 2021;11:111. doi: 10.1038/s41408-021-00502-7. PubMed DOI PMC
Yamaura T., Nakatani T., Uda K., Ogura H., Shin W., Kurokawa N., Saito K., Fujikawa N., Date T., Takasaki M., et al. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood. 2018;131:426–438. doi: 10.1182/blood-2017-05-786657. PubMed DOI
Yuan T., Qi B., Jiang Z., Dong W., Zhong L., Bai L., Tong R., Yu J., Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur. J. Med. Chem. 2019;178:468–483. doi: 10.1016/j.ejmech.2019.06.002. PubMed DOI
Drexler H.G. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia. 1998;12:845–859. doi: 10.1038/sj.leu.2401043. PubMed DOI
Uras I.Z., Walter G.J., Scheicher R., Bellutti F., Prchal-Murphy M., Tigan A.S., Valent P., Heidel F.H., Kubicek S., Scholl C., et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood. 2016;127:2890–2902. doi: 10.1182/blood-2015-11-683581. PubMed DOI PMC
Wang L., Wang J., Blaser B.W., Duchemin A.M., Kusewitt D.F., Liu T., Caligiuri M.A., Briesewitz R. Pharmacologic inhibition of CDK4/6: Mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood. 2007;110:2075–2083. doi: 10.1182/blood-2007-02-071266. PubMed DOI
Bisi J.E., Sorrentino J.A., Jordan J.L., Darr D.D., Roberts P.J., Tavares F.X., Strum J.C. Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors. Oncotarget. 2017;8:42343–42358. doi: 10.18632/oncotarget.16216. PubMed DOI PMC
Li C., Liu L., Liang L., Xia Z., Li Z., Wang X., McGee L.R., Newhall K., Sinclair A., Kamb A., et al. AMG 925 is a dual FLT3/CDK4 inhibitor with the potential to overcome FLT3 inhibitor resistance in acute myeloid leukemia. Mol. Cancer Ther. 2015;14:375–383. doi: 10.1158/1535-7163.MCT-14-0388. PubMed DOI
Sun D., Yang Y., Lyu J., Zhou W., Song W., Zhao Z., Chen Z., Xu Y., Li H. Discovery and Rational Design of Pteridin-7(8H)-one-Based Inhibitors Targeting FMS-like Tyrosine Kinase 3 (FLT3) and Its Mutants. J. Med. Chem. 2016;59:6187–6200. doi: 10.1021/acs.jmedchem.6b00374. PubMed DOI
Li X., Yang T., Hu M., Yang Y., Tang M., Deng D., Liu K., Fu S., Tan Y., Wang H., et al. Synthesis and biological evaluation of 6-(pyrimidin-4-yl)-1H-pyrazolo[4,3-b]pyridine derivatives as novel dual FLT3/CDK4 inhibitors. Bioorg. Chem. 2022;121:105669. doi: 10.1016/j.bioorg.2022.105669. PubMed DOI
Wang Y., Zhi Y., Jin Q., Lu S., Lin G., Yuan H., Yang T., Wang Z., Yao C., Ling J., et al. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia. J. Med. Chem. 2018;61:1499–1518. doi: 10.1021/acs.jmedchem.7b01261. PubMed DOI
Huang Z., Zhang Q., Yan L., Zhong G., Zhang L., Tan X., Wang Y. Approaching the active conformation of 1,3-diaminopyrimidine based covalent inhibitors of Bruton’s tyrosine kinase for treatment of Rheumatoid arthritis. Bioorganic Med. Chem. Lett. 2016;26:1954–1957. doi: 10.1016/j.bmcl.2016.03.011. PubMed DOI
Jin B., Scorah N., Dong Q. Hexahydrooxazinopterine Compounds for Use as mTOR Inhibitors. WO2011025889A1. 2011 March 3;
Vijay K.D., Hoarau C., Bursavich M., Slattum P., Gerrish D., Yager K., Saunders M., Shenderovich M., Roth B.L., McKinnon R., et al. Lead optimization of purine based orally bioavailable Mps1 (TTK) inhibitors. Bioorg. Med. Chem. Lett. 2012;22:4377–4385. doi: 10.1016/j.bmcl.2012.04.131. PubMed DOI
Janíková K., Jedinák L., Volná T., Cankař P. Chan-Lam cross-coupling reaction based on the Cu2S/TMEDA system. Tetrahedron. 2018;74:606–617. doi: 10.1016/j.tet.2017.12.042. DOI
Jedinák L., Zátopková R., Zemánková H., Šustková A., Cankař P. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction. J. Org. Chem. 2017;82:157–169. doi: 10.1021/acs.joc.6b02306. PubMed DOI
Magano J., Dunetz J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011;111:2177–2250. doi: 10.1021/cr100346g. PubMed DOI
Tomanová M., Jedinák L., Košař J., Kvapil L., Hradil P., Cankař P. Synthesis of 4-substituted pyrazole-3,5-diamines via Suzuki-Miyaura coupling and iron-catalyzed reduction. Org. Biomol. Chem. 2017;15:10200–10211. doi: 10.1039/C7OB02373A. PubMed DOI
Hendrychova D., Jorda R., Kryštof V. How selective are clinical CDK4/6 inhibitors? Med. Res. Rev. 2021;41:1578–1598. doi: 10.1002/med.21769. PubMed DOI
Gucky T., Reznickova E., Radosova M.T., Jorda R., Klejova Z., Malinkova V., Berka K., Bazgier V., Ajani H., Lepsik M., et al. Discovery of N(2)-(4-Amino-cyclohexyl)-9-cyclopentyl- N(6)-(4-morpholin-4-ylmethyl-phenyl)- 9H-purine-2,6-diamine as a Potent FLT3 Kinase Inhibitor for Acute Myeloid Leukemia with FLT3 Mutations. J. Med. Chem. 2018;61:3855–3869. doi: 10.1021/acs.jmedchem.7b01529. PubMed DOI
Chen P., Lee N.V., Hu W., Xu M., Ferre R.A., Lam H., Bergqvist S., Solowiej J., Diehl W., He Y.A., et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther. 2016;15:2273–2281. doi: 10.1158/1535-7163.MCT-16-0300. PubMed DOI
Li Z., Wang X., Eksterowicz J., Gribble M.W., Jr., Alba G.Q., Ayres M., Carlson T.J., Chen A., Chen X., Cho R., et al. Discovery of AMG 925, a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3. J. Med. Chem. 2014;57:3430–3449. doi: 10.1021/jm500118j. PubMed DOI
Goldberg F.W., Finlay M.R.V., Ting A.K.T., Beattie D., Lamont G.M., Fallan C., Wrigley S.M., Howard M.R., Williamson B., Vazquez-Chantada M., et al. The Discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5-a]pyridin-6-yl)amino]-9-(tetrahydro-2H-pyran-4-yl)-7,9-dihydro-8H-purin-8-one (AZD7648), a Potent and Selective DNA-Dependent Protein Kinase (DNA-PK) Inhibitor. J. Med. Chem. 2020;63:3461–3471. doi: 10.1021/acs.jmedchem.9b01684. PubMed DOI
Eastwood P.R., Rodriguez J.G., Castillo E.G., Taña J.B. Heteroaryl Imidazolone Derivatives as Jak Inhibitors. WO2011157397A1. 2011 December 22;
Stadtmueller H., Engelhardt H., Schoop A., Steegmaier M. Pteridinones Used as plk (Polo Like Kinase) Inhibitors. WO2006021547. 2006 March 2;
Adachi K., Kuroda Y., Furuta T., Fujii Y. 2-Amino Substituted 8-Oxodihydropurine Derivative. Patent JP2012184205A. 2012 September 27;
Jorda R., Hendrychova D., Voller J., Reznickova E., Gucky T., Krystof V. How selective are pharmacological inhibitors of cell-cycle-regulating cyclin-dependent kinases? J. Med. Chem. 2018;61:9105–9120. doi: 10.1021/acs.jmedchem.8b00049. PubMed DOI
Jorda R., Havlicek L., Perina M., Vojackova V., Pospisil T., Djukic S., Skerlova J., Gruz J., Renesova N., Klener P., et al. 3,5,7-Substituted Pyrazolo[4,3-d]Pyrimidine Inhibitors of Cyclin-Dependent Kinases and Cyclin K Degraders. J. Med. Chem. 2022;65:8881–8896. doi: 10.1021/acs.jmedchem.1c02184. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J., Schroeder M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. PubMed DOI PMC