4-Isobutylmethcathinone-A Novel Synthetic Cathinone with High In Vitro Cytotoxicity and Strong Receptor Binding Preference of Enantiomers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-31139J
Czech Science Foundation
PubMed
36558946
PubMed Central
PMC9780888
DOI
10.3390/ph15121495
PII: ph15121495
Knihovny.cz E-zdroje
- Klíčová slova
- absolute configuration, chiral drugs, chiral separation, cytotoxicity, density functional theory calculations, enantiomer-selective binding to receptors, neurotoxicity, receptor binding studies, synthetic cathinones,
- Publikační typ
- časopisecké články MeSH
New psychoactive substances and among them synthetic cathinones represent a significant threat to human health globally. However, within such a large pool of substances derived from a natural compound ((S)-cathinone), substances with important pharmaceutical uses can be identified, as already documented by bupropione. Therefore, this work aimed to find a synthetic pathway for a novel synthetic cathinone, namely 4-isobutylmethcathinone, and describe its spectroscopic properties and biological activity in vitro. Since cathinones comprise a chiral center in their structure, a method for chiral separation of the substance was elaborated using high-performance liquid chromatography on an analytical and preparative scale. Preparative enantioseparation on a polysaccharide column provided a sufficient amount of the drug for the chiroptical studies leading to the determination of the absolute configuration of enantiomers as well as for their subsequent in vitro cytotoxicity study. The cytotoxicity induced by 4-isobutylmethcathinone was determined in human cells derived from the urinary bladder (5637), neuroblastoma (SH-SY5Y), microglia (HMC-3), and hepatocellular carcinoma (Hep G2), in which the IC50 values after 72 h reached an 18-65 µM concentration. This is significantly higher cytotoxicity in comparison with other synthetic cathinones. In the receptor binding studies, a significant difference in the agonistic effect on dopamine and adrenergic receptors of individual enantiomers was observed. The lack of binding affinity towards the serotonin receptors then relates 4-isobutylmethcathinone to the family of monoamine drugs, such as 3,4-methylenedioxymathamphetamine (ecstasy, MDMA).
Zobrazit více v PubMed
Peacock A., Bruno R., Gisev N., Degenhardt L., Hall W., Sedefov R., White J., Thomas K.V., Farrell M., Griffiths P. New psychoactive substances: Challenges for drug surveillance, control, and public health responses. Lancet. 2019;394:1668–1684. doi: 10.1016/S0140-6736(19)32231-7. PubMed DOI
European Drug Report 2019: Trends and Developments. Publications Office of the European Union; Luxembourg: 2019. DOI
Kalix P. Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology. 1981;74:269–270. doi: 10.1007/BF00427108. PubMed DOI
Kalix P., Khan I. Khat: An amphetamine-like plant material. Bull. World Health Organ. 1984;62:681–686. PubMed PMC
Kelly J.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test. Anal. 2011;3:439–453. doi: 10.1002/dta.313. PubMed DOI
Dal Cason T.A., Young R., Glennon R.A. Cathinone: An investigation of several N-alkyl and methylenedioxy-substituted analogs. Pharmacol. Biochem. Behav. 1997;58:1109–1116. doi: 10.1016/S0091-3057(97)00323-7. PubMed DOI
Calinski D.M., Kisor D.F., Sprague J.E. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology. 2019;236:881–890. doi: 10.1007/s00213-018-4985-6. PubMed DOI
Saha K., Partilla J.S., Lehner K.R., Seddik A., Stockner T., Holy M., Sandtner W., Ecker G.F., Sitte H.H., Baumann M.H. ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology. 2015;40:1321–1331. doi: 10.1038/npp.2014.325. PubMed DOI PMC
Green A.R., King M.V., Shortall S.E., Fone K.C. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br. J. Pharmacol. 2014;171:2251–2268. doi: 10.1111/bph.12628. PubMed DOI PMC
Mayer F.P., Wimmer L., Dillon-Carter O., Partilla J.S., Burchardt N.V., Mihovilovic M.D., Baumann M.H., Sitte H.H. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br. J. Pharmacol. 2016;173:2657–2668. doi: 10.1111/bph.13547. PubMed DOI PMC
Niello M., Cintulová D., Raithmayr P., Holy M., Jäntsch K., Colas C., Ecker G.F., Sitte H.H., Mihovilovic M.D. Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Front. Pharmacol. 2021;12:654061. doi: 10.3389/fphar.2021.654061. PubMed DOI PMC
Gregg R.A., Baumann M.H., Partilla J.S., Bonano J.S., Vouga A., Tallarida C.S., Velvadapu V., Smith G.R., Peet M.M., Reitz A.B., et al. Stereochemistry of mephedrone neuropharmacology: Enantiomer-specific behavioural and neurochemical effects in rats. Br. J. Pharmacol. 2015;172:883–894. doi: 10.1111/bph.12951. PubMed DOI PMC
Philogene-Khalid H.L., Hicks C., Reitz A.B., Liu-Chen L.-Y., Rawls S.M. Synthetic cathinones and stereochemistry: S enantiomer of mephedrone reduces anxiety- and depressant-like effects in cocaine- or MDPV-abstinent rats. Drug Alcohol. Depend. 2017;178:119–125. doi: 10.1016/j.drugalcdep.2017.04.024. PubMed DOI PMC
Cragg S.J., Rice M.E. DAncing past the DAT at a DA synapse. Trends Neurosci. 2004;27:270–277. doi: 10.1016/j.tins.2004.03.011. PubMed DOI
Kristensen A.S., Andersen J., Jørgensen T.N., Sørensen L., Eriksen J., Loland C.J., Strømgaard K., Gether U. SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol. Rev. 2011;63:585–640. doi: 10.1124/pr.108.000869. PubMed DOI
Niello M., Gradisch R., Loland C.J., Stockner T., Sitte H.H. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol. Sci. 2020;41:446–463. doi: 10.1016/j.tips.2020.04.006. PubMed DOI PMC
Brooks W.H., Guida W.C., Daniel K.G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 2011;11:760–770. doi: 10.2174/156802611795165098. PubMed DOI PMC
Kirk K.L. In: Chirality in Drug Research. Francotte E., Linder W., editors. Wiley/VCH; Weinheim, Germany: 2006.
Nguyen L.A., He H., Pham-Huy C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006;2:85–100. PubMed PMC
Soares J., Costa V.M., Gaspar H., Santos S., de Lourdes Bastos M., Carvalho F., Capela J.P. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology. 2019;75:158–173. doi: 10.1016/j.neuro.2019.08.009. PubMed DOI
Gaspar H., Bronze S., Oliveira C., Victor B.L., Machuqueiro M., Pacheco R., Caldeira M.J., Santos S. Proactive response to tackle the threat of emerging drugs: Synthesis and toxicity evaluation of new cathinones. Forensic Sci. Int. 2018;290:146–156. doi: 10.1016/j.forsciint.2018.07.001. PubMed DOI
Smith S.W. Chiral Toxicology: It’s the Same Thing…Only Different. Toxicol. Sci. 2009;110:4–30. doi: 10.1093/toxsci/kfp097. PubMed DOI
Silva B., Palmeira A., Silva R., Fernandes C., Guedes de Pinho P., Remião F. S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity. Toxicol. Appl. Pharmacol. 2021;416:115442. doi: 10.1016/j.taap.2021.115442. PubMed DOI
Silva B., Rodrigues J.S., Almeida A.S., Lima A.R., Fernandes C., de Pinho P.G., Miranda J.P., Remião F. Enantioselectivity of Pentedrone and Methylone on Metabolic Profiling in 2D and 3D Human Hepatocyte-like Cells. Pharmaceuticals. 2022;15:368. doi: 10.3390/ph15030368. PubMed DOI PMC
Kolderová N., Jurásek B., Kuchař M., Lindner W., Kohout M. Gradient supercritical fluid chromatography coupled to mass spectrometry with a gradient flow of make-up solvent for enantioseparation of cathinones. J. Chromatogr. A. 2020;1625:461286. doi: 10.1016/j.chroma.2020.461286. PubMed DOI
Spálovská D., Králík F., Kohout M., Jurásek B., Habartová L., Kuchař M., Setnička V. Structure determination of butylone as a new psychoactive substance using chiroptical and vibrational spectroscopies. Chirality. 2018;30:548–559. doi: 10.1002/chir.22825. PubMed DOI
Spálovská D., Maříková T., Kohout M., Králík F., Kuchař M., Setnička V. Methylone and pentylone: Structural analysis of new psychoactive substances. Forensic Toxicol. 2019;37:366–377. doi: 10.1007/s11419-019-00468-z. DOI
Spálovská D., Paškan M., Jurásek B., Kuchař M., Kohout M., Setnička V. Structural spectroscopic study of enantiomerically pure synthetic cathinones and their major metabolites. New J. Chem. 2021;45:850–860. doi: 10.1039/D0NJ05065B. DOI
Wolrab D., Frühauf P., Moulisová A., Kuchař M., Gerner C., Lindner W., Kohout M. Chiral separation of new designer drugs (Cathinones) on chiral ion-exchange type stationary phases. J. Pharm. Biomed. Anal. 2016;120:306–315. doi: 10.1016/j.jpba.2015.12.023. PubMed DOI
Rickli A., Hoener M.C., Liechti M.E. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol. 2015;25:365–376. doi: 10.1016/j.euroneuro.2014.12.012. PubMed DOI
Luethi D., Kolaczynska K.E., Docci L., Krähenbühl S., Hoener M.C., Liechti M.E. Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology. 2018;134:4–12. doi: 10.1016/j.neuropharm.2017.07.026. PubMed DOI
Simmler L.D., Rickli A., Hoener M.C., Liechti M.E. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology. 2014;79:152–160. doi: 10.1016/j.neuropharm.2013.11.008. PubMed DOI
Sulzer D., Chen T.K., Lau Y.Y., Kristensen H., Rayport S., Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 1995;15:4102–4108. doi: 10.1523/JNEUROSCI.15-05-04102.1995. PubMed DOI PMC
Eshleman A.J., Wolfrum K.M., Hatfield M.G., Johnson R.A., Murphy K.V., Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol. 2013;85:1803–1815. doi: 10.1016/j.bcp.2013.04.004. PubMed DOI PMC
Kolaczynska K.E., Thomann J., Hoener M.C., Liechti M.E. The Pharmacological Profile of Second Generation Pyrovalerone Cathinones and Related Cathinone Derivative. Int. J. Mol. Sci. 2021;22:8277. doi: 10.3390/ijms22158277. PubMed DOI PMC
Seaman R.W., Doyle M.R., Sulima A., Rice K.C., Collins G.T. Discriminative stimulus effects of 3,4-methylenedioxypyrovalerone (MDPV) and structurally related synthetic cathinones. Behav. Pharmacol. 2021;32:357–367. doi: 10.1097/FBP.0000000000000624. PubMed DOI PMC
Simmler L.D., Buser T.A., Donzelli M., Schramm Y., Dieu L.H., Huwyler J., Chaboz S., Hoener M.C., Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013;168:458–470. doi: 10.1111/j.1476-5381.2012.02145.x. PubMed DOI PMC
Kroeze W.K., Sassano M.F., Huang X.P., Lansu K., McCorvy J.D., Giguère P.M., Sciaky N., Roth B.L. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 2015;22:362–369. doi: 10.1038/nsmb.3014. PubMed DOI PMC
Beaulieu J.-M., Espinoza S., Gainetdinov R.R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharmacol. 2015;172:1–23. doi: 10.1111/bph.12906. PubMed DOI PMC
Beaulieu J.-M., Gainetdinov R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol. Rev. 2011;63:182–217. doi: 10.1124/pr.110.002642. PubMed DOI
Martel J.C., Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020;11:1003. doi: 10.3389/fphar.2020.01003. PubMed DOI PMC
Urbanova M., Setnicka V.V., Volka K. Measurements of concentration dependence and enantiomeric purity of terpene solutions as a test of a new commercial VCD spectrometer. Chirality. 2000;12:199–203. doi: 10.1002/(SICI)1520-636X(2000)12:4<199::AID-CHIR6>3.0.CO;2-L. PubMed DOI
Bouř P., Maloň P. The MCM Program. Czech Academy of Sciences; Prague, Czech Republic: 1995.
Covington C.L., Polavarapu P.L. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A. 2013;117:3377–3386. doi: 10.1021/jp401079s. PubMed DOI
Polavarapu P.L., Covington C.L. Comparison of Experimental and Calculated Chiroptical Spectra for Chiral Molecular Structure Determination. Chirality. 2014;26:539–552. doi: 10.1002/chir.22316. PubMed DOI
Sawada K., Okada S., Kuroda A., Watanabe S., Sawada Y., Tanaka H. 4-(Benzoylindolizinyl)butyric Acids; Novel Nonsteroidal Inhibitors of Steroid 5α-Reductase. III. Chem. Pharm. Bull. 2001;49:799–813. doi: 10.1248/cpb.49.799. PubMed DOI
King C.L., Ostrum K.G. Selective bromination with copper(II) bromide. J. Am. Chem. Soc. 1964;29:3459–3461. doi: 10.1021/jo01035a003. DOI
Malmedy F., Wirth T. Stereoselective Ketone Rearrangements with Hypervalent Iodine Reagents. Chem. Eur. J. 2016;22:16072–16077. doi: 10.1002/chem.201603022. PubMed DOI
Sonawane H.R., Rellur N.S., Kulkarni D.G., Ayyangar N.R. Photochemical Rearrangement of α-Chloro-Propiophenones to α-Arylpropanoic Acids: Studies on Chirality Transfer and Synthesis of (S)-(+)-Ibuprofen and (S)-(+)-Ketoprofen. Tetrahedron. 1994;50:1243–1260. doi: 10.1016/S0040-4020(01)80835-8. DOI
Herciková J., Spálovská D., Frühauf P., Izák P., Lindner W., Kohout M. Design and synthesis of naphthalene-based strong cation exchangers and their application for chiral separation of basic drugs. J. Sep. Sci. 2021;44:3348–3356. doi: 10.1002/jssc.202100127. PubMed DOI