4-Isobutylmethcathinone-A Novel Synthetic Cathinone with High In Vitro Cytotoxicity and Strong Receptor Binding Preference of Enantiomers

. 2022 Nov 30 ; 15 (12) : . [epub] 20221130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36558946

Grantová podpora
21-31139J Czech Science Foundation

New psychoactive substances and among them synthetic cathinones represent a significant threat to human health globally. However, within such a large pool of substances derived from a natural compound ((S)-cathinone), substances with important pharmaceutical uses can be identified, as already documented by bupropione. Therefore, this work aimed to find a synthetic pathway for a novel synthetic cathinone, namely 4-isobutylmethcathinone, and describe its spectroscopic properties and biological activity in vitro. Since cathinones comprise a chiral center in their structure, a method for chiral separation of the substance was elaborated using high-performance liquid chromatography on an analytical and preparative scale. Preparative enantioseparation on a polysaccharide column provided a sufficient amount of the drug for the chiroptical studies leading to the determination of the absolute configuration of enantiomers as well as for their subsequent in vitro cytotoxicity study. The cytotoxicity induced by 4-isobutylmethcathinone was determined in human cells derived from the urinary bladder (5637), neuroblastoma (SH-SY5Y), microglia (HMC-3), and hepatocellular carcinoma (Hep G2), in which the IC50 values after 72 h reached an 18-65 µM concentration. This is significantly higher cytotoxicity in comparison with other synthetic cathinones. In the receptor binding studies, a significant difference in the agonistic effect on dopamine and adrenergic receptors of individual enantiomers was observed. The lack of binding affinity towards the serotonin receptors then relates 4-isobutylmethcathinone to the family of monoamine drugs, such as 3,4-methylenedioxymathamphetamine (ecstasy, MDMA).

Zobrazit více v PubMed

Peacock A., Bruno R., Gisev N., Degenhardt L., Hall W., Sedefov R., White J., Thomas K.V., Farrell M., Griffiths P. New psychoactive substances: Challenges for drug surveillance, control, and public health responses. Lancet. 2019;394:1668–1684. doi: 10.1016/S0140-6736(19)32231-7. PubMed DOI

European Drug Report 2019: Trends and Developments. Publications Office of the European Union; Luxembourg: 2019. DOI

Kalix P. Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology. 1981;74:269–270. doi: 10.1007/BF00427108. PubMed DOI

Kalix P., Khan I. Khat: An amphetamine-like plant material. Bull. World Health Organ. 1984;62:681–686. PubMed PMC

Kelly J.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test. Anal. 2011;3:439–453. doi: 10.1002/dta.313. PubMed DOI

Dal Cason T.A., Young R., Glennon R.A. Cathinone: An investigation of several N-alkyl and methylenedioxy-substituted analogs. Pharmacol. Biochem. Behav. 1997;58:1109–1116. doi: 10.1016/S0091-3057(97)00323-7. PubMed DOI

Calinski D.M., Kisor D.F., Sprague J.E. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology. 2019;236:881–890. doi: 10.1007/s00213-018-4985-6. PubMed DOI

Saha K., Partilla J.S., Lehner K.R., Seddik A., Stockner T., Holy M., Sandtner W., Ecker G.F., Sitte H.H., Baumann M.H. ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology. 2015;40:1321–1331. doi: 10.1038/npp.2014.325. PubMed DOI PMC

Green A.R., King M.V., Shortall S.E., Fone K.C. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br. J. Pharmacol. 2014;171:2251–2268. doi: 10.1111/bph.12628. PubMed DOI PMC

Mayer F.P., Wimmer L., Dillon-Carter O., Partilla J.S., Burchardt N.V., Mihovilovic M.D., Baumann M.H., Sitte H.H. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br. J. Pharmacol. 2016;173:2657–2668. doi: 10.1111/bph.13547. PubMed DOI PMC

Niello M., Cintulová D., Raithmayr P., Holy M., Jäntsch K., Colas C., Ecker G.F., Sitte H.H., Mihovilovic M.D. Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Front. Pharmacol. 2021;12:654061. doi: 10.3389/fphar.2021.654061. PubMed DOI PMC

Gregg R.A., Baumann M.H., Partilla J.S., Bonano J.S., Vouga A., Tallarida C.S., Velvadapu V., Smith G.R., Peet M.M., Reitz A.B., et al. Stereochemistry of mephedrone neuropharmacology: Enantiomer-specific behavioural and neurochemical effects in rats. Br. J. Pharmacol. 2015;172:883–894. doi: 10.1111/bph.12951. PubMed DOI PMC

Philogene-Khalid H.L., Hicks C., Reitz A.B., Liu-Chen L.-Y., Rawls S.M. Synthetic cathinones and stereochemistry: S enantiomer of mephedrone reduces anxiety- and depressant-like effects in cocaine- or MDPV-abstinent rats. Drug Alcohol. Depend. 2017;178:119–125. doi: 10.1016/j.drugalcdep.2017.04.024. PubMed DOI PMC

Cragg S.J., Rice M.E. DAncing past the DAT at a DA synapse. Trends Neurosci. 2004;27:270–277. doi: 10.1016/j.tins.2004.03.011. PubMed DOI

Kristensen A.S., Andersen J., Jørgensen T.N., Sørensen L., Eriksen J., Loland C.J., Strømgaard K., Gether U. SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol. Rev. 2011;63:585–640. doi: 10.1124/pr.108.000869. PubMed DOI

Niello M., Gradisch R., Loland C.J., Stockner T., Sitte H.H. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol. Sci. 2020;41:446–463. doi: 10.1016/j.tips.2020.04.006. PubMed DOI PMC

Brooks W.H., Guida W.C., Daniel K.G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 2011;11:760–770. doi: 10.2174/156802611795165098. PubMed DOI PMC

Kirk K.L. In: Chirality in Drug Research. Francotte E., Linder W., editors. Wiley/VCH; Weinheim, Germany: 2006.

Nguyen L.A., He H., Pham-Huy C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006;2:85–100. PubMed PMC

Soares J., Costa V.M., Gaspar H., Santos S., de Lourdes Bastos M., Carvalho F., Capela J.P. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology. 2019;75:158–173. doi: 10.1016/j.neuro.2019.08.009. PubMed DOI

Gaspar H., Bronze S., Oliveira C., Victor B.L., Machuqueiro M., Pacheco R., Caldeira M.J., Santos S. Proactive response to tackle the threat of emerging drugs: Synthesis and toxicity evaluation of new cathinones. Forensic Sci. Int. 2018;290:146–156. doi: 10.1016/j.forsciint.2018.07.001. PubMed DOI

Smith S.W. Chiral Toxicology: It’s the Same Thing…Only Different. Toxicol. Sci. 2009;110:4–30. doi: 10.1093/toxsci/kfp097. PubMed DOI

Silva B., Palmeira A., Silva R., Fernandes C., Guedes de Pinho P., Remião F. S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity. Toxicol. Appl. Pharmacol. 2021;416:115442. doi: 10.1016/j.taap.2021.115442. PubMed DOI

Silva B., Rodrigues J.S., Almeida A.S., Lima A.R., Fernandes C., de Pinho P.G., Miranda J.P., Remião F. Enantioselectivity of Pentedrone and Methylone on Metabolic Profiling in 2D and 3D Human Hepatocyte-like Cells. Pharmaceuticals. 2022;15:368. doi: 10.3390/ph15030368. PubMed DOI PMC

Kolderová N., Jurásek B., Kuchař M., Lindner W., Kohout M. Gradient supercritical fluid chromatography coupled to mass spectrometry with a gradient flow of make-up solvent for enantioseparation of cathinones. J. Chromatogr. A. 2020;1625:461286. doi: 10.1016/j.chroma.2020.461286. PubMed DOI

Spálovská D., Králík F., Kohout M., Jurásek B., Habartová L., Kuchař M., Setnička V. Structure determination of butylone as a new psychoactive substance using chiroptical and vibrational spectroscopies. Chirality. 2018;30:548–559. doi: 10.1002/chir.22825. PubMed DOI

Spálovská D., Maříková T., Kohout M., Králík F., Kuchař M., Setnička V. Methylone and pentylone: Structural analysis of new psychoactive substances. Forensic Toxicol. 2019;37:366–377. doi: 10.1007/s11419-019-00468-z. DOI

Spálovská D., Paškan M., Jurásek B., Kuchař M., Kohout M., Setnička V. Structural spectroscopic study of enantiomerically pure synthetic cathinones and their major metabolites. New J. Chem. 2021;45:850–860. doi: 10.1039/D0NJ05065B. DOI

Wolrab D., Frühauf P., Moulisová A., Kuchař M., Gerner C., Lindner W., Kohout M. Chiral separation of new designer drugs (Cathinones) on chiral ion-exchange type stationary phases. J. Pharm. Biomed. Anal. 2016;120:306–315. doi: 10.1016/j.jpba.2015.12.023. PubMed DOI

Rickli A., Hoener M.C., Liechti M.E. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol. 2015;25:365–376. doi: 10.1016/j.euroneuro.2014.12.012. PubMed DOI

Luethi D., Kolaczynska K.E., Docci L., Krähenbühl S., Hoener M.C., Liechti M.E. Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology. 2018;134:4–12. doi: 10.1016/j.neuropharm.2017.07.026. PubMed DOI

Simmler L.D., Rickli A., Hoener M.C., Liechti M.E. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology. 2014;79:152–160. doi: 10.1016/j.neuropharm.2013.11.008. PubMed DOI

Sulzer D., Chen T.K., Lau Y.Y., Kristensen H., Rayport S., Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 1995;15:4102–4108. doi: 10.1523/JNEUROSCI.15-05-04102.1995. PubMed DOI PMC

Eshleman A.J., Wolfrum K.M., Hatfield M.G., Johnson R.A., Murphy K.V., Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol. 2013;85:1803–1815. doi: 10.1016/j.bcp.2013.04.004. PubMed DOI PMC

Kolaczynska K.E., Thomann J., Hoener M.C., Liechti M.E. The Pharmacological Profile of Second Generation Pyrovalerone Cathinones and Related Cathinone Derivative. Int. J. Mol. Sci. 2021;22:8277. doi: 10.3390/ijms22158277. PubMed DOI PMC

Seaman R.W., Doyle M.R., Sulima A., Rice K.C., Collins G.T. Discriminative stimulus effects of 3,4-methylenedioxypyrovalerone (MDPV) and structurally related synthetic cathinones. Behav. Pharmacol. 2021;32:357–367. doi: 10.1097/FBP.0000000000000624. PubMed DOI PMC

Simmler L.D., Buser T.A., Donzelli M., Schramm Y., Dieu L.H., Huwyler J., Chaboz S., Hoener M.C., Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013;168:458–470. doi: 10.1111/j.1476-5381.2012.02145.x. PubMed DOI PMC

Kroeze W.K., Sassano M.F., Huang X.P., Lansu K., McCorvy J.D., Giguère P.M., Sciaky N., Roth B.L. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 2015;22:362–369. doi: 10.1038/nsmb.3014. PubMed DOI PMC

Beaulieu J.-M., Espinoza S., Gainetdinov R.R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharmacol. 2015;172:1–23. doi: 10.1111/bph.12906. PubMed DOI PMC

Beaulieu J.-M., Gainetdinov R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol. Rev. 2011;63:182–217. doi: 10.1124/pr.110.002642. PubMed DOI

Martel J.C., Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020;11:1003. doi: 10.3389/fphar.2020.01003. PubMed DOI PMC

Urbanova M., Setnicka V.V., Volka K. Measurements of concentration dependence and enantiomeric purity of terpene solutions as a test of a new commercial VCD spectrometer. Chirality. 2000;12:199–203. doi: 10.1002/(SICI)1520-636X(2000)12:4<199::AID-CHIR6>3.0.CO;2-L. PubMed DOI

Bouř P., Maloň P. The MCM Program. Czech Academy of Sciences; Prague, Czech Republic: 1995.

Covington C.L., Polavarapu P.L. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A. 2013;117:3377–3386. doi: 10.1021/jp401079s. PubMed DOI

Polavarapu P.L., Covington C.L. Comparison of Experimental and Calculated Chiroptical Spectra for Chiral Molecular Structure Determination. Chirality. 2014;26:539–552. doi: 10.1002/chir.22316. PubMed DOI

Sawada K., Okada S., Kuroda A., Watanabe S., Sawada Y., Tanaka H. 4-(Benzoylindolizinyl)butyric Acids; Novel Nonsteroidal Inhibitors of Steroid 5α-Reductase. III. Chem. Pharm. Bull. 2001;49:799–813. doi: 10.1248/cpb.49.799. PubMed DOI

King C.L., Ostrum K.G. Selective bromination with copper(II) bromide. J. Am. Chem. Soc. 1964;29:3459–3461. doi: 10.1021/jo01035a003. DOI

Malmedy F., Wirth T. Stereoselective Ketone Rearrangements with Hypervalent Iodine Reagents. Chem. Eur. J. 2016;22:16072–16077. doi: 10.1002/chem.201603022. PubMed DOI

Sonawane H.R., Rellur N.S., Kulkarni D.G., Ayyangar N.R. Photochemical Rearrangement of α-Chloro-Propiophenones to α-Arylpropanoic Acids: Studies on Chirality Transfer and Synthesis of (S)-(+)-Ibuprofen and (S)-(+)-Ketoprofen. Tetrahedron. 1994;50:1243–1260. doi: 10.1016/S0040-4020(01)80835-8. DOI

Herciková J., Spálovská D., Frühauf P., Izák P., Lindner W., Kohout M. Design and synthesis of naphthalene-based strong cation exchangers and their application for chiral separation of basic drugs. J. Sep. Sci. 2021;44:3348–3356. doi: 10.1002/jssc.202100127. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...