The Injection Molding of Biodegradable Polydioxanone-A Study of the Dependence of the Structural and Mechanical Properties on Thermal Processing Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
European Union via European Structural and Investment Funds as part of the Research, Develop-ment and Education Operational Programme - Hybrid Materials for Hierarchical Structures project
LM2018124
Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic
SGS-2021-6041
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36559895
PubMed Central
PMC9781196
DOI
10.3390/polym14245528
PII: polym14245528
Knihovny.cz E-zdroje
- Klíčová slova
- biopolymers, degradable polymers, injection molding, mechanical properties, medical devices, polydioxanone,
- Publikační typ
- časopisecké články MeSH
Recent years have observed a significant increase in the use of degradable materials in medicine due to their minimal impact on the patient and broad range of applicability. The biodegradable polymer Polydioxanone (PDO) provides a good example of the use of such one polymer that can represent the aforementioned medical materials in the field of medicine, due to its high level of biocompatibility and interesting mechanical properties. PDO is used to produce absorbable medical devices such as sutures and stents, and is also suitable for the fabrication of certain orthopedic implants. Polydioxanone can be processed using the injection molding method due to its thermoplastic nature; this method allows for the precise and easily-controllable production of medical materials without the need for toxic additives. A number of small commercial polymer implants have recently been introduced onto the market based on this processing method. It is important to note that, to date, no relevant information on the molding of PDO is available either for the scientific or the general public, and no study has been published that describes the potential of the injection molding of PDO. Hence, we present our research on the basic technological and material parameters that allow for the processing of PDO using the laboratory microinjection molding method. In addition to determining the basic parameters of the process, the research also focused on the study of the structural and mechanical properties of samples based on the thermal conditions during processing. A technological frame work was successfully determined for the processing of PDO via the microinjection molding approach that allows for the production of samples with the required homogeneity, shape stability and surface quality in a laboratory scale. The research revealed that PDO is a polymer with a major share of crystalline phases, and that it is sensitive to the annealing temperature profile in the mold, which has the potential to impact the final crystalline structure, the fracture morphology and the mechanical properties.
Zobrazit více v PubMed
Ahlinder A., Fuoco T., Finne-Wistrand A. Medical Grade Polylactide, Copolyesters and Polydioxanone: Rheological Properties and Melt Stability. Polym. Test. 2018;72:214–222. doi: 10.1016/j.polymertesting.2018.10.007. DOI
Barrows T. Degradable Implant Materials: A Review of Synthetic Absorbable Polymers and Their Applications. Clin. Mater. 1986;1:233–257. doi: 10.1016/S0267-6605(86)80015-4. DOI
Ray J.A., Doddi N., Regula D., Williams J.A., Melveger A. Polydioxanone (PDS), a Novel Monofilament Synthetic Absorbable Suture. Surg. Gynecol. Obs. 1981;153:497–507. PubMed
Janík V., Horák L., Hnaníček J., Málek J., Laasch H.-U. Biodegradable Polydioxanone Stents: A New Option for Therapy-Resistant Anastomotic Strictures of the Colon. Eur. Radiol. 2011;21:1956–1961. doi: 10.1007/s00330-011-2131-5. PubMed DOI
Kumbar S.G., Laurencin C.T., Deng M., editors. Natural and Synthetic Biomedical Polymers. Elsevier; Oxford, UK: 2014. pp. i–ii.
Lin H.L., Chu C.C., Grubb D. Hydrolytic Degradation and Morphologic Study of Poly-p-Dioxanone. J. Biomed. Mater. Res. 1993;27:153–166. doi: 10.1002/jbm.820270204. PubMed DOI
Martins J.A., Lach A.A., Morris H.L., Carr A.J., Mouthuy P.-A. Polydioxanone Implants: A Systematic Review on Safety and Performance in Patients. J. Biomater. Appl. 2019;34:902–916. doi: 10.1177/0885328219888841. PubMed DOI PMC
Boland E.D., Coleman B.D., Barnes C.P., Simpson D.G., Wnek G.E., Bowlin G.L. Electrospinning Polydioxanone for Biomedical Applications. Acta Biomater. 2005;1:115–123. doi: 10.1016/j.actbio.2004.09.003. PubMed DOI
Saska S., Pilatti L., Silva E.S.d.S., Nagasawa M.A., Câmara D., Lizier N., Finger E., Dyszkiewicz Konwińska M., Kempisty B., Tunchel S., et al. Polydioxanone-Based Membranes for Bone Regeneration. Polymers. 2021;13:1685. doi: 10.3390/polym13111685. PubMed DOI PMC
Smrithi P., Deepthy M. Nanofibrous Polydioxanone Depots for Prolonged Intraperitoneal Paclitaxel Delivery. Curr. Drug Deliv. 2019;16:654–662. PubMed
Goonoo N., Jeetah R., Bhaw-Luximon A., Jhurry D. Polydioxanone-Based Bio-Materials for Tissue Engineering and Drug/Gene Delivery Applications. Eur. J. Pharm. Biopharm. 2015;97:371–391. doi: 10.1016/j.ejpb.2015.05.024. PubMed DOI
Bryce D.M. Plastic Injection Molding: Manufacturing Process Fundamentals. Society of Manufacturing Engineers; Southfield, MI, USA: 1996.
Rosato D.V., Rosato M.G., editors. Injection Molding Handbook. 3rd ed. Springer; New York, NY, USA: 2000.
Altpeter H., Bevis M.J., Grijpma D.W., Feijen J. Non-Conventional Injection Molding of Poly(Lactide) and Poly(Epsilon-Caprolactone) Intended for Orthopedic Applications. J. Mater. Sci. Mater. Med. 2004;15:175–184. doi: 10.1023/B:JMSM.0000011820.64572.a5. PubMed DOI
Agüero A., Morcillo M.d.C., Quiles-Carrillo L., Balart R., Boronat T., Lascano D., Torres-Giner S., Fenollar O. Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers. 2019;11:1908. doi: 10.3390/polym11121908. PubMed DOI PMC
Tábi T., Kovács J. Examination of Injection Moulded Thermoplastic Maize Starch. eXPRESS Polym. Lett. 2007;1:804–809. doi: 10.3144/expresspolymlett.2007.111. DOI
Zhao H., Cui Z., Sun X., Turng L.-S., Peng X. Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends. Ind. Eng. Chem. Res. 2013;52:2569–2581. doi: 10.1021/ie301573y. DOI
Zhu C., Nomura C.T., Perrotta J.A., Stipanovic A.J., Nakas J.P. The Effect of Nucleating Agents on Physical Properties of Poly-3-Hydroxybutyrate (PHB) and Poly-3-Hydroxybutyrate-Co-3-Hydroxyvalerate (PHB-Co-HV) Produced by Burkholderia Cepacia ATCC 17759. Polym. Test. 2012;31:579–585. doi: 10.1016/j.polymertesting.2012.03.004. DOI
Luna C.B.B., Siqueira D.D., Ferreira E.d.S.B., Araújo E.M., Wellen R.M.R. Effect of Injection Parameters on the Thermal, Mechanical and Thermomechanical Properties of Polycaprolactone (PCL) J. Elastomers Plast. 2021;53:1045–1062. doi: 10.1177/00952443211015345. DOI
Liparoti S., Franco P., Pantani R., De Marco I. Polycaprolactone/Polyethylene-Glycol Capsules Made by Injection Molding: A Drug Release Modeling. Mater. Sci. Eng. C. 2021;123:112036. doi: 10.1016/j.msec.2021.112036. PubMed DOI
Rothen-Weinhold A., Besseghir K., Vuaridel E., Sublet E., Oudry N., Kubel F., Gurny R. Injection-Molding versus Extrusion as Manufacturing Technique for the Preparation of Biodegradable Implants. Eur. J. Pharm. Biopharm. 1999;48:113–121. doi: 10.1016/S0939-6411(99)00034-X. PubMed DOI
Taubner V., Shishoo R. Influence of Processing Parameters on the Degradation of Poly(L-Lactide) during Extrusion. J. Appl. Polym. Sci. 2001;79:2128–2135. doi: 10.1002/1097-4628(20010321)79:12<2128::AID-APP1020>3.0.CO;2-#. DOI
Boruvka M., Cermak C., Behalek L., Brdlik P. Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-Lactide)/Poly(d-Lactide) Blends Incorporated with Nanohydroxyapatite. Polymers. 2021;13:2835. doi: 10.3390/polym13162835. PubMed DOI PMC
König C., Ruffieux K., Wintermantel E., Blaser J. Autosterilization of Biodegradable Implants by Injection Molding Process. J. Biomed. Mater. Res. 1997;38:115–119. doi: 10.1002/(SICI)1097-4636(199722)38:2<115::AID-JBM5>3.0.CO;2-T. PubMed DOI
Márquez Y., Franco L., Turon P., Martínez J.C., Puiggalí J. Study of Non-Isothermal Crystallization of Polydioxanone and Analysis of Morphological Changes Occurring during Heating and Cooling Processes. Polymers. 2016;8:351. doi: 10.3390/polym8100351. PubMed DOI PMC
Liu C., Andjelić S., Zhou J., Xu Y., Vailhe C., Vetrecin R. Thermal Stability and Melt Rheology of Poly(p-Dioxanone) J. Mater. Sci. Mater. Med. 2008;19:3481–3487. doi: 10.1007/s10856-008-3516-0. PubMed DOI
Ishikiriyama K., Pyda M., Zhang G., Forschner T., Grebowicz J., Wunderlich B. Heat Capacity of Poly-p-Dioxanone. J. Macromol. Sci. Part B. 1998;37:27–44. doi: 10.1080/00222349808220453. DOI
Pezzin A.P.T., Alberda van Ekenstein G.O.R., Duek E.A.R. Melt Behaviour, Crystallinity and Morphology of Poly(p-Dioxanone) Polymer. 2001;42:8303–8306. doi: 10.1016/S0032-3861(01)00273-7. DOI