SARS-CoV-2 Specific Humoral Immune Responses after BNT162b2 Vaccination in Hospital Healthcare Workers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
207032
Charles University research program COOPERATIO IMMU
CZ.02.2.69/0.0/0.0/19_073/0016936
Czech Health Research Council AZV-150 and OP VVV IGA/A
PubMed
36560450
PubMed Central
PMC9782529
DOI
10.3390/vaccines10122038
PII: vaccines10122038
Knihovny.cz E-resources
- Keywords
- BNT162b2, COVID-19, ELISA, SARS-CoV-2, antibody titer, mRNA vaccine, spike protein,
- Publication type
- Journal Article MeSH
BACKGROUND: COVID-19 pandemic has led to a loss of human life in millions and devastating socio-economic consequences worldwide. So far, vaccination is the most effective long-term strategy to control and prevent severe COVID-19 disease. The aim of the current study was to evaluate the humoral immune responses raised against the BNT162b2 vaccine in hospital healthcare workers. METHODS: Total number of 173 healthcare workers enrolled in the study. Their blood samples were collected in three different time intervals after the second SARS-CoV-2 vaccination and evaluated by the ELISA method to detect anti-spike protein IgM and IgG antibodies. The baseline characteristics of all participants were collected using questionnaires and were evaluated for finding any significant data. RESULTS: Our results demonstrated that the levels of antibodies were higher in the young group (21-30 years old) and also among male participants. Moreover, the highest levels of antibodies were detected from the group that received the third shot vaccination. CONCLUSIONS: Our results indicate that age, gender and third-dose vaccination can affect the levels of humoral immune responses against the BNT162b2 vaccine in healthcare workers.
See more in PubMed
Pascarella G., Strumia A., Piliego C., Bruno F., Del Buono R., Costa F., Scarlata S., Agrò F.E. COVID-19 diagnosis and management: A comprehensive review. J. Intern. Med. 2020;288:192–206. doi: 10.1111/joim.13091. PubMed DOI PMC
Ortiz-Prado E., Simbana-Rivera K., Gomez-Barreno L., Rubio-Neira M., Guaman L.P., Kyriakidis N.C., Muslin C., Jaramillo A.M.G., Barba-Ostria C., Cevallos-Robalino D. Clinical molecular, epidemiological characterization of the SARS-CoV-2 virus the Coronavirus Disease 2019 (COVID-19) a comprehensive literature review. Diagn. Microbiol. Infect. Dis. 2020;98:115094. doi: 10.1016/j.diagmicrobio.2020.115094. PubMed DOI PMC
Anand U., Jakhmola S., Indari O., Jha H.C., Chen Z.S., Tripathi V., Pérez de la Lastra J. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front. Immunol. 2021;12:658519. doi: 10.3389/fimmu.2021.658519. PubMed DOI PMC
Park J.H., Lee H.K. Delivery Routes for COVID-19 Vaccines. Vaccines. 2021;9:524. doi: 10.3390/vaccines9050524. PubMed DOI PMC
Triggle C.R., Bansal D., Ding H., Islam M.M., Farag E., Hadi H.A., Sultan A.A. A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Front. Immunol. 2021;12:631139. doi: 10.3389/fimmu.2021.631139. PubMed DOI PMC
Boechat J.L., Chora I., Morais A., Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology–Current perspectives. Pulmonology. 2021;27:423–437. doi: 10.1016/j.pulmoe.2021.03.008. PubMed DOI PMC
Singhal T. A Review of Coronavirus Disease-2019 (COVID-19) Indian J. Pediatr. 2020;87:281–286. doi: 10.1007/s12098-020-03263-6. PubMed DOI PMC
Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. PubMed DOI PMC
Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Pérez Marc G., Moreira E.D., Zerbini C. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020;383:2603–2615. doi: 10.1056/NEJMoa2034577. PubMed DOI PMC
De Leon-Rodriguez S.G., Hernandez-Rico B., Olmo-Vazquez G.D., Cruz-Davalos I., Bonifaz L.C. SARS-CoV-2: Previous coronaviruses, immune response, and development of vaccines. Bol. Med. Hosp. Infant. Mex. 2020;77:252–261. doi: 10.24875/BMHIM.200001911. PubMed DOI
Coronavirus Worldometers. 2022. [(accessed on 7 October 2020)]. Available online: https://www.worldometers.info/coronavirus/
Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021;384:403–416. doi: 10.1056/NEJMoa2035389. PubMed DOI PMC
Voysey M., Clemens S.A.C., Madhi S.A., Weckx L.Y., Folegatti P.M., Aley P.K. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. doi: 10.1016/S0140-6736(20)32661-1. PubMed DOI PMC
Covidportal. Information about Available Vaccines: Ministry of Health 2022. [(accessed on 20 October 2022)]; Available online: https://covid.gov.cz/en/situations/information-about-vaccine/information-about-available-vaccines.
Ema Ema. COVID-19 Vaccines: Authorised 2021. [(accessed on 20 October 2022)]. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised#authorised-covid-19-vaccines-section.
Bloomfield M., Pospisilova I., Cabelova T., Sediva A., Ibrahimova M., Borecka K. Searching for COVID-19 Antibodies in Czech Children-A Needle in the Haystack. Front Pediatr. 2020;8:597736. doi: 10.3389/fped.2020.597736. PubMed DOI PMC
Coronavirus Worldometer Czech Republic. 2022. [(accessed on 20 October 2022)]. Available online: https://www.worldometers.info/coronavirus/country/czech-republic/
Institute of Health Information and Statistics of the Czech Republic IoBaA. COVID-19: Overview of the current situation in the Czech Republic: Ministry of Health of Czech Republic; 2022. [(accessed on 20 October 2022)]. Available online: https://onemocneni-aktualne.mzcr.cz/covid-19.
Covidportal. Vaccination Timeline: Ministry of Health; 2022. [(accessed on 20 October 2022)]; Available online: https://covid.gov.cz/en/situations/register-vaccination/vaccination-timeline.
Expats.cz. A comprehensive guide to vaccination in the Czech Republic: Updated 14 September 2021. [(accessed on 20 October 2022)]. Available online: https://www.expats.cz/czech-news/article/vaccination-in-the-czech-republic-all-you-need-to-know.
Kageyama T., Ikeda K., Tanaka S., Taniguchi T., Igari H., Onouchi Y., Kaneda A., Matsushita K., Hanaoka H., Nakada T.-A., et al. Antibody responses to BNT162b2 mRNA COVID-19 vaccine and their predictors among healthcare workers in a tertiary referral hospital in Japan. Clin. Microbiol. Infect. 2021;27:1861. doi: 10.1016/j.cmi.2021.07.042. PubMed DOI PMC
Teijaro J.R., Farber D.L. COVID-19 vaccines: Modes of immune activation and future challenges. Nat. Rev. Immunol. 2021;21:195–197. doi: 10.1038/s41577-021-00526-x. PubMed DOI PMC
Azzi L., Dalla Gasperina D., Veronesi G., Shallak M., Ietto G., Iovino D., Baj A., Gianfagna F., Maurino V., Focosi D., et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. EBioMedicine. 2021;75:103788. doi: 10.1016/j.ebiom.2021.103788. PubMed DOI PMC
Turner J.S., O’Halloran J.A., Kalaidina E., Kim W., Schmitz A.J., Zhou J.Q. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596:109–113. doi: 10.1038/s41586-021-03738-2. PubMed DOI PMC
Iguacel I., Maldonado A.L., Ruiz-Cabello A.L., Casaus M., Moreno L.A., Martinez-Jarreta B. Association between COVID-19 Vaccine Side Effects and Body Mass Index in Spain. Vaccines. 2021;9:1321. doi: 10.3390/vaccines9111321. PubMed DOI PMC
Menni C., Klaser K., May A., Polidori L., Capdevila J., Louca P. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study. Lancet Infect. Dis. 2021;21:939–949. doi: 10.1016/S1473-3099(21)00224-3. PubMed DOI PMC
Zhang Y., Martin S.W., Rose C.E., Jr., Biagini R.E., Franzke L.H., Smith J.P., Bs D.L.S., Robertson S.A., McNeil M.M. Evaluation of body mass index, pre-vaccination serum progesterone levels and anti-anthrax protective antigen immunoglobulin G on injection site adverse events following anthrax vaccination in women. Pharmacoepidemiol. Drug Saf. 2008;17:1060–1067. doi: 10.1002/pds.1657. PubMed DOI
Pondo T., Rose C.E., Jr., Martin S.W., Keitel W.A., Keyserling H.L., Babcock J., Parker S., Jacobson R.M., Poland G.A., McNeil M.M. Evaluation of sex, race, body mass index and pre-vaccination serum progesterone levels and post-vaccination serum anti-anthrax protective immunoglobulin G on injection site adverse events following anthrax vaccine adsorbed (AVA) in the CDC AVA human clinical trial. Vaccine. 2014;32:3548–3554. PubMed PMC
Regula P., Rosenstreich D., Jerschow E., Ramesh M., Ferastraoaru D., Oh J. Safety and efficacy of graded dosing of Pfizer-BioNTech mRNA COVID-19 vaccine after an immediate hypersensitivity reaction to first dose. J. Allergy Clin. Immunol. Glob. 2022;1:175–177. doi: 10.1016/j.jacig.2022.04.005. PubMed DOI PMC
Shavit R., Maoz-Segal R., Offengenden I., Yahia S.H., Maayan D.M., Lifshitz Y., Niznik S., Deutch M., Elbaz E., Genaim H., et al. Assessment of Immediate Allergic Reactions After Immunization with the Pfizer BNT162b2 Vaccine Using Intradermal Skin Testing With the COVID-19 Vaccines. J. Allergy Clin. Immunol. Pract. 2022;10:2677–2684. doi: 10.1016/j.jaip.2022.08.010. PubMed DOI PMC
Chu D.K., Abrams E.M., Golden D.B.K., Blumenthal K.G., Wolfson A.R., Stone C.A., Jr. Risk of Second Allergic Reaction to SARS-CoV-2 Vaccines: A Systematic Review and Meta-analysis. JAMA Intern Med. 2022;182:376–385. doi: 10.1001/jamainternmed.2021.8515. PubMed DOI PMC
Kaplan B., Farzan S., Coscia G., Rosenthal D.W., McInerney A., Jongco A.M. Allergic reactions to coronavirus disease 2019 vaccines and addressing vaccine hesitancy: Northwell Health experience. Ann. Allergy Asthma Immunol. 2022;128:161–168.e1. doi: 10.1016/j.anai.2021.10.019. PubMed DOI PMC
Warren C.M., Snow T.T., Lee A.S., Shah M.M., Heider A., Blomkalns A., Betts B., Buzzanco A.S., Gonzalez J., Chinthrajah R.S., et al. Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines with Confirmatory Testing in a US Regional Health System. JAMA Netw Open. 2021;4:e2125524. doi: 10.1001/jamanetworkopen.2021.25524. PubMed DOI PMC
Troelnikov A., Perkins G., Yuson C., Ahamdie A., Balouch S., Hurtado P.R., Hissaria P. Basophil reactivity to BNT162b2 is mediated by PEGylated lipid nanoparticles in patients with PEG allergy. J. Allergy Clin. Immunol. 2021;148:91–95. doi: 10.1016/j.jaci.2021.04.032. PubMed DOI
Risma K.A. COVID-19 mRNA vaccine allergy. Curr. Opin. Pediatr. 2021;33:610–617. doi: 10.1097/MOP.0000000000001077. PubMed DOI PMC
Turk V.E. Anaphylaxis associated with the mRNA COVID-19 vaccines: Approach to allergy investigation. Clin. Immunol. 2021;227:108748. doi: 10.1016/j.clim.2021.108748. PubMed DOI PMC
Herman S.M., Lui E., Kim H. The hidden allergen: Triton X-100, a derivative of polyethylene glycol. J. Allergy Clin. Immunol. Pract. 2021;9:2941. doi: 10.1016/j.jaip.2021.04.020. PubMed DOI PMC
Busa R., Sorrentino M.C., Russelli G., Amico G., Miceli V., Miele M. Specific Anti-SARS-CoV-2 Humoral and Cellular Immune Responses After Booster Dose of BNT162b2 Pfizer-BioNTech mRNA-Based Vaccine: Integrated Study of Adaptive Immune System Components. Front Immunol. 2022;13:856657. doi: 10.3389/fimmu.2022.856657. PubMed DOI PMC
Franzese M.C.L., Silva R., Santini S.A., Cinquanta L., Ottomano C., Salvatore M., Incoronato M. SARS-CoV-2 antibody responses before and after a third dose of the BNT162b2 vaccine in Italian healthcare workers aged ≤60 years: One year of surveillance. Front Immunol. 2022;13:947187. doi: 10.3389/fimmu.2022.947187. PubMed DOI PMC
Bonnet B., Chabrolles H., Archimbaud C., Brebion A., Cosme J., Dutheil F., Lambert C., Junda M., Mirand A., Ollier A., et al. Decline of Humoral and Cellular Immune Responses Against SARS-CoV-2 6 Months After Full BNT162b2 Vaccination in Hospital Healthcare Workers. Front Immunol. 2022;13:842912. doi: 10.3389/fimmu.2022.842912. PubMed DOI PMC
Takeuchi J.S., Fukunaga A., Yamamoto S., Tanaka A., Matsuda K., Kimura M. SARS-CoV-2 specific T cell and humoral immune responses upon vaccination with BNT162b2: A 9 months longitudinal study. Sci. Rep. 2022;12:15447. doi: 10.1038/s41598-022-19581-y. PubMed DOI PMC
Morgiel E., Szmyrka M., Madej M., Sebastian A., Sokolik R., Andrasiak I., Chodyra M., Walas-Antoszek M., Korman L., Świerkot J. Complete (Humoral and Cellular) Response to Vaccination against COVID-19 in a Group of Healthcare Workers-Assessment of Factors Affecting Immunogenicity. Vaccines. 2022;10:710. doi: 10.3390/vaccines10050710. PubMed DOI PMC
Muller L., Andree M., Moskorz W., Drexler I., Walotka L., Grothmann R., Ptok J., Hillebrandt J., Ritchie A., Rabl D., et al. Age-dependent Immune Response to the Biontech/Pfizer BNT162b2 Coronavirus Disease 2019 Vaccination. Clin. Infect. Dis. 2021;73:2065–2072. doi: 10.1093/cid/ciab381. PubMed DOI PMC
Jimenez M., Campillo N.E., Canelles M. COVID-19 Vaccine Race: Analysis of Age-Dependent Immune Responses against SARS-CoV-2 Indicates that more than Just One Strategy May Be Needed. Curr. Med. Chem. 2021;28:3964–3979. doi: 10.2174/0929867327666201027153123. PubMed DOI
Collier D.A., Ferreira I., Kotagiri P., Datir R.P., Lim E.Y., Touizer E. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021;596:417–422. doi: 10.1038/s41586-021-03739-1. PubMed DOI PMC
Anastassopoulou C., Antoni D., Manoussopoulos Y., Stefanou P., Argyropoulou S., Vrioni G. Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLoS ONE. 2022;17:e0266958. doi: 10.1371/journal.pone.0266958. PubMed DOI PMC
Vulpis E., Giulimondi F., Digiacomo L., Zingoni A., Safavi-Sohi R., Sharifi S., Caracciolo G., Mahmoudi M. The Possible Role of Sex as an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine. Mol. Pharm. 2021;18:2448–2453. doi: 10.1021/acs.molpharmaceut.1c00291. PubMed DOI
Jensen A., Stromme M., Moyassari S., Chadha A.S., Tartaglia M.C., Szoeke C., Ferretti M.T. COVID-19 vaccines: Considering sex differences in efficacy and safety. Contemp. Clin. Trials. 2022;115:106700. doi: 10.1016/j.cct.2022.106700. PubMed DOI PMC
Fischinger S., Boudreau C.M., Butler A.L., Streeck H., Alter G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019;41:239–249. doi: 10.1007/s00281-018-0726-5. PubMed DOI PMC
Ciarambino T., Para O., Giordano M. Immune system and COVID-19 by sex differences and age. Womens Health. 2021;17:1–6. doi: 10.1177/17455065211022262. PubMed DOI PMC