Tunable Multivalent Platform for Immune Recruitment to Lower Antigen Expressing Cancers
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36577087
DOI
10.1002/anie.202214659
Knihovny.cz E-zdroje
- Klíčová slova
- Antibodies, Cell Recognition, Drug Design, Immunochemistry, Polymers,
- MeSH
- antigeny * MeSH
- fagocytóza MeSH
- lidé MeSH
- nádory prostaty * MeSH
- protilátky chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny * MeSH
- protilátky MeSH
Chemical immunotherapeutic strategies including Antibody Recruiting Molecules (ARMs - bivalent small molecules containing an antibody-binding domain (ABD) and a target-binding domain (TBD)) direct immune-mediated clearance of diseased cells. Anti-cancer ARM function relies on high tumor antigen valency, limiting function against lower antigen expressing tumors. To address this limitation, we report a tunable multivalent immune recruitment (MIR) platform to amplify/stabilize antibody recruitment to cells with lower antigen valencies. An initial set of polymeric ARMs (pARMs) were synthesized and screened to evaluate ABD/TBD copy number, ratio, and steric occlusion on specific immune induction. Most pARMs demonstrated simultaneous high avidity binding to anti-dinitrophenyl antibodies and prostate-specific membrane antigens on prostate cancer. Optimized pARMs mediated enhanced anti-cancer immune function against lower antigen expressing target cells compared to an analogous ARM.
Department of Chemistry and Chemical Biology McMaster University Hamilton Ontario L8S 4L8 Canada
School of Biomedical Engineering McMaster University Hamilton Ontario L8S 4M1 Canada
Zobrazit více v PubMed
E. Kapcan, B. Lake, Z. Yang, A. Zhang, M. S. Miller, A. F. Rullo, Biochemistry 2021, 60, 1447-1458.
A. F. Rullo, K. J. Fitzgerald, V. Muthusamy, M. Liu, C. Yuan, M. Huang, M. Kim, A. E. Cho, D. A. Spiegel, Angew. Chem. Int. Ed. 2016, 55, 3642-3646;
Angew. Chem. 2016, 128, 3706-3710.
R. P. Murelli, A. X. Zhang, J. Michel, W. L. Jorgensen, D. A. Spiegel, J. Am. Chem. Soc. 2009, 131, 17090-17092.
C. E. Jakobsche, C. G. Parker, R. N. Tao, M. D. Kolesnikova, E. F. Douglass, D. A. Spiegel, ACS Chem. Biol. 2013, 8, 2404-2411.
C. B. Carlson, P. Mowery, R. M. Owen, E. C. Dykhuizen, L. L. Kiessling, ACS Chem. Biol. 2007, 2, 119-127.
K. Sasaki, K. Muguruma, R. Osawa, A. Fukuda, A. Taniguchi, A. Kishimura, Y. Hayashi, T. Mori, Y. Katayama, RSC Med. Chem. 2021, 12, 406-409.
Y. Lu, X. Li, K. Liang, R. Luwor, Z. H. Siddik, G. B. Mills, J. Mendelsohn, Z. Fan, Cancer Res. 2007, 67, 8240-8247.
T. M. Gorges, S. Riethdorf, O. Von Ahsen, P. Nastały, K. Röck, M. Boede, S. Peine, A. Kuske, E. Schmid, C. Kneip, F. König, M. Rudolph, K. Pantel, Oncotarget 2016, 7, 34930-34941.
S. Mannweiler, P. Amersdorfer, S. Trajanoski, J. A. Terrett, D. King, G. Mehes, Pathol. Oncol. Res. 2009, 15, 167-172.
M. C. Tsourlakis, F. Klein, M. Kluth, A. Quaas, M. Graefen, A. Haese, R. Simon, G. Sauter, T. Schlomm, S. Minner, Appl. Immunohistochem. Mol. Morphol. 2015, 23, 449-455.
M. L. Huebschman, N. L. Lane, H. Liu, V. R. Sarode, J. L. Devlin, E. P. Frenkel, Breast Cancer Targets Ther. 2015, 7, 231-237.
B. Liet, E. Laigre, D. Goyard, B. Todaro, C. Tiertant, D. Boturyn, N. Berthet, O. Renaudet, Chem. Eur. J. 2019, 25, 15508-15515.
N. Baumgarth, J. W. Tung, L. A. Herzenberg, Springer Semin. Immunopathol. 2005, 26, 347-362.
S. Tommasone, F. Allabush, Y. K. Tagger, J. Norman, M. Köpf, J. H. R. Tucker, P. M. Mendes, Chem. Soc. Rev. 2019, 48, 5488-5505.
B. Cheng, W.-E. Yuan, J. Su, Y. Liu, J. Chen, Eur. J. Med. Chem. 2018, 157, 582-598.
R. De Coen, L. Nuhn, C. Perera, M. Arista-Romero, M. D. P. Risseeuw, A. Freyn, R. Nachbagauer, L. Albertazzi, S. Van Calenbergh, D. A. Spiegel, B. R. Peterson, B. G. De Geest, Biomacromolecules 2020, 21, 793-802.
A. Uvyn, R. De Coen, M. Gruijs, C. W. Tuk, J. De Vrieze, M. Van Egmond, B. G. De Geest, Angew. Chem. Int. Ed. 2019, 58, 12988-12993;
Angew. Chem. 2019, 131, 13122-13127.
A. Uvyn, R. De Coen, O. De Wever, K. Deswarte, B. N. Lambrecht, B. G. De Geest, Chem. Commun. 2019, 55, 10952-10955.
X. Li, X. Rao, L. Cai, X. Liu, H. Wang, W. Wu, C. Zhu, M. Chen, P. G. Wang, W. Yi, ACS Chem. Biol. 2016, 11, 1205-1209.
H. Lin, K. Zhou, D. Li, H. Hong, Y. Xie, L. Gong, Y. Shen, Z. Zhou, J. Shi, Z. Wu, ChemMedChem 2021, 16, 2960-2968.
E. B. Puffer, J. K. Pontrello, J. J. Hollenbeck, J. A. Kink, L. L. Kiessling, ACS Chem. Biol. 2007, 2, 252-262.
E. J. Baird, D. Holowka, G. W. Coates, B. Baird, Biochemistry 2003, 42, 12739-12748.
H. M. Dintzis, R. Z. Dintzis, B. Vogelstein, Proc. Natl. Acad. Sci. USA 1976, 73, 3671-3675.
R. Z. Dintzis, M. Okajima, M. H. Middleton, G. Greene, H. M. Dintzis, J. Immunol. 1989, 143, 1239-1244.
R. G. Posner, D. Geng, S. Haymore, J. Bogert, I. Pecht, A. Licht, P. B. Savage, Org. Lett. 2007, 9, 3551-3554.
C. W. Cairo, J. E. Gestwicki, M. Kanai, L. L. Kiessling, J. Am. Chem. Soc. 2002, 124, 1615-1619.
J. E. Gestwicki, C. W. Cairo, L. E. Strong, K. A. Oetjen, L. L. Kiessling, J. Am. Chem. Soc. 2002, 124, 14922-14933.
L. L. Kiessling, J. E. Gestwicki, L. E. Strong, Angew. Chem. Int. Ed. 2006, 45, 2348-2368;
Angew. Chem. 2006, 118, 2408-2429.
Y. Singh, D. Gao, Z. Gu, S. Li, S. Stein, P. J. Sinko, Mol. Pharmaceutics 2012, 9, 144-155.
L. W. Seymour, Y. Miyamoto, H. Maeda, M. Brereton, J. Strohalm, K. Ulbrich, R. Duncan, Eur. J. Cancer 1995, 31, 766-770.
D. Paul, S. Achouri, Y. Z. Yoon, J. Herre, C. E. Bryant, P. Cicuta, Biophys. J. 2013, 105, 1143-1150.
J. A. Champion, S. Mitragotri, Pharm. Res. 2009, 26, 244-249.
J. A. Champion, S. Mitragotri, Proc. Natl. Acad. Sci. USA 2006, 103, 4930-4934.
G. V. Dubacheva, T. Curk, D. Frenkel, R. P. Richter, J. Am. Chem. Soc. 2019, 141, 2577-2588.
G. V. Dubacheva, T. Curk, R. Auzély-Velty, D. Frenkel, R. P. Richter, Proc. Natl. Acad. Sci. USA 2015, 112, 5579-5584.
K. C. Tjandra, P. Thordarson, Bioconjugate Chem. 2019, 30, 503-514.
Y. Wang, O. Kilic, C. M. Csizmar, S. Ashok, J. L. Hougland, M. D. Distefano, C. R. Wagner, Chem. Sci. 2021, 12, 331-340.
A. J. Keefe, S. Jiang, Nat. Chem. 2012, 4, 59-63.
C. Rodriguez-Emmenegger, B. V. K. J. Schmidt, Z. Sedlakova, V. Šubr, A. B. Alles, E. Brynda, C. Barner-Kowollik, Macromol. Rapid Commun. 2011, 32, 958-965.
W. Yang, S. Liu, T. Bai, A. J. Keefe, L. Zhang, J.-R. Ella-Menye, Y. Li, S. Jiang, Nano Today 2014, 9, 10-16.
C. Barinka, K. Hlouchova, M. Rovenska, P. Majer, M. Dauter, N. Hin, Y. .-S. Ko, T. Tsukamoto, B. S. Slusher, J. Konvalinka, J. Lubkowski, J. Mol. Biol. 2008, 376, 1438-1450.
A. X. Zhang, R. P. Murelli, C. Barinka, J. Michel, A. Cocleaza, W. L. Jorgensen, J. Lubkowski, D. A. Spiegel, J. Am. Chem. Soc. 2010, 132, 12711-12716.
B. Lake, N. Serniuck, E. Kapcan, A. Wang, A. F. Rullo, ACS Chem. Biol. 2020, 15, 1089-1095.
X. Zhang, L. Zhang, H. Tong, B. Peng, M. J. Rames, S. Zhang, G. Ren, Sci. Rep. 2015, 5, 9803.
M. Galanti, D. Fanelli, F. Piazza, Sci. Rep. 2016, 6, 18976.
K. Lückerath, A. D. Stuparu, L. Wei, W. Kim, C. G. Radu, C. E. Mona, J. Calais, M. Rettig, R. E. Reiter, J. Czernin, R. Slavik, K. Herrmann, M. Eiber, W. P. Fendler, J. Nucl. Med. 2018, 59, 1392-1397.