2D Layered Bimetallic Phosphorous Trisulfides MI MIII P2 S6 (MI = Cu, Ag; MIII = Sc, V, Cr, In) for Electrochemical Energy Conversion

. 2023 Feb ; 7 (2) : e2201358. [epub] 20230105

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36604980

Grantová podpora
20-21523Y Czech Science Foundation
IF/00894/2015 Portuguese Foundation for Science and Technology
UIDB/50011/2020 Portuguese Foundation for Science and Technology
UIDP/50011/2020 Portuguese Foundation for Science and Technology
LA/P/0006/2020 Portuguese Foundation for Science and Technology

Considerable improvements in the electrocatalytic activity of 2D metal phosphorous trichalcogenides (M2 P2 X6 ) have been achieved for water electrolysis, mostly with MII 2 [P2 X6 ]4- as catalysts for hydrogen evolution reaction (HER). Herein, MI MIII P2 S6 (MI = Cu, Ag; MIII = Sc, V, Cr, In) are synthesized and tested for the first time as electrocatalysts in alkaline media, towards oxygen reduction reaction (ORR) and HER. AgScP2 S6 follows a 4 e- pathway for the ORR at 0.74 V versus reversible hydrogen electrode; CuScP2 S6 is active for HER, exhibiting an overpotential of 407 mV and a Tafel slope of 90 mV dec-1 . Density functional theory models reveal that bulk AgScP2 S6 and CuScP2 S6 are both semiconductors with computed bandgaps of 2.42 and 2.23 eV, respectively and overall similar electronic properties. Besides composition, the largest difference in both materials is in their molecular structure, as Ag atoms sit at the midpoint of each layer alongside Sc atoms, while Cu atoms are raised to a similar height to S atoms, in the external segment of the 2D layers. This structural difference probably plays a fundamental role in the different catalytic performances of these materials. These findings show that MI (Cu, Ag) together with Sc(MIII ) leads to promising achievements in MI MIII P2 S6 materials as electrocatalysts.

Zobrazit více v PubMed

L. Chen, J.-T. Ren, Z.-Y. Yuan, Green Chem. 2022, 24, 713.

N. Mahmood, Y. Yao, J.-W. Zhang, L. Pan, X. Zhang, J.-J. Zou, Adv. Sci. 2018, 5, 1700464.

M. Zeng, Y. Li, J. Mater. Chem. A 2015, 3, 14942.

Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, Angew. Chem., Int. Ed. 2018, 57, 7568.

H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem. Rev. 2018, 118, 6337.

R. Gusmão, M. Veselý, Z. Sofer, ACS Catal. 2020, 10, 9634.

F. Wang, T. A. Shifa, P. Yu, P. He, Y. Liu, F. Wang, Z. Wang, X. Zhan, X. Lou, F. Xia, J. He, Adv. Funct. Mater. 2018, 28, 1802151.

M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh, P. Maksymovych, Adv. Mater. 2017, 29, 1602852.

R. Samal, G. Sanyal, B. Chakraborty, C. S. Rout, J. Mater. Chem. A 2021, 9, 2560.

D. Mukherjee, P. M. Austeria, S. Sampath, ACS Energy Lett. 2016, 1, 367.

R. N. Jenjeti, M. P. Austeria, S. Sampath, ChemElectroChem 2016, 3, 1392.

R. Gusmão, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1805975.

Z. Cheng, T. A. Shifa, F. Wang, Y. Gao, P. He, K. Zhang, C. Jiang, Q. Liu, J. He, Adv. Mater. 2018, 30, 1707433.

M. Barua, M. M. Ayyub, P. Vishnoi, K. Pramoda, C. N. R. Rao, J. Mater. Chem. A 2019, 7, 22500.

T. A. Shifa, F. Wang, Z. Cheng, P. He, Y. Liu, C. Jiang, Z. Wang, J. He, Adv. Funct. Mater. 2018, 28, 1800548.

J. Paštika, F. M. Oliveira, V. Mazánek, Z. Sofer, R. Gusmão, Small 2022, 18, 2200355.

P. Yu, F. Wang, J. Meng, T. A. Shifa, M. G. Sendeku, J. Fang, S. Li, Z. Cheng, X. Lou, J. He, CrystEngComm 2021, 23, 591.

B. Lin, A. Chaturvedi, J. Di, L. You, C. Lai, R. Duan, J. Zhou, B. Xu, Z. Chen, P. Song, J. Peng, B. Ma, H. Liu, P. Meng, G. Yang, H. Zhang, Z. Liu, F. Liu, Nano Energy 2020, 76, 104972.

D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, Y. Li, Chem. Soc. Rev. 2020, 49, 2215.

Y. Pang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, J. Mater. Chem. A 2020, 8, 24996.

Y. Hao, A. Huang, S. Han, H. Huang, J. Song, X. Sun, Z. Wang, L. Li, F. Hu, J. Xue, S. Peng, ACS Appl. Mater. Interfaces 2020, 12, 29393.

S. Lee, P. Colombet, G. Ouvrard, R. Brec, Inorg. Chem. 1988, 27, 1291.

Z. Ouili, A. Leblanc, P. Colombet, J. Solid State Chem. 1987, 66, 86.

P. Colombet, A. Leblanc, M. Danot, J. Rouxel, Nouv. J. Chim. 1983, 7, 333.

S. Lee, P. Colombet, G. Ouvrard, R. Brec, Mater. Res. Bull. 1986, 21, 917.

P. Colombet, A. Leblanc, M. Danot, J. Rouxel, J. Solid State Chem. 1982, 41, 174.

S. Seidlmayer, Strukturchemische Untersuchungen an Hexachalkogenohypodiphosphaten Und Verwandten Verbindungen, PhD Dissertation, University of Regensburg, Regensburg, Germany 2009.

V. Maisonneuve, M. Evain, C. Payen, V. B. Cajipe, P. Molinié, J. Alloys Compd. 1995, 218, 157.

C. Sourisseau, J. P. Forgerit, Y. Mathey, J. Solid State Chem. 1983, 49, 134.

O. Poizat, C. Sourisseau, J. Solid State Chem. 1985, 59, 371.

M. A. Susner, R. Rao, A. T. Pelton, M. V. McLeod, B. Maruyama, Phys. Rev. Mater. 2020, 4, 104003.

Y. Mathey, R. Clément, J. P. Audiere, O. Poizat, C. Sourisseau, Solid State Ionics 1983, 9-10, 459.

a) M. Gatalo, F. Ruiz-Zepeda, N. Hodnik, G. Dražić, M. Bele, M. Gaberšček, Nano Energy 2019, 63, 103892;

b) S. J. Rowley-Neale, G. C. Smith, C. E. Banks, ACS Appl. Mater. Interfaces 2017, 9, 22548.

D. Escalera-López, Z. Lou, N. V. Rees, Adv. Energy Mater. 2019, 9, 1802614.

Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, J. Mater. Chem. A 2019, 7, 14971.

Y. Wang, Y. Zhao, X. Ding, L. Qiao, J. Energy Chem. 2021, 60, 451.

F. M. Oliveira, J. Paštika, V. Mazánek, M. Melle-Franco, Z. Sofer, R. Gusmão, ACS Appl. Mater. Interfaces 2021, 13, 23638.

B. Roy, K. J. Shebin, S. Sampath, J. Power Sources 2020, 450, 227661.

H. Huang, X. Feng, C. Du, W. Song, Chem. Commun. 2015, 51, 7903.

F. Klimpel, M. Bau, T. Graupner, Sci. Rep. 2021, 11, 5306.

A. Tkatchenko, R. A. DiStasio, R. Car, M. Scheffler, Phys. Rev. Lett. 2012, 108, 236402.

A. Ambrosetti, A. M. Reilly, R. A. DiStasio, A. Tkatchenko, J. Chem. Phys. 2014, 140, 18A508.

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 2009, 180, 2175.

A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz, H. Lederer, J. Phys.: Condens. Matter 2014, 26, 213201.

V. W. Yu, F. Corsetti, A. García, W. P. Huhn, M. Jacquelin, W. Jia, B. Lange, L. Lin, J. Lu, W. Mi, A. Seifitokaldani, Á. Vázquez-Mayagoitia, C. Yang, H. Yang, V. Blum, Comput. Phys. Commun. 2018, 222, 267.

S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989.

X.-Y. Ma, H.-Y. Lyu, K.-R. Hao, Y.-M. Zhao, X. Qian, Q.-B. Yan, G. Su, Sci. Bull. 2021, 66, 233.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...