Sulfadiazine and phosphinothricin selection systems optimised for the transformation of tobacco BY-2 cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK No. 548518
Univerzita Karlova v Praze
PubMed
36609768
DOI
10.1007/s00299-022-02975-7
PII: 10.1007/s00299-022-02975-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bialaphos, Glufosinate ammonium, Selectable markers, Suspension cell lines, Tobacco (Nicotiana tabacum),
- MeSH
- amoniové sloučeniny * MeSH
- dusík MeSH
- geneticky modifikované rostliny genetika MeSH
- sulfadiazin MeSH
- tabák * genetika MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniové sloučeniny * MeSH
- dusík MeSH
- phosphinothricin MeSH Prohlížeč
- sulfadiazin MeSH
We extended the applicability of the BY-2 cell line as a model by introducing two new selection systems. Our protocol provides guidelines for optimising Basta selection in other recalcitrant models. Tobacco BY-2 cell line is the most commonly used cytological model in plant research. It is uniform, can be simply treated by chemicals, synchronised and easily transformed. However, only a few selection systems are available that complicate advanced studies using multiple stacked transgenes and extensive gene editing. In our work, we adopted for BY-2 cell line two other selection systems: sulfadiazine and phosphinothricin (PPT, an active ingredient of Basta herbicide). We show that sulfadiazine can be used in a wide range of concentrations. It is suitable for co-transformation and subsequent double selection with kanamycin or hygromycin, which are standardly used for BY-2 transformation. We also have domesticated the sulfadiazine resistance for the user-friendly GoldenBraid cloning system. Compared to sulfadiazine, establishing selection on phosphinothricin was considerably more challenging. It did not work in any concentration of PPT with standardly cultured cells. Since the selection is based on blocking glutamine synthetase and consequent ammonium toxicity and deficiency of assimilated nitrogen, we tried to manipulate nitrogen availability. We found that the PPT selection reliably works only with nitrogen-starved cells with reduced nitrate reserves that are selected on a medium without ammonium nitrate. Both these adjustments prevent the release of large amounts of ammonium, which can toxify the entire culture in the case of standardly cultured cells. Since high nitrogen reserves can be a common feature of in vitro cultures grown on MS media, nitrogen starvation could be a key step in establishing phosphinothricin resistance in other plant models.
Zobrazit více v PubMed
An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570. https://doi.org/10.1104/pp.79.2.568 PubMed DOI PMC
Bayer E, Gugel KH, Hägele K et al (1972) Stoffwechselprodukte von Mikroorganismen. 98. Mitteilung. phosphinothricin und phosphinothricyl-alanyl-alanin. Helv Chim Acta 55:224–239. https://doi.org/10.1002/hlca.19720550126 PubMed DOI
Beck E, Ludwig G, Auerswald EA et al (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336. https://doi.org/10.1016/0378-1119(82)90023-3 PubMed DOI
Bevan MW, Flavell RB, Chilton M-D (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187. https://doi.org/10.1038/304184a0 DOI
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3 PubMed DOI
Bräutigam A, Gagneul D, Weber APM (2007) High-throughput colorimetric method for the parallel assay of glyoxylic acid and ammonium in a single extract. Anal Biochem 362:151–153. https://doi.org/10.1016/j.ab.2006.12.033 PubMed DOI
Breyer D, Kopertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants – scientific developments, current use, operational access and biosafety considerations. Crit Rev Plant Sci 33:286–330. https://doi.org/10.1080/07352689.2013.870422 DOI
Brown GM (1962) The biosynthesis of folic acid. II Inhibition by sulfonamides. J Biol Chem 237:536–540 PubMed DOI
Brown AMC, Willetts NS (1981) A physical and genetic map of the IncN plasmid R46. Plasmid 5:188–201. https://doi.org/10.1016/0147-619X(81)90020-2 PubMed DOI
Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80. https://doi.org/10.1080/00103627509366547 DOI
Čermák V, Tyč D, Přibylová A, Fischer L (2020) Unexpected variations in posttranscriptional gene silencing induced by differentially produced dsRNAs in tobacco cells. Biochim Biophys Acta BBA Gene Regul Mech 1863:194647. https://doi.org/10.1016/j.bbagrm.2020.194647 DOI
Christou P, Ford TL, Kofron M (1991) Production of Transgenic Rice (Oryza Sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9:957–962. https://doi.org/10.1038/nbt1091-957 DOI
D’Halluin K, Block MD, Denecke J et al (1992) The bar gene has selectable and screenable marker in plant engineering. Recombinant DNA part G. Academic Press, pp 415–426 DOI
De Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:767–774. https://doi.org/10.1007/BF00303524 PubMed DOI
De Block M, Botterman J, Vandewiele M et al (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518. https://doi.org/10.1002/j.1460-2075.1987.tb02537.x PubMed DOI PMC
De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants. Plant Physiol 91:694–701. https://doi.org/10.1104/pp.91.2.694 PubMed DOI PMC
De Block M, De Sonville A, Debrouwer D (1995) The selection mechanism of phosphinothricin is influenced by the metabolic status of the tissue. Planta 197:619–626. https://doi.org/10.1007/BF00191569 DOI
Deblaere R, Bytebier B, De Greve H et al (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788. https://doi.org/10.1093/nar/13.13.4777 PubMed DOI PMC
Dusek J, Plchova H, Cerovska N et al (2020) Extended Set of goldenbraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front Plant Sci 11:522059. https://doi.org/10.3389/fpls.2020.522059 PubMed DOI PMC
Fromm ME, Morrish F, Armstrong C et al (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8:833–839. https://doi.org/10.1038/nbt0990-833 PubMed DOI
Gordon-Kamm WJ, Spencer TM, Mangano ML et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618. https://doi.org/10.1105/tpc.2.7.603 PubMed DOI PMC
Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188. https://doi.org/10.1016/0378-1119(83)90223-8 PubMed DOI
Guerineau F, Mullineaux P (1989) Nucleotide sequence of the sulfonamide resistance gene from plasmid R46. Nucleic Acids Res 17:4370. https://doi.org/10.1093/nar/17.11.4370 PubMed DOI PMC
Guerineau F, Brooks L, Meadows J et al (1990) Sulfonamide resistance gene for plant transformation. Plant Mol Biol 15:127–136. https://doi.org/10.1007/BF00017730 PubMed DOI
Hachiya T, Okamoto Y (2017) Simple Spectroscopic determination of nitrate, nitrite, and ammonium in Arabidopsis thaliana. Bio-Protoc 7:e2280. https://doi.org/10.21769/BioProtoc.2280 PubMed DOI PMC
Hadi M, Kemper E, Wendeler E, Reiss B (2002) Simple and versatile selection of Arabidopsis transformants. Plant Cell Rep 21:130–135. https://doi.org/10.1007/s00299-002-0473-9 DOI
Hanania U, Ariel T, Tekoah Y et al (2017) Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120–1129. https://doi.org/10.1111/pbi.12702 PubMed DOI PMC
Havelková L, Nanda G, Martinek J et al (2015) Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Sci 241:96–108. https://doi.org/10.1016/j.plantsci.2015.10.001 PubMed DOI
Hellens RP, Anne Edwards E, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832. https://doi.org/10.1023/A:1006496308160 PubMed DOI
Herrera-Estrella L, De Block M, Messens E et al (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995. https://doi.org/10.1002/j.1460-2075.1983.tb01532.x PubMed DOI PMC
Holland T, Sack M, Rademacher T et al (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107:278–289. https://doi.org/10.1002/bit.22800 PubMed DOI
Hošek P, Kubeš M, Laňková M et al (2012) Auxin transport at cellular level: new insights supported by mathematical modelling. J Exp Bot 63:3815–3827. https://doi.org/10.1093/jxb/ers074 PubMed DOI PMC
Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195. https://doi.org/10.1016/S1360-1385(02)02251-3 PubMed DOI
Kato K, Matsumoto T, Koiwai S et al (1972) Liquid suspension culture of tobacco cells. In: Terui G (ed) Fermentation technology today. Society of Fermentation Technology, Japan, pp 689–695
Khuong TTH, Crété P, Robaglia C, Caffarri S (2013) Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number. Plant Cell Rep 32:1441–1454. https://doi.org/10.1007/s00299-013-1456-8 PubMed DOI
Kirchhoff J, Raven N, Boes A et al (2012) Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting. Plant Biotechnol J 10:936–944. https://doi.org/10.1111/j.1467-7652.2012.00722.x PubMed DOI
Klíma P, Čermák V, Srba M et al (2019) Plant cell lines in cell morphogenesis research: from phenotyping to -omics. Methods Mol Biol Clifton NJ 1992:367–376. https://doi.org/10.1007/978-1-4939-9469-4_25 DOI
Kumagai-Sano F, Hayashi T, Sano T, Hasezawa S (2006) Cell cycle synchronization of tobacco BY-2 cells. Nat Protoc 1:2621–2627. https://doi.org/10.1038/nprot.2006.381 PubMed DOI
Kuthanova A, Fischer L, Nick P, Opatrny Z (2008) Cell cycle phase-specific death response of tobacco BY-2 cell line to cadmium treatment. Plant Cell Environ 31:1634–1643. https://doi.org/10.1111/j.1365-3040.2008.01876.x PubMed DOI
Kutsuna N, Hasezawa S (2002) Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells. Plant Cell Physiol 43:965–973. https://doi.org/10.1093/pcp/pcf138 PubMed DOI
Lea PJ, Joy KW, Ramos JL, Guerrero MG (1984) The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23:1–6. https://doi.org/10.1016/0031-9422(84)83066-6 DOI
Leason M, Cunliffe D, Parkin D et al (1982) Inhibition of pea leaf glutamine synthetase by methionine sulphoximine, phosphinothricin and other glutamate analogues. Phytochemistry 21:855–857. https://doi.org/10.1016/0031-9422(82)80079-4 DOI
Malerba M, Cerana R (2021) Plant cell cultures as a tool to study programmed cell death. Int J Mol Sci 22:2166. https://doi.org/10.3390/ijms22042166 PubMed DOI PMC
Matsumoto S, Ikura K, Ueda M, Sasaki R (1995) Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol 27:1163–1172. https://doi.org/10.1007/BF00020889 PubMed DOI
Mercx S, Tollet J, Magy B et al (2016) Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00040 PubMed DOI PMC
Mercx S, Smargiasso N, Chaumont F et al (2017) Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00403 PubMed DOI PMC
Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. https://doi.org/10.1016/j.jbiotec.2003.10.011 PubMed DOI
Morcuende R, Krapp A, Hurry V, Stitt M (1998) Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206:394–409. https://doi.org/10.1007/s004250050415 DOI
Murakami T, Anzai H, Imai S et al (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet MGG 205:42–53. https://doi.org/10.1007/BF02428031 DOI
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI
Nagata T, Kumagai F (1999) Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods Cell Sci 21:123–127. https://doi.org/10.1023/A:1009832822096 PubMed DOI
Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30. https://doi.org/10.1016/S0074-7696(08)62452-3 DOI
Nagata T, Hasezawa S, Inzé D (eds) (2004) Tobacco BY–2 cells, 1st edn. Springer, Berlin/Heidelberg
Nagata T, Matsuoka K, Inzé D (eds) (2006) Tobacco BY-2 cells: from cellular dynamics to omics, 1st edn. Springer, Berlin/Heidelberg
Nakamura S, Mano S, Tanaka Y et al (2010) Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci Biotechnol Biochem 74:1315–1319. https://doi.org/10.1271/bbb.100184 PubMed DOI
Nocarova E, Fischer L (2009) Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol 9:44. https://doi.org/10.1186/1471-2229-9-44 PubMed DOI PMC
Palková Z, Forstová J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113(Pt 11):1923–1928. https://doi.org/10.1242/jcs.113.11.1923 PubMed DOI
Prabhu V, Lui H, King J (1997) Arabidopsis dihydropteroate synthase: General properties and inhibition by reaction product and sulfonamides. Phytochemistry 45:23–27. https://doi.org/10.1016/S0031-9422(96)00793-5 PubMed DOI
Přibylová A, Čermák V, Tyč D, Fischer L (2019) Detailed insight into the dynamics of the initial phases of de novo RNA-directed DNA methylation in plant cells. Epigenetics Chromatin 12:54. https://doi.org/10.1186/s13072-019-0299-0 PubMed DOI PMC
Rao RN, Allen NE, Hobbs JN et al (1983) Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli. Antimicrob Agents Chemother 24:689–695. https://doi.org/10.1128/AAC.24.5.689 PubMed DOI PMC
Rosso MG, Li Y, Strizhov N et al (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259. https://doi.org/10.1023/B:PLAN.0000009297.37235.4a PubMed DOI
Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357. https://doi.org/10.1083/jcb.130.6.1345 PubMed DOI
Santos RB, Abranches R, Fischer R et al (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00297 PubMed DOI PMC
Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J et al (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631. https://doi.org/10.1104/pp.113.217661 PubMed DOI PMC
Schneider K, Schiermeyer A, Dolls A et al (2016) Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut. Plant Biotechnol J 14:1151–1160. https://doi.org/10.1111/pbi.12483 PubMed DOI
Seifertová D, Klíma P, Pařezová M et al (2014) Plant cell lines in cell morphogenesis research. In: Žárský V, Cvrčková F (eds) Plant cell morphogenesis. Humana Press, Totowa, NJ, pp 215–229 DOI
Shaner DL, Anderson PC, Stidham MA (1984) Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol 76:545–546. https://doi.org/10.1104/pp.76.2.545 PubMed DOI PMC
Smetana O, Široký J, Houlné G et al (2012) Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression. J Exp Bot 63:2631–2644. https://doi.org/10.1093/jxb/err439 PubMed DOI
Sorrell DA, Menges M, Healy JMS et al (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol 126:1214–1223. https://doi.org/10.1104/pp.126.3.1214 PubMed DOI PMC
Strauch E, Wohlleben W, Pühler A (1988) Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65–74. https://doi.org/10.1016/0378-1119(88)90546-x PubMed DOI
Surov T, Aviv D, Aly R et al (1998) Generation of transgenic asulam-resistant potatoes to facilitate eradication of parasitic broomrapes (Orobanche spp.), with the sul gene as the selectable marker. Theor Appl Genet 96:132–137. https://doi.org/10.1007/s001220050719 DOI
Tabatabaei I, Dal Bosco C, Bednarska M et al (2019) A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Plant Biotechnol J 17:638–649. https://doi.org/10.1111/pbi.13004 PubMed DOI
Takano HK, Dayan FE (2020) Glufosinate-ammonium: a review of the current state of knowledge. Pest Manag Sci 76:3911–3925. https://doi.org/10.1002/ps.5965 PubMed DOI
Takano HK, Beffa R, Preston C et al (2019) Reactive oxygen species trigger the fast action of glufosinate. Planta 249:1837–1849. https://doi.org/10.1007/s00425-019-03124-3 PubMed DOI
Takano HK, Beffa R, Preston C et al (2020) A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed. Photosynth Res 144:361–372. https://doi.org/10.1007/s11120-020-00749-4 PubMed DOI
Thompson CJ, Movva NR, Tizard R et al (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523. https://doi.org/10.1002/j.1460-2075.1987.tb02538.x PubMed DOI PMC
Thomson JG, Cook M, Guttman M et al (2011) Novel sul I binary vectors enable an inexpensive foliar selection method in Arabidopsis. BMC Res Notes 4:44. https://doi.org/10.1186/1756-0500-4-44 PubMed DOI PMC
Toyooka K, Moriyasu Y, Goto Y et al (2006) Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2:96–106. https://doi.org/10.4161/auto.2.2.2366 PubMed DOI
Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/technology 10:667–674. https://doi.org/10.1038/nbt0692-667 DOI
Vazquez-Vilar M, Quijano-Rubio A, Fernandez-del-Carmen A et al (2017) GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res 45:2196–2209. https://doi.org/10.1093/nar/gkw1326 PubMed DOI PMC
Voitsekhovskaja OV, Schiermeyer A, Reumann S (2014) Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. Front Plant Sci 5:629. https://doi.org/10.3389/fpls.2014.00629 PubMed DOI PMC
Waldron C, Murphy EB, Roberts JL et al (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5:103–108. https://doi.org/10.1007/BF00020092 PubMed DOI
Wallis JG, Dziewanowska K, Guerra DJ (1996) Genetic transformation with the sulI gene; a highly efficient selectable marker for Solanum tuberosum L. cv. ‘Russet Burbank.’ Mol Breed 2:283–290. https://doi.org/10.1007/BF00564206 DOI
Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. https://doi.org/10.1021/ac60252a045 DOI
Wendler C, Barniske M, Wild A (1990) Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosynth Res 24:55–61. https://doi.org/10.1007/BF00032644 PubMed DOI
Wendler C, Putzer A, Wild A (1992) Effect of glufosinate (phosphinothricin) and inhibitors of photorespiration on photosynthesis and ribulose-1,5-bisphosphate carboxylase activity. J Plant Physiol 139:666–671. https://doi.org/10.1016/S0176-1617(11)81708-6 DOI
Wild A, Manderscheid R (1984) The effect of phosphinothricin on the assimilation of ammonia in plants. Z Für Naturforschung C Biosci 39:500–504. https://doi.org/10.1515/znc-1984-0539 DOI
Wise EMJ, Abou-Donia MM (1975) Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc Natl Acad Sci U S A 72:2621–2625. https://doi.org/10.1073/pnas.72.7.2621 PubMed DOI PMC
Wohlleben W, Arnold W, Broer I et al (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70:25–37. https://doi.org/10.1016/0378-1119(88)90101-1 PubMed DOI
Yu M, Yuan M, Ren H (2006) Visualization of actin cytoskeletal dynamics during the cell cycle in tobacco (Nicotiana tabacum L. cv bright yellow) cells. Biol Cell 98:295–306. https://doi.org/10.1042/BC20050074 PubMed DOI
Zeng P, Vadnais DA, Zhang Z, Polacco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep 22:478–482. https://doi.org/10.1007/s00299-003-0712-8 PubMed DOI
Zhang N, MacKown CT (1992) Nitrate use by tobacco cells in response to N-stress and ammonium nutrition. Plant Cell Rep 11:470–475. https://doi.org/10.1007/BF00232693 PubMed DOI