Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning

. 2022 Dec 22 ; 20 (1) : . [epub] 20221222

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36612474

The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning and to identify the differences between sexes, academic years, socioeconomic strata, and the generated profiles. A total of 542 healthy and physically active students (445 males, 97 females; 19.8 [2.2] years; 66.0 [10.3] kg; 169.5 [7.8] cm) participated in this cross-sectional study. Their indirect VO2max (Cooper and Shuttle-Run 20 m tests), lower-limb power (horizontal jump), sprint (30 m), agility (shuttle run), and flexibility (sit-and-reach) were assessed. The participants were profiled using clustering algorithms after setting the optimal number of clusters through an internal validation using R packages. Non-parametric tests were used to identify the differences (p < 0.05). The higher percentage of the population were freshmen (51.4%) and middle-income (64.0%) students. Seniors and juniors showed a better physical fitness than first-year students. No significant differences were found between their socioeconomic strata (p > 0.05). Two profiles were identified using hierarchical clustering (Cluster 1 = 318 vs. Cluster 2 = 224). The matching analysis revealed that physical fitness explained the variation in the data, with Cluster 2 as a sex-independent and more physically fit group. All variables differed significantly between the sexes (except the body mass index [p = 0.218]) and the generated profiles (except stature [p = 0.559] and flexibility [p = 0.115]). A multidimensional analysis showed that the body mass, cardiorespiratory fitness, and agility contributed the most to the data variation so that they can be used as profiling variables. This profiling method accurately identified the relevant variables to reinforce exercise recommendations in a low physical performance and overweight majors.

Zobrazit více v PubMed

Arévalo M.T.V., Muñoz A.F.O., Cuevas J.R.T. Tipologías de estilos de vida en jóvenes universitarios. Univ. y Salud. 2016;18:246–256. doi: 10.22267/rus.161802.35. DOI

Castro Jiménez L.E., Vásquez Cubillos N., Tovar Yate H.A., Valderrama Sánchez J.A., Argüello Gutiérrez Y.P. Cambios en la condición física de jóvenes aparentemente sanos desde su ingreso a la universidad. VIREF Rev. De Educ. Física. 2020;8:91–102.

Dodd L.J., Al-Nakeeb Y., Nevill A., Forshaw M.J. Lifestyle risk factors of students: A cluster analytical approach. Prev. Med. 2010;51:73–77. doi: 10.1016/j.ypmed.2010.04.005. PubMed DOI

Deliens T., Deforche B., De Bourdeaudhuij I., Clarys P. Determinants of physical activity and sedentary behaviour in university students: A qualitative study using focus group discussions. BMC Public Health. 2015;15:201. doi: 10.1186/s12889-015-1553-4. PubMed DOI PMC

Lee E., Kim Y. Effect of university students’ sedentary behavior on stress, anxiety, and depression. Perspect. Psychiatr. Care. 2019;55:164–169. doi: 10.1111/ppc.12296. PubMed DOI PMC

Chaves-Franco D., Lujan-Ferraz N., Ferreira de Sousa T. Sedentary behavior among university students: A systematic review. Rev. Bras. De Cineantropometria. 2019;21:e56485. doi: 10.5007/1980-0037.2019v21e56485. DOI

Al-Nakeeb Y., Lyons M., Dodd L.J., Al-Nuaim A. An Investigation into the Lifestyle, Health Habits and Risk Factors of Young Adults. Int. J. Environ. Res. Public Health. 2015;12:4380–4394. doi: 10.3390/ijerph120404380. PubMed DOI PMC

Sánchez-Guette L., Herazo-Beltrán Y., Galeano-Muñoz L., Romero-Leiva K., Guerrero-Correa F., Mancilla-González G., Pacheco-Rodríguez N., Ruiz-Marín A., Pino L.O. Comportamiento sedentario en estudiantes universitario. Rev. Latinoam. De Hipertens. 2019;14:393–397.

Natali A.J., Marin K.A., Hermsdorf H.H.M., Rezende F.A.C., Peluzio M.D.C.G. A systematic review of cross-sectional studies on the association of sedentary behavior with cardiometabolic diseases and related biomarkers in South American adults. Nutr. Hosp. 2020;37:359–373. doi: 10.20960/nh.02740. PubMed DOI

Kellner M., Faas F. Get up, stand up: A randomized controlled trial to assess the effectiveness of a messenger-based intervention to reduce sedentary behavior in university students. Z Gesundh Wiss. 2022:1–9. doi: 10.1007/s10389-022-01747-7. PubMed DOI PMC

Perez Lopez I.J., Rivera Garcia E., Delgado-Fernandez M. Improvement of healthy lifestyle habits in university students through a gamification approach. Nutr. Hosp. 2017;34:942–951. doi: 10.20960/nh.669. PubMed DOI

Paredes A.F. Efectos del programa de actividad física y deportes en estudiantes de medicina. Comuni@cción Rev. De Investig. En Comun. Y Desarro. 2020;11:142–152. doi: 10.33595/2226-1478.11.2.456. DOI

Worobetz A., O’Callaghan M., Walsh J., Casey M., Hayes P., Bengoechea E.G., Woods C., McGrath D., Glynn L.G. Exercise Compared to Mindfulness for Physical and Mental Wellbeing in Medical Students. Ir. Med. J. 2022;115:560. PubMed

Chen H., Zhang G., Wang Z., Feng S., Li H. The Associations between Daytime Physical Activity, While-in-Bed Smartphone Use, Sleep Delay, and Sleep Quality: A 24-h Investigation among Chinese College Students. Int. J. Environ. Res. Public Health. 2022;19:9693. doi: 10.3390/ijerph19159693. PubMed DOI PMC

Vandenbroucke J.P., Von Elm E., Altman D.G., Gøtzsche P.C., Mulrow C.D., Pocock S.J., Poole C., Schlesselman J.J., Egger M. Mejorar la comunicación de estudios observacionales en epidemiología (STROBE): Explicación y elaboración. Gac. Sanit. 2009;23:158.e1–158.e28. doi: 10.1016/j.gaceta.2008.12.001. PubMed DOI

World Medical Association World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Nurs. Ethics. 2002;9:105–109. doi: 10.1191/0969733002ne486xx. PubMed DOI

Cooper K.H. A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA. 1968;203:201–204. doi: 10.1001/jama.1968.03140030033008. PubMed DOI

Penry J.T., Wilcox A.R., Yun J. Validity and Reliability Analysis of Cooper’s 12-Minute Run and the Multistage Shuttle Run in Healthy Adults. J. Strength Cond. Res. 2011;25:597–605. doi: 10.1519/JSC.0b013e3181cc2423. PubMed DOI

Léger L.A., Lambert J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982;49:1–12. doi: 10.1007/BF00428958. PubMed DOI

Manouras N., Papanikolaou Z., Karatrantou K., Kouvarakis P., Gerodimos V. The efficacy of vertical vs. horizontal plyometric training on speed, jumping performance and agility in soccer players. Int. J. Sports Sci. Coach. 2016;11:702–709. doi: 10.1177/1747954116667108. DOI

Council of Europe . Handbook for the Eurofit Test on Physical Fitness. Council of Europe.; Strasbourg, France: 1993.

Markovic G., Dizdar D., Jukic I., Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004;18:551–555. doi: 10.1519/1533-4287(2004)182.0.CO;2. PubMed DOI

Altmann S., Ringhof S., Neumann R., Woll A., Rumpf M.C. Validity and reliability of speed tests used in soccer: A systematic review. PLoS ONE. 2019;14:e0220982. doi: 10.1371/journal.pone.0220982. PubMed DOI PMC

Tubagi-Polito L.F., de Moura Carneiro Y., Aparecida-Moscaleski L., Figueira-Junior A.J., Callegari-Zanetti M., Giuliano de Sá Pinto C., Magalhães-Dias H., Rodrigues-Nunes H., Inácio de Lima S. Shuttle Run Agility Test in Soccer Athletes of Under–10 Category with Dry and Wet Conditions Field. Int. J. Sport. Sci. Coach. 2017;7:45–49.

Kutlu M., Yapıcı H., Yoncalık O., Çelik S. Comparison of a New Test For Agility and Skill in Soccer With Other Agility Tests. J. Hum. Kinet. 2012;33:143–150. doi: 10.2478/v10078-012-0053-1. PubMed DOI PMC

Mayorga-Vega D., Merino-Marban R., Viciana J. Criterion-Related Validity of Sit-and-Reach Tests for Estimating Hamstring and Lumbar Extensibility: A Meta-Analysis. J. Sports Sci. Med. 2014;13:1–14. PubMed PMC

Ayala F., de Baranda P.S., Croix M.D.S., Santonja F. Fiabilidad y validez de las pruebas sit-and-reach: Revisión sistemática. Rev. Andal. de Med. del Deport. 2012;5:57–66. doi: 10.1016/S1888-7546(12)70010-2. DOI

Salkind N.J. Encyclopedia of Research Design. Volume 1 SAGE Publications, Inc.; Thousand Oaks, CA, USA: 2010. Eta-Squared.

Bonilla D.A., Peralta J.O., Bonilla J.A., Urrutia-Mosquera W., Vargas-Molina S., Cannataro R., Petro J.L. Morphology, body composition and maturity status of young Colombian athletes from the Urabá subregion: A k-Medoids and hierarchical clustering analysis. J. Hum. Sport Exerc. 2020;15:20. doi: 10.14198/jhse.2020.15.proc4.34. DOI

Bonilla D.A., Franco-Hoyos K., Agudelo-Martínez A., Kammerer-López M., Bedoya-Bedoya L.F., Moreno Y., Petro J.L. Clustering-based characterization of body composition and morphology in Colombian nutrition and dietetics undergraduate students (CES University, 2016-2020); Proceedings of the 4th International Symposium of Advanced Topics in Exercise Physiology: Non-Pharmacological Treatment for the Improvement of the Quality of Life in the Elderly; Ensenada, México. 3–5 November 2020.

Bonilla D.A., Peralta-Alzate J.O., Bonilla-Henao J.A., Urrutia-Mosquera W., Cannataro R., Kočí J., Petro J.L. Unsupervised machine learning analysis of the anthropometric characteristics and maturity status of young Colombian athletes. J. Phys. Educ. Sport. 2022;22:256–265. doi: 10.7752/jpes.2022.01033. DOI

Gasperín-Rodríguez E.I., Gómez-Figueroa J.A., Gómez-Miranda L.M., Ríos-Gallardo P.T., Palmeros-Exsome C., Hernández-Lepe M.A., Moncada-Jiménez J., Bonilla D.A. Body Composition Profiles of Applicants to a Physical Education and Sports Major in Southeastern Mexico. Int. J. Environ. Res. Public Health. 2022;19:15685. doi: 10.3390/ijerph192315685. PubMed DOI PMC

Mannor S., Jin X., Han J., Jin X., Han J., Jin X., Han J., Zhang X. Encyclopedia of Machine Learning. Spinger; Berlin/Heidelberg, Germany: 2011. K-Medoids Clustering; pp. 564–565.

Wittek P. Quantum Machine Learning. Elsevier; Amsterdam, The Netherlands: 2014. Unsupervised Learning; pp. 57–62.

Brock G., Pihur V., Datta S., Datta S. clValid: AnRPackage for Cluster Validation. J. Stat. Softw. 2008;25:1–22. doi: 10.18637/jss.v025.i04. DOI

R Core Team . R: A Language and Environment for Statistical Computing, Version 4.0.3. R Foundation for Statistical Computing; Vienna, Austria: 2020.

Lepp A., Barkley J.E., Sanders G.J., Rebold M., Gates P. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of U.S. college students. Int. J. Behav. Nutr. Phys. Act. 2013;10:79. doi: 10.1186/1479-5868-10-79. PubMed DOI PMC

Calestine J., Bopp M., Bopp C.M., Papalia Z. College Student Work Habits are Related to Physical Activity and Fitness. Int. J. Exerc. Sci. 2017;10:1009–1017. PubMed PMC

Sánchez-Rojas I.A., Ejercicio D.Y.S.-.G.G.d.I.C.A.a., Romero D.M., Argüello-Gutiérrez Y.P., Castro-Jiménez L.E., Triana-Reina H.R., Perez-Cebreros E.A., Petro J.L., Bonilla D.A. Colombia Valores de referencia para las pruebas de Cooper y de 20m de ida y vuelta en población residente en altitud elevada. [Reference values for Cooper and Shuttle Run Tests in population living at high altitude] RICYDE. Rev. Int. de Cienc. del Deport. 2021;17:221–233. doi: 10.5232/ricyde2021.06502. DOI

Sinex J.A., Chapman R.F. Hypoxic training methods for improving endurance exercise performance. J. Sport Health Sci. 2015;4:325–332. doi: 10.1016/j.jshs.2015.07.005. DOI

Gabrielsen J.S. Iron and Testosterone: Interplay and Clinical Implications. Curr. Sex. Health Rep. 2017;9:5–11. doi: 10.1007/s11930-017-0097-2. DOI

González K., Fuentes J., Márquez J.L. Physical Inactivity, Sedentary Behavior and Chronic Diseases. Korean J. Fam. Med. 2017;38:111–115. doi: 10.4082/kjfm.2017.38.3.111. PubMed DOI PMC

Anderson E., Durstine J.L. Physical activity, exercise, and chronic diseases: A brief review. Sports Med. Health Sci. 2019;1:3–10. doi: 10.1016/j.smhs.2019.08.006. PubMed DOI PMC

Laaksonen D.E., Lakka H.-M., Salonen J.T., Niskanen L.K., Rauramaa R., Lakka T.A. Low Levels of Leisure-Time Physical Activity and Cardiorespiratory Fitness Predict Development of the Metabolic Syndrome. Diabetes Care. 2002;25:1612–1618. doi: 10.2337/diacare.25.9.1612. PubMed DOI

de Greeff J.W., Bosker R.J., Oosterlaan J., Visscher C., Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport. 2018;21:501–507. doi: 10.1016/j.jsams.2017.09.595. PubMed DOI

Pedersen M.R.L., Bredahl T.V.G., Elmose-Østerlund K., Hansen A.F. Motives and Barriers Related to Physical Activity within Different Types of Built Environments: Implications for Health Promotion. Int. J. Environ. Res. Public Health. 2022;19:9000. doi: 10.3390/ijerph19159000. PubMed DOI PMC

Von Ziegler L., Sturman O., Bohacek J. Big behavior: Challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology. 2020;46:33–44. doi: 10.1038/s41386-020-0751-7. PubMed DOI PMC

Kočí J. Zdraví a Mentální Well-Being Student. CRP Rozcestník; New York, NY, USA: 2021. Nový Pohled na Zdraví a Psychický Well-Being—PERMA.

Donaldson S.I., van Zyl L.E., Donaldson S.I. PERMA+4: A Framework for Work-Related Wellbeing, Performance and Positive Organizational Psychology 2.0. Front. Psychol. 2021;12:817244. doi: 10.3389/fpsyg.2021.817244. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...