Novel Method for Determining Internal Combustion Engine Dysfunctions on Platform as a Service
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008425
A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration
CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems
SP2022/9
VSB - Technical University of Ostrava, Czech Republic
PubMed
36617078
PubMed Central
PMC9824704
DOI
10.3390/s23010477
PII: s23010477
Knihovny.cz E-zdroje
- Klíčová slova
- PaaS, cloud computing, exhaust emission testing and evaluation, new emission measurement methods, quantile regression,
- MeSH
- benzin analýza MeSH
- cloud computing MeSH
- strojové učení * MeSH
- výfukové emise vozidel * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzin MeSH
- výfukové emise vozidel * MeSH
This article deals with a unique, new powertrain diagnostics platform at the level of a large number of EU25 inspection stations. Implemented method uses emission measurement data and additional data from significant sample of vehicles. An original technique using machine learning that uses 9 static testing points (defined by constant engine load and constant engine speed), volume of engine combustion chamber, EURO emission standard category, engine condition state coefficient and actual mileage is applied. An example for dysfunction detection using exhaust emission analyses is described in detail. The test setup is also described, along with the procedure for data collection using a Mindsphere cloud data processing platform. Mindsphere is a core of the new Platform as a Service (Paas) for data processing from multiple testing facilities. An evaluation on a fleet level which used quantile regression method is implemented. In this phase of the research, real data was used, as well as data defined on the basis of knowledge of the manifestation of internal combustion engine defects. As a result of the application of the platform and the evaluation method, it is possible to classify combustion engine dysfunctions. These are defects that cannot be detected by self-diagnostic procedures for cars up to the EURO 6 level.
Zobrazit více v PubMed
Cui H., Chen W., Dai W., Liu H., Wang X., He K. Source apportionment of PM2.5 in Guangzhou combining observation data analysis and chemical transport model simulation. Atmos. Environ. 2015;116:262–271. doi: 10.1016/j.atmosenv.2015.06.054. DOI
Liu T., Wang X., Hu Q., Deng W., Zhang Y., Ding X., Fu X., Bernard F., Zhang Z., Lv S., et al. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2. Atmos. Chem. Phys. 2016;16:675–689. doi: 10.5194/acp-16-675-2016. DOI
EEA 2022 Greenhouse Gas Emissions from Transport. [(accessed on 12 April 2022)]. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport.
Leeuw F., Fiala J. Indicators on Urban Air Quality—A Review of Current Methodologies. ETC/ACC; Bilthoven, The Netherlands: 2009.
Commission Proposes New Euro 7 Standards to Reduce Pollutant Emissions from Vehicles and Improve Air Quality. 2022. [(accessed on 17 June 2022)]. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495.
Weilenmann M., Soltic P., Ajtay D. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement. Atmos. Environ. 2003;37:85137–85145. doi: 10.1016/j.atmosenv.2003.05.004. PubMed DOI
Strak M., Janssen N.A.H., Godri K.J., Gosens I., Mudway I.S., Cassee F.R., Lebret E., Kelly F.J., Harrison R.M., Brunekreef B., et al. Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential—The RAPTES Project. Environ. Health Perspect. 2012;120:1183–1189. doi: 10.1289/ehp.1104389. PubMed DOI PMC
Volk H.E., Lurmann F., Penfold B., Hertz-Picciotto I., Mcconnell R. Traffic-Related Air Pollution, Particulate Matter, and Autism. JAMA Psychiatry. 2013;70:71–77. doi: 10.1001/jamapsychiatry.2013.266. PubMed DOI PMC
Karakatsani A., Analitis A., Perifanou D., Ayres J.G., Harrison R.M., Kotronarou A., Kavouras I.G., Pekkanen J., Hämeri K., Kos G.P., et al. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: A European multicentre panel study. Environ. Health. 2012;11:75. doi: 10.1186/1476-069X-11-75. PubMed DOI PMC
He D., Liu H., He K., Meng F., Jiang Y., Wang M., Zhou J., Calthorpe P., Guo J., Yao Z., et al. Energy use of, and CO2 emissions from China’s urban passenger transportation sector–Carbon mitigation scenarios upon the transportation mode choices. Transp. Res. Part A Policy Pract. 2013;53:53–67. doi: 10.1016/j.tra.2013.06.004. DOI
Robinson A.L., Donahue N.M., Shrivastava M.K., Weitkamp E.A., Sage A.M., Grieshop A.P., Lane T.E., Pierce J.R., Pandis S.N. Rethinking Organic Aerosols Semivolatile Emissions and Photochemical Aging. Science. 2007;315:1259–1262. doi: 10.1126/science.1133061. PubMed DOI
Turóczi B., Hoffer A., Tóth Á., Kováts N., Ács A., Ferincz Á., Kovács A., Gelencsér A. Comparative assessment of ecotoxicity of urban aerosol. Atmos. Chem. Phys. 2012;12:7365–7370. doi: 10.5194/acp-12-7365-2012. DOI
Weiss M., Bonnel P., Hummel R., Provenza A., Manfredi U. On-Road Emissions of Light-Duty Vehicles in Europe. Environ. Sci. Technol. 2011;45:8575–8581. doi: 10.1021/es2008424. PubMed DOI
Mellios G., Hausberger S., Keller M., Samaras C., Ntziachristos L. Parameterisation of Fuel Consumption and CO2 Emissions of Passenger Cars and Light Commercial Vehicles for Modelling Purposes. Publications Office of the Europan Union; Luxembourg: 2011.
Luján J.M., García A., Monsalve-Serrano J., Martínez-Boggio S. Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Convers. Manag. 2019;199:111987. doi: 10.1016/j.enconman.2019.111987. DOI
Bainschab M., Schriefl M.A., Bergmann A. Particle number measurements within periodic technical inspections: A first quantitative assessment of the influence of size distributions and the fleet emission reduction. Atmos. Environ. X. 2020;8:100095. doi: 10.1016/j.aeaoa.2020.100095. DOI
Fernández E., Valero A., Alba J.J., Ortego A. A New Approach for Static NOx Measurement in PTI. Sustainability. 2021;13:23. doi: 10.3390/su132313424. DOI
Dia H., Boongrapue N. Vehicle emission models using Australian fleet data. Road Transp. Res. 2015;24:14–26.
Ahmed O., Ramadan I., Shawky M. Modelling Vehicle Emissions and Fuel Consumption Based on Instantaneous Speed and Acceleration Levels. Eng. Res. J.-Fac. Eng. (Shoubra) 2022;51:106–116. doi: 10.21608/erjsh.2022.146374.1050. DOI
Francis A. IoT Based Vehicle Emission Monitoring System. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019;8:410–412.
Kang Y., Ding Y., Li Z., Cao Y., Zhao Y. A networked remote sensing system for on-road vehicle emission monitoring. Sci. China Inf. Sci. 2017;60:043201. doi: 10.1007/s11432-016-9010-1. DOI
Mehta Y., Pai M.M.M., Mallissery S., Singh S. Cloud enabled air quality detection, analysis and prediction-A smart city application for smart health; Proceedings of the 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC); Muscat, Oman. 15–16 March 2016; pp. 1–4. DOI
Hsu C.-Y., Yang C.-S., Yu L.-C., Lin C.-F., Yao H.-H., Chen D.-Y., Lai K.R., Chang P.-C. Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system. Int. J. Prod. Econ. 2015;164:454–461. doi: 10.1016/j.ijpe.2014.08.014. DOI
Namasudra S., Roy P., Balusamy B. Cloud Computing: Fundamentals and Research Issues; Proceedings of the 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM); Tindivanam, India. 3–4 February 2017; pp. 7–12. DOI
Ozpinar A., Yarkan S. Web Services. IGI Global; Hershey, PA, USA: 2019. Vehicle to Cloud; pp. 1223–1242. DOI
Koenker R. Quantile Regression. R Package Version 5.86. 2021. [(accessed on 28 September 2022)]. Available online: https://cran.r-project.org/web/packages/quantreg/quantreg.pdf.
Hao L., Naiman D.Q. Quantile Regression. Sage; Thousand Oaks, CA, USA: 2007.
Li M. Moving beyond the linear regression model: Advantages of the quantile regression model. J. Manag. 2015;41:71–98. doi: 10.1177/0149206314551963. DOI