Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema

. 2022 Dec 31 ; 71 (S2) : S277-S283.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36647915

Brain edema is a fatal pathological state in which brain volume increases as a result of abnormal accumulation of fluid within the brain parenchyma. A key attribute of experimentally induced brain edema - increased brain water content (BWC) - needs to be verified. Various methods are used for this purpose: specific gravimetric technique, electron microscopic examination, magnetic resonance imaging (MRI) and dry/wet weight measurement. In this study, the cohort of 40 rats was divided into one control group (CG) and four experimental groups with 8 rats in each group. The procedure for determining BWC using dry/wet weight measurement was initiated 24 h after the completion of edema induction by the water intoxication method (WI group); after the intraperitoneal administration of Methylprednisolone (MP) together with distilled water during edema induction (WI+MP group); 30 min after osmotic blood brain barrier disruption (BBBd group); after injection of MP via the internal carotid artery immediately after BBBd (BBBd + MP group). While induction of brain edema (WI, BBBd) resulted in significantly higher BWC, there was no increase in BWC in the MP groups (WI+MP, BBBd+MP), suggesting a neuroprotective effect of MP in the development of brain edema.

Zobrazit více v PubMed

Klatzo I. Presidential Address. Neuropathological aspects of brain edema. J Neuropathol Exp Physiol. 1967;26:1–14. doi: 10.1097/00005072-196701000-00001. PubMed DOI

Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci. 2015;16:9949–9975. doi: 10.3390/ijms16059949. PubMed DOI PMC

Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36:513–538. doi: 10.1177/0271678X15617172. PubMed DOI PMC

Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral microcirculation, perivascular unit, and glymphatic system: role of aquaporin-4 as the gatekeeper for water homeostasis. Front Neurol. 2021;12:767470. doi: 10.3389/fneur.2021.767470. PubMed DOI PMC

Elliot KAC, Jasper H. Measurement of experimentally induced brain swelling and shrinkage. Am J Physiol. 1949;157:122–129. doi: 10.1152/ajplegacy.1949.157.1.122. PubMed DOI

Adachi M, Feigin I. Cerebral oedema and the water content of normal white matter. J Neurol Neurosurg Psychiat. 1966;29:446–450. doi: 10.1136/jnnp.29.5.446. PubMed DOI PMC

Faas FH, Ommaya AK. Brain tissue electrolytes and water content in experimental concussion in the monkey. J Neurosurg. 1968;28:137–144. doi: 10.3171/jns.1968.28.2.0137. PubMed DOI

Keep RF, Hua Y, Xi G. Brain water content. A misunderstood measurement? Transl Stroke Res. 2012;3:263–265. doi: 10.1007/s12975-012-0152-2. PubMed DOI PMC

Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, Batchelor TT, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;20:2542–2552. doi: 10.1200/JCO.2008.19.9356. PubMed DOI PMC

Chen Y, Wu X, Yu S, Fauzee NJ, Wu J, Li L, Zhao J, Zhao Y. Neuroprotective capabilities of Tanshinone IIA against cerebral ischemia/reperfusion injury via anti-apoptotic pathway in rats. Biol Pharm Bull. 2012;35:164–170. doi: 10.1248/bpb.35.164. PubMed DOI

Hu CY, Guo YQ, Hao YH, Zheng LN, Qi YH. Research on mechanism of sevoflurane in alleviating cerebral ischemia-reperfusion injury in rats through JNK signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24:3907–3914. doi: 10.26355/eurrev_202004_20857. PubMed DOI

Wang D, Xu X, Wu YG, Lyu L, Zhou ZW, Zhang JN. Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms. Neural Regen Res. 2018;13:819–826. doi: 10.4103/1673-5374.232529. PubMed DOI PMC

Kaya M, Gulturk S, Elmas I, Kalayci R, Arican N, Kocyildiz ZC, Kucuk M, Yorulmaz H, Sivas A. The effects of magnesium sulfate on blood-brain barrier disruption caused by intracarotid injection of hyperosmolar mannitol in rats. Life Sci. 2004;76:201–212. doi: 10.1016/j.lfs.2004.07.012. PubMed DOI

Marchi N, Betto G, Fazio V, Fan Q, Ghosh C, Machado A, Janigro D. Blood-brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema. Epilepsia. 2009;50:664–677. doi: 10.1111/j.1528-1167.2008.01989.x. PubMed DOI PMC

Gerriets T, Stolz E, Walberer M, Müller C, Kluge A, Bachmann A, Fisher M, Kaps M, Bachmann G. Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke. 2004;35:566–571. doi: 10.1161/01.STR.0000113692.38574.57. PubMed DOI

Chen X, Deng S, Lei Q, He Q, Ren Y, Zhang Y, Nie J, Lu W. miR-7-5p affects brain edema after intracerebral hemorrhage and its possible mechanism. Front Cell Dev Biol. 2020;8:598020. doi: 10.3389/fcell.2020.598020. PubMed DOI PMC

He HY, Ren L, Guo T, Deng YH. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen Res. 2019;14:280–288. doi: 10.4103/1673-5374.244793. PubMed DOI PMC

Schwab M, Bauer R, Zwiener U. The distribution of normal brain water content in Wistar rats and its increase due to ischemia. Brain Res. 1997;749:82–87. doi: 10.1016/S0006-8993(96)01165-1. PubMed DOI

Nelson SR, Mantz ML, Maxwell JA. Use of specific gravity in the measurement of cerebral edema. J Appl Physiol. 1971;30:268–271. doi: 10.1152/jappl.1971.30.2.268. PubMed DOI

Marmarou A, Poll W, Shulman K, Bhagavan H. A simple gravimetric technique for measurement of cerebral edema. J Neurosurg. 1978;49:530–537. doi: 10.3171/jns.1978.49.4.0530. PubMed DOI

Marmarou A, Tanaka K, Shulman K. An improved gravimetric measure of cerebral edema. J Neurosurg. 1982;56:246–253. doi: 10.3171/jns.1982.56.2.0246. PubMed DOI

Hayasaki K, Marmarou A, Barzó P, Fatouros P, Corwin F. Detection of brain atrophy following traumatic brain injury using gravimetric techniques. Acta Neurochir Suppl. 1997;70:75–77. doi: 10.1007/978-3-7091-6837-0_23. PubMed DOI

Chavarria L, Oria M, Romero-Giménez J, Alonso J, Lope-Piedrafita S, Cordoba J. Brain magnetic resonance in experimental acute-on-chronic liver failure. Liver Int. 2013;33:294–300. doi: 10.1111/liv.12032. PubMed DOI

Kuroiwa T, Nagaoka T, Ueki M, Yamada I, Miyasaka N, Akimoto H. Different apparent diffusion coefficient: water content correlations of gray and white matter during early ischemia. Stroke. 1998;29:859–865. doi: 10.1161/01.STR.29.4.859. PubMed DOI

Shigeno T, Brock M, Shigeno S, Fritschka E, Cervós-Navarro J. The determination of brain water content: microgravimetry versus drying-weighing method. J Neurosurg. 1982;57:99–107. doi: 10.3171/jns.1982.57.1.0099. PubMed DOI

Luse SA, Harris B. Electron microscopy of the brain in experimental edema. J Neurosurg. 1960;17:439–446. doi: 10.3171/jns.1960.17.3.0439. PubMed DOI

Barnes D, McDonald WI, Johnson G, Tofts PS, Landon DN. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema. J Neurol Neurosurg Psychiatry. 1987;50:125–133. doi: 10.1136/jnnp.50.2.125. PubMed DOI PMC

Zhang J, Shi X, Chen Z, Geng J, Wang Y, Feng H, Zhu G, Chen Q. Edaravone reduces iron-mediated hydrocephalus and behavioral disorder in rat by activating the Nrf2/HO-1 pathway. J Stroke Cerebrovasc Dis. 2018;27:3511–3520. doi: 10.1016/j.jstrokecerebrovasdis.2018.08.019. PubMed DOI

Hilal SK, Maudsley AA, Simon HE, Perman WH, Bonn J, Mawad ME, Silver AJ, Ganti SR, Sane P, Chien IC. In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR Am J Neuroradiol. 1983;4:245–249. PubMed PMC

Schuhmann MU, Stiller D, Skardelly M, Mokktarzadeh M, Thomas S, Brinker T, Samii M. Determination of contusion and oedema volume by MRI corresponds to changes of brain water content following controlled cortical impact injury. Acta Neurochir Suppl. 2002;81:213–215. doi: 10.1007/978-3-7091-6738-0_55. PubMed DOI

Badaut J, Ashwal S, Tone B, Regli L, Tian HR, Obenaus A. Temporal and regional evolution of aquaporin-4 expression and magnetic resonance imaging in a rat pup model of neonatal stroke. Pediatr Res. 2007;62:248–254. doi: 10.1203/PDR.0b013e3180db291b. PubMed DOI

Naessens DMP, Coolen BF, de Vos J, VanBavel E, Strijkers GJ, Bakker ENTP. Altered brain fluid management in a rat model of arterial hypertension. Fluids Barriers CNS. 2020;17:41. doi: 10.1186/s12987-020-00203-6. PubMed DOI PMC

Kozler P, Riljak V, Pokorný J. Both water intoxication and osmotic BBB disruption increase brain water content in rats. Physiol Res. 2013;62(Suppl 1):S75–S80. doi: 10.33549/physiolres.932566. PubMed DOI

Kozler P, Marešová D, Pokorný J. Effect of methylprednisolone on experimental brain edema in rats - own experience reviewed. Physiol Res. 2021;70(Suppl 3):S289–S300. doi: 10.33549/physiolres.934818. PubMed DOI PMC

Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–163. doi: 10.1038/72256. PubMed DOI

Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery. 1998;42:1083–1099. doi: 10.1097/00006123-199805000-00082. PubMed DOI

Kozler P, Maresova D, Pokorny J. Cytotoxic brain edema induced by water intoxication and vasogenic brain edema induced by osmotic BBB disruption lead to distinct pattern of ICP elevation during telemetric monitoring in freely moving rats. Neuro Endocrinol Lett. 2019;40:249–256. PubMed

Kozler P, Herynek V, Marešová D, Perez PD, Šefc L, Pokorný J. Effect of methylprednisolone on experimental brain edema in magnetic resonance imaging. Physiol Res. 2020;69:919–926. doi: 10.33549/physiolres.934460. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...