• This record comes from PubMed

Assessment of Blood-Brain Barrier Permeability in a Cerebral Ischemia-Reperfusion Model in Rats; A Pilot Study

. 2024 Dec 31 ; 73 (6) : 1099-1105.

Language English Country Czech Republic Media print

Document type Journal Article

Animal models are an important tool for studying ischemic mechanisms of stroke. Among them, the middle cerebral artery occlusion (MCAO) model via the intraluminal suture method in rodents is closest to human ischemic stroke. It is a model of transient occlusion followed by reperfusion, thus representing cerebral ischemia-reperfusion model that simulates patients with vascular occlusion and timely recanalization. Although reperfusion is very beneficial for the possibility of preserving brain functions after ischemia, it also brings a great risk in the form of brain edema, which can cause the development of intracranial hypertension, and increasing morbidity and mortality. In this paper, we present the results of our own transient reperfusion model of MCAO in which we tested the permeability of the blood-brain barrier (BBB) using Evans blue (EB), an intravital dye with a high molecular weight (68,500 Da) that prevents its penetration through the intact BBB. A total of 15 animals were used in the experiment and underwent the following procedures: insertion of the MCA occluder; assessment of ischemia by 2,3,5 -Triphenyltetrazolium chloride (TTC) staining; assessment of the BBB permeability using brain EB distribution. The results are presented and discussed. The test of BBB permeability using EB showed that 120 minutes after induction of ischemia, the BBB is open for the entry of large molecules into the brain. We intend to use this finding to time the application of neuroprotective agents via ICA injection in our next stroke model. Keywords: Cerebral ischemia-reperfusion model, Middle cerebral artery occlusion, Blood-brain barrier, 2,3,5 -Triphenyltetrazolium chloride, Evans blue.

See more in PubMed

Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: A review. Biomed Pharmacother. 2020;131:110686. doi: 10.1016/j.biopha.2020.110686. PubMed DOI

Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245–261. doi: 10.1007/s00401-017-1667-0. PubMed DOI PMC

Seta KA, Crumrine RC, Whittingham TS, Lust WD, McCandless DW. Experimental Models of Human Stroke. In: BOULTON AA, BAKER GB, BUTTERWORTH RF, editors. Animal Models of Neurological Disease, II. Neuromethods. Vol. 22. Humana Press; 1992. pp. 1–50. DOI

Percie du Sert N, Alfieri A, Allan SM, Carswell HV, Deuchar GA, Farr TD, Flecknell P, et al. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments) J Cereb Blood Flow Metab. 2017;37(11):3488–3517. doi: 10.1177/0271678X17709185. PubMed DOI PMC

Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 1986;8:1–8. doi: 10.3995/jstroke.8.1. DOI

Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. doi: 10.1161/01.STR.20.1.84. PubMed DOI

Li Y, Zhang J. Animal models of stroke. Animal Model Exp Med. 2021;4(3):204–219. doi: 10.1002/ame2.12179. PubMed DOI PMC

Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445–354. doi: 10.2147/DDDT.S56071. PubMed DOI PMC

Liu S, Zhen G, Meloni BP, Campbell K, Winn HR. Rodent Stroke Model Guidelines For Preclinical Stroke Trials (1st Edition) J Exp Stroke Transl Med. 2009;2(2):2–27. doi: 10.4172/1939-067X.1000108. PubMed DOI PMC

Li Y, Tan L, Yang C, He L, Liu L, Deng B, Liu S, et al. Distinctions between the Koizumi and Zea Longa methods for middle cerebral artery occlusion (MCAO) model: a systematic review and meta-analysis of rodent data. Sci Rep. 2023;13(1):10247. https://doi.org/10.1038/s41598-017-10271-8, https://doi.org/10.1038/s41598-023-37187-w. PubMed DOI PMC

Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315(3):C343–C356. doi: 10.1152/ajpcell.00095.2018. PubMed DOI PMC

Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury. Int J Mol Sci. 2017;18(8):1788. doi: 10.3390/ijms18081788. PubMed DOI PMC

Zehendner CM, Librizzi L, Hedrich J, Bauer NM, Angamo EA, de Curtis M, Luhmann HJ. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption. PLoS One. 2013;8(12):e82823. doi: 10.1371/journal.pone.0082823. PubMed DOI PMC

Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8. doi: 10.1161/STROKEAHA.110.608257. PubMed DOI PMC

Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol. 2020;18(12):1187–1212. doi: 10.2174/1570159X18666200528143301. PubMed DOI PMC

Lafuente JV, Pouschman E, Cervós-Navarro J, Sharma HS, Schreiner C, Korves M. Dynamics of tracer distribution in radiation induced brain oedema in rats. Acta Neurochir Suppl (Wien) 1990;51:375–377. doi: 10.1007/978-3-7091-9115-6_126. PubMed DOI

Kozler P, Pokorný J. Altered blood-brain barrier permeability and its effect on the distribution of Evans blue and sodium fluorescein in the rat brain applied by intracarotid injection. Physiol Res. 2003;52:607–614. doi: 10.33549/physiolres.930289. PubMed DOI

Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, Nan G, Ji X. Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front Neurosci. 2022;16:988283. doi: 10.3389/fnins.2022.988283. PubMed DOI PMC

Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus. 2007;22(5):E2. doi: 10.3171/foc.2007.22.5.3. PubMed DOI PMC

Kozler P, Marešová D, Pokorný J. Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiol Res. 2022;71(S2):S277–S283. doi: 10.33549/physiolres.934996. PubMed DOI PMC

Kozler P, Marešová D, Pokorný J. Effect of methylprednisolone on experimental brain edema in rats - own experience reviewed. Physiol Res. 2021;70(S3):S289–S300. doi: 10.33549/physiolres.934818. PubMed DOI PMC

Kozler P, Herynek V, Marešová D, Perez PD, Šefc L, Pokorný J. Effect of methylprednisolone on experimental brain edema in magnetic resonance imaging. Physiol Res. 2020;69:919–926. doi: 10.33549/physiolres.934460. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...