Assessment of Blood-Brain Barrier Permeability in a Cerebral Ischemia-Reperfusion Model in Rats; A Pilot Study
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
39903898
PubMed Central
PMC11835218
DOI
10.33549/physiolres.935432
PII: 935432
Knihovny.cz E-resources
- MeSH
- Evans Blue MeSH
- Blood-Brain Barrier * metabolism MeSH
- Infarction, Middle Cerebral Artery * metabolism MeSH
- Brain Ischemia metabolism MeSH
- Capillary Permeability MeSH
- Rats MeSH
- Disease Models, Animal * MeSH
- Permeability MeSH
- Pilot Projects MeSH
- Rats, Sprague-Dawley MeSH
- Reperfusion Injury * metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Evans Blue MeSH
Animal models are an important tool for studying ischemic mechanisms of stroke. Among them, the middle cerebral artery occlusion (MCAO) model via the intraluminal suture method in rodents is closest to human ischemic stroke. It is a model of transient occlusion followed by reperfusion, thus representing cerebral ischemia-reperfusion model that simulates patients with vascular occlusion and timely recanalization. Although reperfusion is very beneficial for the possibility of preserving brain functions after ischemia, it also brings a great risk in the form of brain edema, which can cause the development of intracranial hypertension, and increasing morbidity and mortality. In this paper, we present the results of our own transient reperfusion model of MCAO in which we tested the permeability of the blood-brain barrier (BBB) using Evans blue (EB), an intravital dye with a high molecular weight (68,500 Da) that prevents its penetration through the intact BBB. A total of 15 animals were used in the experiment and underwent the following procedures: insertion of the MCA occluder; assessment of ischemia by 2,3,5 -Triphenyltetrazolium chloride (TTC) staining; assessment of the BBB permeability using brain EB distribution. The results are presented and discussed. The test of BBB permeability using EB showed that 120 minutes after induction of ischemia, the BBB is open for the entry of large molecules into the brain. We intend to use this finding to time the application of neuroprotective agents via ICA injection in our next stroke model. Keywords: Cerebral ischemia-reperfusion model, Middle cerebral artery occlusion, Blood-brain barrier, 2,3,5 -Triphenyltetrazolium chloride, Evans blue.
See more in PubMed
Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: A review. Biomed Pharmacother. 2020;131:110686. doi: 10.1016/j.biopha.2020.110686. PubMed DOI
Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245–261. doi: 10.1007/s00401-017-1667-0. PubMed DOI PMC
Seta KA, Crumrine RC, Whittingham TS, Lust WD, McCandless DW. Experimental Models of Human Stroke. In: BOULTON AA, BAKER GB, BUTTERWORTH RF, editors. Animal Models of Neurological Disease, II. Neuromethods. Vol. 22. Humana Press; 1992. pp. 1–50. DOI
Percie du Sert N, Alfieri A, Allan SM, Carswell HV, Deuchar GA, Farr TD, Flecknell P, et al. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments) J Cereb Blood Flow Metab. 2017;37(11):3488–3517. doi: 10.1177/0271678X17709185. PubMed DOI PMC
Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. 1986;8:1–8. doi: 10.3995/jstroke.8.1. DOI
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. doi: 10.1161/01.STR.20.1.84. PubMed DOI
Li Y, Zhang J. Animal models of stroke. Animal Model Exp Med. 2021;4(3):204–219. doi: 10.1002/ame2.12179. PubMed DOI PMC
Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445–354. doi: 10.2147/DDDT.S56071. PubMed DOI PMC
Liu S, Zhen G, Meloni BP, Campbell K, Winn HR. Rodent Stroke Model Guidelines For Preclinical Stroke Trials (1st Edition) J Exp Stroke Transl Med. 2009;2(2):2–27. doi: 10.4172/1939-067X.1000108. PubMed DOI PMC
Li Y, Tan L, Yang C, He L, Liu L, Deng B, Liu S, et al. Distinctions between the Koizumi and Zea Longa methods for middle cerebral artery occlusion (MCAO) model: a systematic review and meta-analysis of rodent data. Sci Rep. 2023;13(1):10247. https://doi.org/10.1038/s41598-017-10271-8, https://doi.org/10.1038/s41598-023-37187-w. PubMed DOI PMC
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315(3):C343–C356. doi: 10.1152/ajpcell.00095.2018. PubMed DOI PMC
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury. Int J Mol Sci. 2017;18(8):1788. doi: 10.3390/ijms18081788. PubMed DOI PMC
Zehendner CM, Librizzi L, Hedrich J, Bauer NM, Angamo EA, de Curtis M, Luhmann HJ. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption. PLoS One. 2013;8(12):e82823. doi: 10.1371/journal.pone.0082823. PubMed DOI PMC
Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8. doi: 10.1161/STROKEAHA.110.608257. PubMed DOI PMC
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol. 2020;18(12):1187–1212. doi: 10.2174/1570159X18666200528143301. PubMed DOI PMC
Lafuente JV, Pouschman E, Cervós-Navarro J, Sharma HS, Schreiner C, Korves M. Dynamics of tracer distribution in radiation induced brain oedema in rats. Acta Neurochir Suppl (Wien) 1990;51:375–377. doi: 10.1007/978-3-7091-9115-6_126. PubMed DOI
Kozler P, Pokorný J. Altered blood-brain barrier permeability and its effect on the distribution of Evans blue and sodium fluorescein in the rat brain applied by intracarotid injection. Physiol Res. 2003;52:607–614. doi: 10.33549/physiolres.930289. PubMed DOI
Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, Nan G, Ji X. Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front Neurosci. 2022;16:988283. doi: 10.3389/fnins.2022.988283. PubMed DOI PMC
Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus. 2007;22(5):E2. doi: 10.3171/foc.2007.22.5.3. PubMed DOI PMC
Kozler P, Marešová D, Pokorný J. Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiol Res. 2022;71(S2):S277–S283. doi: 10.33549/physiolres.934996. PubMed DOI PMC
Kozler P, Marešová D, Pokorný J. Effect of methylprednisolone on experimental brain edema in rats - own experience reviewed. Physiol Res. 2021;70(S3):S289–S300. doi: 10.33549/physiolres.934818. PubMed DOI PMC
Kozler P, Herynek V, Marešová D, Perez PD, Šefc L, Pokorný J. Effect of methylprednisolone on experimental brain edema in magnetic resonance imaging. Physiol Res. 2020;69:919–926. doi: 10.33549/physiolres.934460. PubMed DOI PMC