Drugs as Chemical Weapons: Past and Perspectives

. 2023 Jan 04 ; 11 (1) : . [epub] 20230104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36668778

The emergence of modern chemical weapons and chemical warfare is traditionally associated with World War I, but the use of poisons in the military has its roots deep in the past. The sources of these poisons have always been natural agents that also served as medicines. This relationship between poison and medicine, and nowadays between chemical warfare and medicine, or between 'military chemistry' and pharmacy, appears to be very important for understanding not only the history but also the possible future of both phenomena. This article looks at some historical examples of the use of drugs as chemical weapons and, conversely, the use of chemical weapons as medicines. It seeks to find answers to some questions that are particularly relevant to the implementation of the Chemical Weapons Convention, which aims to achieve a world without chemical warfare.

Zobrazit více v PubMed

Report of the OPCW on the Implementation of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Warfare Weapons and on their Destruction in 2020. OPCW; The Hague, The Netherlands: 2021. [(accessed on 12 October 2022)]. C-26/3. Available online: https://www.opcw.org/resources/documents/annual-reports.

Pitschmann V. Overall view of chemical and biochemical weapons. Toxins. 2014;6:1761–1784. doi: 10.3390/toxins6061761. PubMed DOI PMC

Pitschmann V., Hon Z. Military importance of natural toxins and their analogs. Molecules. 2016;21:556. doi: 10.3390/molecules21050556. PubMed DOI PMC

Gesler R.M., Hope J.V. 3,6-bis(3-diethylaminopropoxy)pyridazine bismethiodide, a long-acting neuromuscular blocking agent. J. Pharm. Exp. Ther. 1956;118:395–406. PubMed

Neuwinger H.D. Afrikanische Arzneipflanzen und Jagdgifte. Chemie, Pharmakologie, Toxikologie. Wissenschaftliche Verlagsgesellschaft; Stuttgart, Germany: 1998.

Selingman C.G. On the physiological action of the Kenyah dart poison ipoh, and its active principle antiarin. J. Physiol. 1903;29:39–57. doi: 10.1113/jphysiol.1903.sp000945. PubMed DOI PMC

Antonov N.S. Chemical Weapons at the Turn of the Century. Progress; Moscow, Russia: 1994.

Rossetto O., Montecucco C. Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins. 2019;11:686. doi: 10.3390/toxins11120686. PubMed DOI PMC

Fodstad O., Olsnes S., Pihl A. Toxicity, distribution and elimination of the cancerostatic lectins abrin and ricin after parenteral injection into mice. Br. J. Cancer. 1976;34:418–425. doi: 10.1038/bjc.1976.187. PubMed DOI PMC

Sun Q., Chen X., Liu W., Li S., Zhou Y., Yang X., Liu J. Effects of long-term low dose saxitoxin exposure on nerve damage in mice. Aging. 2021;13:17211–17226. doi: 10.18632/aging.203199. PubMed DOI PMC

Schultes R.E., Raffauf R.F. The Healing Forest. Dioscurides Press; Portland, OR, USA: 1990.

Feldman S. Poison Arrows. Metro Publishing; London, UK: 2005.

Tammelin L.E. Choline esters: Substrates and inhibitors of cholinesterases. Sven. Kem. Tidskr. 1958;70:158–181.

Kratina T. Hallucinogen bufotenin and hazardous toads poisoning. Drug Forensic Bull. 2019;25:3–9.

Chilton W.S., Bigwood J., Jensen R.E. Psilocin, Bufotenine and Serotonin: Historical and Biosynthetic Observations. J. Psychedelic Drugs. 1979;11:61–69. doi: 10.1080/02791072.1979.10472093. PubMed DOI

Araújo A.M., Carvalho F., Bastos M.L., Guedes P.P., Carvalho M. The Hallucinogenic World of Tryptamines: An Updated Review. Arch. Toxicol. 2015;89:1151–1173. doi: 10.1007/s00204-015-1513-x. PubMed DOI

Qi J., Zulfiker A., Li C., Good D., Wei M. The Development of Toad Toxins as Potential Therapeutic Agents. Toxins. 2018;10:336. doi: 10.3390/toxins10080336. PubMed DOI PMC

Osseo-Asare A.D. Bioprospecting and Resistance: Transforming Poisoned Arrows into Strophantin Pills in Colonial Gold Coast, 1885–1922. Soc. Hist. Med. 2008;21:269–290. doi: 10.1093/shm/hkn025. DOI

Newman R.A., Yang P., Pawlus A.D., Block K.I. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv. 2008;8:36–49. doi: 10.1124/mi.8.1.8. PubMed DOI

Khan H., Saeedi M., Nabavi S.M., Mubarak M.S., Bishayee A. Glycosides from medical plants as potential anticancer agents: Emerging trends towards future drugs. Curr. Med. Chem. 2019;26:2389–2406. doi: 10.2174/0929867325666180403145137. PubMed DOI

Puri H.S. Uses of Aconites. J. D’agriculture Tradit. Et De Bot. Appliquée. 1974;21:239–246. doi: 10.3406/jatba.1974.3168. DOI

Needham J., Ho P.Y., Lu G.D., Wang L. Science and Civilisation in China. Volume 5 Cambridge University Press; Cambridge, UK: 1986.

Rao K.V. Taxol and related taxanes. I. Taxanes of Taxus brevifolia bark. Pharm. Res. 1993;10:521–524. doi: 10.1023/A:1018937700459. PubMed DOI

Saloustros E., Mavroudis D., Georgoulias V. Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opin. Pharmacother. 2008;9:2603–2616. doi: 10.1517/14656566.9.15.2603. PubMed DOI

Sierra M.A., Martínez-Álvarez R. Ricin and saxitoxin: Two natural products that became chemical weapons. J. Chem. Educ. 2020;97:1707–1714. doi: 10.1021/acs.jchemed.9b00841. DOI

Gooriah R., Ahmed F. Therapeutic uses of Botulinum toxin. J. Clin. Toxicol. 2015;5:1000225. doi: 10.4172/2161-0495.1000225. DOI

Kautilya . Arthashastra. Government Press; Bangalore, India: 1915.

Kirby R. Ricin Toxin: A Military History. CML Army Chem. Rev. 2004 April 20;304:38–40.

Tyagi N., Tyagi M., Pachauri M., Ghosh P.C. Potential therapeutic applications of plant toxin–Ricin in cancer: Challenges and advances. Tumor. Biol. 2015;36:8239–8246. doi: 10.1007/s13277-015-4028-4. PubMed DOI

Embleton M.J., Charleston A., Robins R.A., Pimm M.V., Baldwin R.W. Recombinant Ricin Toxin A Chain Cytotoxicity Against Carcinoembryonic Antigen Expressing Tumour Cells Mediated by a Bispecific Monoclonal Antibody and its Potentiation by Ricin Toxin B Chain. Br. J. Cancer. 1991;63:670–674. doi: 10.1038/bjc.1991.153. PubMed DOI PMC

Bhakta S., Das S.K. The medical values of Abrus precatorius: A review study. J. Adv. Biotechnol. Exp. Ther. 2020;3:84–91. doi: 10.5455/jabet.2020.d111. DOI

Wiese M., D’Agostinob P.M., Mihali T.K., Moffitt M.C., Neilan B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs. 2010;8:2185–2211. doi: 10.3390/md8072185. PubMed DOI PMC

Assunção J., Guedes A.C., Malcata F.X. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from Dinoflagellates. Mar. Drugs. 2017;15:393. doi: 10.3390/md15120393. PubMed DOI PMC

Nieto F.R., Cobos E.J., Tejada M.A., Sánchez-Fernández C., González-Cano R., Cendán C.M. Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar. Drugs. 2012;20:281–305. doi: 10.3390/md10020281. PubMed DOI PMC

Detournay O., Lorquin J., Gault F. Palytoxin, its Medical Use and Process for its Isolation. WO2015/090591A1. 2015 June 25;

Hofmann A. LSD–My Problem Child. McGraw-Hill; New York, NY, USA: 1980.

Stoll W.A. Lysergsäure-Diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz. Arch. Für Neurol. Und Psychiatr. 1947;60:279–323.

Kirby R. Paradise Lost: The Psycho Agents. CBW Conv. Bull. 2006;71:1–5.

Applegate R. Riot Control–Materiel and Techniques. Stackpole; Harrisburg, PA, USA: 1969. pp. 284–287.

Sternbach L.H., Kaiser S. Antispasmodics. I. Bicyclic basic alcohols. J. Am. Chem. Soc. 1952;74:2215–2218. doi: 10.1021/ja01129a019. DOI

Sternbach L.H., Kaiser S. Antispasmodics II. Esters of basic bicyclic alcohols. J. Am. Chem. Soc. 1952;74:2219–2221. doi: 10.1021/ja01129a020. DOI

Sternbach L.H., Kaiser S. Antispasmodics III. Esters of basic bicyclic alcohols and their quaternary salts. J. Am. Chem. Soc. 1953;75:6068–6069. doi: 10.1021/ja01119a534. DOI

Ketchum J.S. Chemical Warfare: Secrets almost Forgotten. AuthorHouse; Bloomington, IN, USA: 2012. pp. 113–115.

Ball J.C. Dual use research of concern: Derivatives of 3-quinuclidinyl benzilate (BZ) Mil. Med. Sci. Lett. 2015;84:2–41. doi: 10.31482/mmsl.2015.001. DOI

Patočka J., Jelínková R. Atropine and atropine-like substances usable in warfare. Mil. Med. Sci. Lett. 2017;86:58–69. doi: 10.31482/mmsl.2017.010. DOI

Field Manual FM 3-11-9 . Potential Military Chemical/Biological Agents and Compounds. Eximdyne; Wentzeville, MO, USA: 2005.

Waxman S., Anderson K.C. History of the Development of Arsenic Derivatives in Cancer Therapy. Oncologist. 2001;6:3–10. doi: 10.1634/theoncologist.6-suppl_2-3. PubMed DOI

Thomas X., Troncy J. Arsenic: A beneficial therapeutic poison–A historical overview. Adler Mus. Bull. 2009;35:3–13. PubMed

Greenwood D. Antimicrobial Drugs. Chronicle of Twentieth Century Medical Triumph. Oxford University Press; Oxford, UK: 2008. p. 281.

Singh R.K., Kumar S., Prasad D.N., Bhardwaj T.R. Therapeutic Journey of Nitrogen Mustard as Alkylating Anticancer Agents: Historic to Future Perspectives. Eur. J. Med. Chem. 2018;151:401–433. doi: 10.1016/j.ejmech.2018.04.001. PubMed DOI

Diethelm-Varela B., Ai Y., Liang D., Xue F. Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends. Curr. Top Med. Chem. 2019;19:691–712. doi: 10.2174/1568026619666190401100519. PubMed DOI

Chen Y., Jia Y., Song W., Zhang L. Therapeutic potential of nitrogen mustard based hybrid molecules. Front. Pharmacol. 2018;9:1453. doi: 10.3389/fphar.2018.01453. PubMed DOI PMC

Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006;1:CD005593. doi: 10.1002/14651858.CD005593. PubMed DOI PMC

Carron P.N., Yersin B. Management of the effects of exposure to tear gas. BMJ. 2009;338:1554–1558. doi: 10.1136/bmj.b2283. PubMed DOI

Peppin J.F., Pappagallo M. Capsaicinoids in the treatment of neuropathic pain: A review. Ther. Adv. Neurol. Disord. 2014;7:22–32. doi: 10.1177/1756285613501576. PubMed DOI PMC

Saljoughian M. Capsaicin: Risk and benefits. US Pharm. 2009;34:HS-17–HS-18.

Contri R.V., Frank L.A., Kaiser M., Pohlmann A.R., Guterres S.S. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. Int. J. Nanomed. 2014;9:951–962. doi: 10.2147/IJN.S56579. PubMed DOI PMC

Ellison D.H. Chemical Warfare during the Vietnam War: Riot Control Agents in Combat. Routledge; New York, NY, USA: 2011.

Sheikhhosseini E., Soltaninejad S. Design and Efficient Synthesis of Novel Biological Benzylidenemalononitrile Derivatives Containing Ethylene Ether Spacers. Iran. J. Sci. Technol. Trans. A Sci. 2019;43:111–117. doi: 10.1007/s40995-017-0376-9. DOI

Gazit A., Levitzki A., Roifman C. Use of Benzylidene-Malononitrile Derivates for Treatment of Leukemia. EP0754038A1. 1997 January 22;

Ebadi M.S. CRC Desk Reference of Clinical Pharmacology. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008. p. 399.

Hata S., Koizumi M., Kubodera N., Murakami Y., Nakakimura H., Sasahara K., Wada S. Dibenzoxazepine Derivative and its Preparation. JPS5576869A. 1980 June 10;

Shafer S.L. Carfentanil: A weapon of mass destruction. Can. J. Anesth. 2019;66:351–355. doi: 10.1007/s12630-019-01295-x. PubMed DOI

Worsley M.H., MacLeod A.D., Brodie M.J., Asbury A.J., Clark C. Inhaled fentanyl as a method of analgesia. Anaesthesia. 1990;45:449–451. doi: 10.1111/j.1365-2044.1990.tb14331.x. PubMed DOI

Bever van W.F., Niemegeers C.J., Schellekens K.H., Jansen P.A. N-4-Substituted 1-(2-arylethyl)-4-piperidinyl-N-phenylpropanamides, a novel series of extremely potent analgesics with unusually high safety margin. Arzneimittelforschung. 1976;26:1548–1551. PubMed

Davison N. Marketing new chemical weapons. [(accessed on 18 October 2022)];Bull. At. Sci. 2009 Available online: https://thebulletin.org/2009/06/marketing-new-chemical-weapons.

Riches J.R., Read R.W., Black R.M., Cooper N.J., Timperley C.M. Analysis of Clothing and Urine from Moscow Theatre Casualties Reveals Carfentanil and Remifentanil Use. J. Anal. Toxicol. 2012;36:647–656. doi: 10.1093/jat/bks078. PubMed DOI

Jones C.M., Einstein E.B., Compton W.M. Changes in Synthetic Opioid Involvement in Drug Overdose Deaths in the United States, 2010–2016. JAMA. 2018;319:1819–1821. doi: 10.1001/jama.2018.2844. PubMed DOI PMC

Stark M.M., Knight M. “Safety” of chemical batons. Lancet. 1998;352:159. doi: 10.1016/S0140-6736(98)21029-4. PubMed DOI

Neubert J.K., Karai L., Jun J.H., Kim H.S., Olah Z., Iadarola M.J. Peripherally induced resiniferatoxin analgesia. Pain. 2003;104:219–228. doi: 10.1016/S0304-3959(03)00009-5. PubMed DOI

Whitfield S.J.C., Griffiths G.D., Jenner D.C., Gwyther R.J., Stahl F.M., Cork L.J., Holley J.L., Green A.C. Production, Characterisation and Testing of an Ovine Antitoxin against Ricin; Efficacy, Potency and Mechanisms of Action. Toxins. 2017;9:329. doi: 10.3390/toxins9100329. PubMed DOI PMC

Chen H., Lin C., Wang T. Effects of 4-aminopyridine on saxitoxin intoxication. Toxicol. Appl. Pharmacol. 1996;141:44–48. doi: 10.1016/S0041-008X(96)80007-X. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...