Military Importance of Natural Toxins and Their Analogs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu historické články, časopisecké články, přehledy
PubMed
27136512
PubMed Central
PMC6273326
DOI
10.3390/molecules21050556
PII: molecules21050556
Knihovny.cz E-zdroje
- Klíčová slova
- biological weapons, chemical weapons, toxin weapons, toxins,
- MeSH
- biologické toxiny chemie dějiny MeSH
- bioterorismus dějiny MeSH
- chemické bojové látky chemie dějiny MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- dějiny starověku MeSH
- lidé MeSH
- racionální návrh léčiv MeSH
- vojenská věda dějiny zákonodárství a právo MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Názvy látek
- biologické toxiny MeSH
- chemické bojové látky MeSH
Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots); it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.
Zobrazit více v PubMed
Alouf J.E. A 116-year story of bacterial protein toxins (1888–2004): From “diphteric poison” to molecular toxinology. In: Alouf J.E., Popoff M.R., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins. 2nd ed. Elsevier; San Diego, CA, USA: 2006. pp. 3–21.
Supotnitskiy M.V. Biological Warfare. Russkaya Panorama—Kafedra; Moskva, Russia: 2013.
Salzman M., Madsen J.M., Greenberg M.I. Toxins: Bacterial and marine toxins. Clin. Lab. Med. 2006;26:397–419. doi: 10.1016/j.cll.2006.04.003. PubMed DOI
Jones D.E. Poison Arrows. North. American Indian Hunting and Warfare. 1st ed. University of Texas Press; Austin, TX, USA: 2007. pp. 39, 42.
Neuwinger H.D. Afrikanische Arzneipflanzen und Jagdgifte Chemie Pharmakologie Toxikologie. Wissenschaftliche Verlagsgesellschaft; Stuttgart, Germany: 1998. pp. 911–920.
Hesse M. Alkaloids. Nature’s Curse or Blessing? Verlag Helvetica Chimica Acta; Zürich, Switzerland: 2002. p. 353.
Lewin L. Die Pfeilgifte. Eine Allgemeinverständliche Untersuchung Historischer und Ethnologischer Quellen. Gernstenberg Verlag; Hildesheim, Germany: 1984.
Neufehl E. Insects as warfare agents in the ancient Near East. Orientalia. 1980;49:30–57.
Lockwood J.A. Six-Legged Soldiers. Using Insects as Weapons of War. Orford University Press; New York, NY, USA: 2009. pp. 147–148.
Mayor A. Greek Fire, Poison Arrows, and Scorpion Bombs: Biological and Chemical Weapons in the Ancient World. Overlock Press; New York, NY, USA: 2003. p. 181.
Partington J.R. A History of Greek Fire and Gunpowder. The Johns Hopkins University Press; Baltimore, MD, USA: 1999. pp. 263–271.
Gabriel R.A. Gengis. Khan’s Greates. General: Subotai the Valiant. University of Oklahoma Press; Norman, OK, USA: 2006. p. 41.
Lewin L. Die Gifte in der Weltgeschichte. Tosa Verlag; Wienna, Austria: 2007. p. 466.
Hagesawa G.R. Proposals for chemical weapon during the American Civil War. Mil. Med. 2008;173:495–506. PubMed
Richter D. Chemical Soldiers. British Gas. Warfare in World War I. University Press of Kansas; Lawrence, KS, USA: 1992. p. 18.
Palazzo A. Seeking Victory in the Western Front: The British Army and Chemical Warfare in World War I. University of Nebraska Press; Lincoln, NE, USA: 2000. pp. 44, 45, 163.
Garrett B. The CW Almanac. The ASA Newsletter. 1999 Apr;Volume 72:15.
Kirby R. Ricin Toxin: A Military History. Army Chemical Review. Apr 1, 2004. pp. 38–40.
Haynes D. Britain Came Close to Dropping Poisoned Darts on German Troops. The Times. Jun 26, 2009. [(accessed on 27 April 2016)]. Available online: http://www.thetimes.co.uk/tto/news/uk/article1943659.ece.
Harris R., Paxman J. A Higher Form of Killing: The Secret History of Chemical and Biological Warfare. Random House Trade Paperbacks; New York, NY, USA: 2002. p. 96.
Letourneau R.L. Light High Explosive Bomb for Dispersing Toxic and Insecticidal Aerosols. 3,207,071. U.S. Patent. 1965 Sep 21;
Roach P.G., Weingartner H.C. Gas Ejection Bomb for Dispersing Solid Particulates. 3,188,954. U.S. Patent. 1965 Jun 15;
Leitenberg M., Zilinskas R.A. The Soviet Biological Weapons Program: A History. Harvard University Press; Cambridge, MA, USA: 2012. pp. 298–302.
Satpathy G.C. Biological Weapons and Terrorism. Volume 2. Kalpaz Publications; Delhi, India: 2004. p. 72.
Franke S. Lehrbuch. der Militärchemie. Band 1. Militärverlag der DDR; Berlin, Germany: 1977. p. 19.
Harris S.H. Factories of Death: Japanese Biological Warfare, 1832–45 and the American Cover-Up. 1st ed. Routledge; London, UK: 1994.
Regis E. The Biology of Doom: The History of America’s Secret Germ Warfare Project. Henry Holt and Company; New York, NY, USA: 1999. p. 87.
Dorsey R., Emmett G., Salem H. Ricin. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. 2nd ed. Academic Press: Elsevier; San Diego, CA, USA: 2015. p. 348.
Gill D.M. Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 1982;46:86–94. PubMed PMC
Hrdina V., Hrdina R., Jahodář L., Martine Z., Měrka V. Natural Poisons and Toxins. Galén; Prag, Czech Republic: 2004.
Anderson J., Williams P.T., Katos A.M., Krasna M., Whitney Burrows W., Hilmas C.H. Botulinum Toxin. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. 1st ed. Elsevier; San Diego, CA, USA: 2009. pp. 407–432.
Antonov N.S. Chemical Weapons at the Turn of the Century. Progress; Moscow, Russia: 1994.
Franz D.R. Defense against Toxin Weapons. In: Sidell F.R., editor. Medical Aspects of Chemical and Biological Warfare. Office of The Surgeon General Department of the Army; Washington, DC, USA: 1997.
Franz D.R., Zajtchuk R. Biological terrorism: Understanding the threat, preparation, and medical response. Dis. Mon. 2002;48:493–564. doi: 10.1067/mda.2002.129453. PubMed DOI
Zhang X., Kuča K., Dohnal V., Dohnalová L., Wu Q., Wu C. Military potential of biological toxins. J. Appl. Biomed. 2014;12:63–77. doi: 10.1016/j.jab.2014.02.005. DOI
Wang Q., Su K., Hu L., Zou L., Wang T., Zhuang L., Hu N., Wang P. A novel and functional assay for pharmacological effects of marine toxins, saxitoxin and tetrodotoxin by cardiomyocyte-based impedance biosensor. Sens. Actuators B: Chem. 2015;209:828–837. doi: 10.1016/j.snb.2014.11.150. DOI
Jansson D., Åstot C. Analysis of paralytic shellfish toxins, potential chemical threat agents, in food using hydrophilic interaction liquid chromatography-mass spectrometry. J. Chromatogr. A. 2015;1417:41–48. doi: 10.1016/j.chroma.2015.09.029. PubMed DOI
Schmitt C.K., Meysick K.C., O’Brien A.D. Bacterial toxins: Friends or foes? Emerg. Infect. Dis. 1999;5:224–234. doi: 10.3201/eid0502.990206. PubMed DOI PMC
Lacy D.B., Tepp W., Cohen A.C., DasGupta B.R., Stevens R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998;5:898–902. doi: 10.1038/2338. PubMed DOI
Rutenber E., Katzin B.J., Ernst S., Collins E.J., Mlsna D., Ready M.P., Robertus J.D. Crystallographic refinement of ricin to 2.5 Å. Proteins. 1991;10:240–250. doi: 10.1002/prot.340100308. PubMed DOI
Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013;60:218–237. doi: 10.1016/j.fct.2013.07.047. PubMed DOI
Bigalke H., Rummel A. Medical aspects of toxin weapons. Toxicology. 2005;214:210–220. doi: 10.1016/j.tox.2005.06.015. PubMed DOI
Tucker J.B. The “yellow rain” controversy: Lessons for arms control compliance. Nonproliferation Rev. 2001;8:25–42. doi: 10.1080/10736700108436836. DOI
Taylor T., Trevan T. The red army faction. In: Tucker J.B., editor. Toxic Terror Assessing Terrosrist Use of Chemical and Biological Weapons. 2nd ed. MIT Press; Cambridge, MA, USA: 2000. pp. 107–114.
Kaplan D.E. Aum Shinrikyo (1995) In: Tucker J.B., editor. Toxic Terror. Assessing Terrosrist Use of Chemical and Biological Weapons. 2nd ed. MIT Press; Cambridge, MA, USA: 2000. pp. 207–226.
Tucker J.B., Pate J. The Minnesota patriots council. In: Tucker J.B., editor. Toxic Terror. Assessing Terrorist Use of Chemical and Biological Weapons. 2nd ed. MIT Press; Cambridge, MA, USA: 2000. pp. 159–184.
Roxas-Duncan V.I., Smith L.A. Ricin perspective in bioterrorism. In: Morse S.A., editor. Bioterrorism. 1st ed. InTech; Rijeke, Croatia: 2012. pp. 133–158.
NATO Policy on Non-Lethal Weapons. Oct 13, 1999. [(accessed on 7 April 2016)]. NATO Press Statement. Available online: http://nato.int/docu/pr/1999/p991013e.htm.
Hamilton M.G. Toxins: The emergency threat. ASA Newsl. 1998;66:20–28.
Riches J.R., Read R.W., Blafl R.M., Cooper N.J., Timperley C.M. Analysis of clothing and urine from Moscow theatre siege casualties reveals carfentanil and remifentanil Use. J. Anal. Toxicol. 2012;36:647–656. doi: 10.1093/jat/bks078. PubMed DOI
Wender P.A., Jesudason C.D., Nakahira H., Tamura N., Tebbe A.L., Ueno Y. The first synthesis of a daphnane diterpene: The enantiocontrolled total synthesis of (+)-resiniferatoxin. J. Am. Chem. Soc. 1997;119:12976–12977. doi: 10.1021/ja972279y. DOI
Note by the Director-General. Report of the Scientific Advisory Board on Developments in Science and Technology. [(accessed on 2 January 2016)]. Available online: https://www.opcw.org/fileadmin/OPCW/CSP/RC-1/en/RC-1_DG.2-EN.pdf.
Report of the Scientific Advisory Board on Developments in Science and Technology for the Third Review Conference. [(accessed on 3 January 2016)]. Available online: https://www.opcw.org/fileadmin/OPCW/CSP/RC-3/en/rc3wp01_e_.pdf.
Kagan E. Bioregulators as instruments of terror. Clin. Lab. Med. 2001;21:607–618. PubMed
Hrdina V., Měrka V., Patočka J., Hrdina R. Fykotoxins and some less known toxins marine origin. Voj. Zdrav. Listy. 2008;77:110–122.
Yotsu-Yamashita M., Kim Y.H., Dundley S.C., Jr., Choudhary G., Pfahnl A., Oshima Y., Daly J.W. The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: A potent sodium-channel blocker. Proc. Natl. Acad. Sci. USA. 2004;101:4346–4351. doi: 10.1073/pnas.0400368101. PubMed DOI PMC
Whellis M. Biotechnology and biochemical weapons. Nonproliferation Rev. 2002;9:48–53. doi: 10.1080/10736700208436873. DOI
Tucker J.B. Combinatorial chemistry and high-thoughput screening. In: Tucker J.B., editor. Innovation, Dual Use, and Security: Managing the Risks of Emerging Biological and Chemical Technologies. MIT Press; Cambridge, MA, USA: 2012. pp. 89–99.
De Maagd R.A., Kwa M.S., van der Klei H., Yamamoto T., Schipper B., Vlak J.M., Stiekema W.J., Bosch D. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 1996;62:1537–1543. PubMed PMC
Embleton M.J., Charleston A., Robins R.A., Pimm M.V., Baldwin R.W. Recombinant ricin toxin A chain cytotoxicity against carcinoembryonic antigen expressing tumour cells mediated by a bispecific monoclonal antibody and its potentiation by ricin toxin B chain. Br. J. Cancer. 1991;63:670–674. doi: 10.1038/bjc.1991.153. PubMed DOI PMC
Jefferson C. Protein Engineering. In: Tucker J.B., editor. Innovation, Dual Use, and Security: Managing the Risks of Emerging Biological and Chemical Technologies. MIT Press; Cambridge, MA, USA: 2012. p. 121.
Supotnitskiy M.V. Bacterial toxins: Their nature, modes of action, opportunities of creating hybrid and modified toxins. Biopreparaty. 2011;1:6–15.
Wiese M., D’Agostino P.M., Mihali T.K., Moffitt M.C., Neilan B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs. 2010;8:2185–2221. doi: 10.3390/md8072185. PubMed DOI PMC
Tanino H., Nakata T., Kaneko T., Kishi Y. A stereospecific total synthesis of dl-saxitoxin. J. Am. Chem. Soc. 1977;99:2818–2819. doi: 10.1021/ja00450a079. PubMed DOI
Smithon A.E. Chemical micro process devices. In: Tucker J.B., editor. Innovation, Dual Use, and Security: Managing the Risks of Emerging Biological and Chemical Technologies. MIT Press; Cambridge, MA, USA: 2012. pp. 235–248.
Singh M.N., Hemant K.S.Y., Ram M., Shivakumar H.G. Microencapsulation: A promise technique for control drug delivery. Res. Pharm. Sci. 2010;5:65–77. PubMed PMC
Guidotti M., Ranghieri M., Rossodivita A. Nanosystems and CBRN threats: A resource worth exploiting, a potential worth controlling. In: Trufanov A., Rossodivita A., Guidotti M., editors. Pandemics and Bioterrorism. Volume 62. IOS Press; Amsterdam, The Netherlands: 2010. pp. 117–126.
Nasu H., Faunce T. Nanotechnology and the international law of weaponry: Towards international regulation of nano-weapons. J. Law Inf. Sci. 2009/2010;20:21–54.
Reynolds J.G., Hart B.R. Nanomaterials and their application to defense and homeland security. JOM. 2004;56:36–39. doi: 10.1007/s11837-004-0270-8. DOI