Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes

. 2022 Dec 24 ; 12 (1) : . [epub] 20221224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36670897

Grantová podpora
APVV-19-0111 Slovak Research and Development Agency
313011V387 Operational Programme Integrated Infrastructure
grant no. IGA_PrF_2022_024 Palacky University

Vitrification of bovine oocytes can impair subsequent embryo development mostly due to elevated oxidative stress. This study was aimed at examining whether glutathione, a known antioxidant, can improve further embryo development when added to devitrified oocytes for a short recovery period. Bovine in vitro matured oocytes were vitrified using an ultra-rapid cooling technique on electron microscopy grids. Following warming, the oocytes were incubated in the recovery medium containing glutathione (0, 1.5, or 5 mmol L-1) for 3 h (post-warm recovery). Afterwards, the oocytes were lysed for measuring the total antioxidant capacity (TAC), activity of peroxidase, catalase and glutathione reductase, and ROS formation. The impact of vitrification on mitochondrial and lysosomal activities was also examined. Since glutathione, added at 5 mmol L-1, significantly increased the TAC of warmed oocytes, in the next set of experiments this dose was applied for post-warm recovery of oocytes used for IVF. Glutathione in the recovery culture did not change the total blastocyst rate, while increased the proportion of faster developing blastocysts (Day 6-7), reduced the apoptotic cell ratio and reversed the harmful impact of vitrification on the actin cytoskeleton. These results suggest that even a short recovery culture with antioxidant(s) can improve the development of bovine devitrified oocytes.

Zobrazit více v PubMed

Somfai T., Ozawa M., Noguchi J., Kaneko H., Kuriani Karja N.W., Farhudin M., Dinnyés A., Nagai T., Kikuchi K. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: Effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology. 2007;55:115–126. doi: 10.1016/j.cryobiol.2007.06.008. PubMed DOI

Gupta M.K., Uhm S.J., Lee H.T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 2010;93:2602–2607. doi: 10.1016/j.fertnstert.2010.01.043. PubMed DOI

Tatone C., Di Emidio G., Vento M., Ciriminna R., Artini P.G. Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 2010;26:563–567. doi: 10.3109/09513591003686395. PubMed DOI

Dai J., Wu C., Muneri C.W., Niu Y., Zhang S., Rui R., Zhang D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology. 2015;71:291–298. doi: 10.1016/j.cryobiol.2015.08.002. PubMed DOI

Mateo-Otero Y., Yeste M., Damato A., Giaretta E. Cryopreservation and oxidative stress in porcine oocytes. Res. Vet. Sci. 2021;135:20–26. doi: 10.1016/j.rvsc.2020.12.024. PubMed DOI

Aitken R.J. Impact of oxidative stress on male and female germ cells: Implications for fertility. Reproduction. 2020;159:R189–R201. doi: 10.1530/REP-19-0452. PubMed DOI

Len J.S., Koh W.S.D., Tan S.X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 2019;39:BSR20191601. doi: 10.1042/BSR20191601. PubMed DOI PMC

Maru Y., Nishino T., Kakinuma K. Expression of Nox genes in rat organs; mouse oocytes; and sea urchin eggs. DNA Seq. 2005;16:83–88. doi: 10.1080/10425170500069734. PubMed DOI

Mogas T. Update on the vitrification of bovine oocytes and in vitro-produced embryos. Reprod. Fertil. Dev. 2018;31:105–117. doi: 10.1071/RD18345. PubMed DOI

Hwang I.S., Hochi S. Recent progress in cryopreservation of bovine oocytes. Biomed. Res. Int. 2014;2014:570647. doi: 10.1155/2014/570647. PubMed DOI PMC

Ashibe S., Miyamoto R., Kato Y., Nagao Y. Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI) Theriogenology. 2019;133:71–78. doi: 10.1016/j.theriogenology.2019.04.012. PubMed DOI

García-Martínez T., Vendrell-Flotats M., Martínez-Rodero I., Ordóñez-León E.A., Álvarez-Rodríguez M., López-Béjar M., Yeste M., Mogas T. Glutathione ethyl ester protects in vitro-maturing bovine oocytes against oxidative stress induced by subsequent vitrification/warming. Int. J. Mol. Sci. 2020;21:7547. doi: 10.3390/ijms21207547. PubMed DOI PMC

De Flora S., Bennicelli C., Camoirano A., Serra D., Romano M., Rossi G.A., Morelli A., De Flora A. In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis. 1985;6:1735–1745. doi: 10.1093/carcin/6.12.1735. PubMed DOI

Li Z., Gu R., Lu X., Zhao S., Feng Y., Sun Y. Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes. J. Assist. Reprod. Genet. 2018;35:1169–1178. doi: 10.1007/s10815-018-1215-4. PubMed DOI PMC

Trapphoff T., Heiligentag M., Simon J., Staubach N., Seidel T., Otte K., Fröhlich T., Arnold G.J., Eichenlaub-Ritter U. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod. 2016;22:867–881. doi: 10.1093/molehr/gaw059. PubMed DOI

Wang Y., Zhang M., Chen Z.J., Du Y. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In Vitro Cell Dev. Biol. Anim. 2018;54:430–438. doi: 10.1007/s11626-018-0262-6. PubMed DOI

Ahmadi E., Shirazi A., Shams-Esfandabadi N., Nazari H. Antioxidants and glycine can improve the developmental competence of vitrified/warmed ovine immature oocytes. Reprod. Domest. Anim. 2019;54:595–603. doi: 10.1111/rda.13402. PubMed DOI

Ruiz-Conca M., Vendrell M., Sabés-Alsina M., Mogas T., Lopez-Bejar M. Coenzyme Q10 supplementation during in vitro maturation of bovine oocytes (Bos Taurus) helps to preserve oocyte integrity after vitrification. Reprod. Domest. Anim. 2017;52((Suppl. S4)):52–54. doi: 10.1111/rda.13056. PubMed DOI

Kafi M., Ashrafi M., Azari M., Jandarroodi B., Abouhamzeh B., Asl A.R. Niacin improves maturation and cryo-tolerance of bovine in vitro matured oocytes: An experimental study. Int. J. Reprod. Biomed. 2019;17:621–628. doi: 10.18502/ijrm.v17i9.5096. PubMed DOI PMC

Olexiková L., Dujíčková L., Kubovičová E., Pivko J., Chrenek P., Makarevich A.V. Development and ultrastructure of bovine matured oocytes vitrified using electron microscopy grids. Theriogenology. 2020;158:258–266. doi: 10.1016/j.theriogenology.2020.09.009. PubMed DOI

Aurrekoetxea I., Ruiz-Sanz J.I., Del Agua A.R., Navarro R., Hernández M.L., Matorras R., Prieto B., Ruiz-Larrea M.B. Serum oxidizability and antioxidant status in patients undergoing in vitro fertilization. Fertil. Steril. 2010;94:1279–1286. doi: 10.1016/j.fertnstert.2009.05.028. PubMed DOI

Rahiminejad M.E., Moaddab A., Ganji M., Eskandari N., Yepez M., Rabiee S., Wise M., Ruano R., Ranjbar A. Oxidative stress biomarkers in endometrial secretions: A comparison between successful and unsuccessful in vitro fertilization cycles. J. Reprod. Immunol. 2016;116:70–75. doi: 10.1016/j.jri.2016.05.003. PubMed DOI

Lyttle C.R., DeSombre E.R. Uterine peroxidase as a marker for estrogen action. Proc. Natl. Acad. Sci. USA. 1977;74:3162–3166. doi: 10.1073/pnas.74.8.3162. PubMed DOI PMC

Singh A.K., Chattopadhyay R., Chakravarty B., Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013;42:116–124. doi: 10.1016/j.reprotox.2013.08.005. PubMed DOI

Jeseta M., Ctvrtlikova Knitlova D., Hanzalova K., Hulinska P., Hanulakova S., Milakovic I., Nemcova L., Kanka J., Machatkova M. Mitochondrial patterns in bovine oocytes with different meiotic competence related to their in vitro maturation. Reprod. Domest. Anim. 2014;49:469–475. doi: 10.1111/rda.12313. PubMed DOI

Makarevich A.V., Kubovičová E., Hegedušová Z., Pivko J., Louda F. Post-thaw culture in presence of insulin-like growth factor I improves the quality of cattle cryopreserved embryos. Zygote. 2012;20:97–102. doi: 10.1017/S0967199410000675. PubMed DOI

Dujíčková L., Makarevich A.V., Olexiková L., Kubovičová E., Strejček F. Methodological approaches for vitrification of bovine oocytes. Zygote. 2021;29:1–11. doi: 10.1017/S0967199420000465. PubMed DOI

Tharasanit T., Thuwanut P. Oocyte cryopreservation in domestic animals and humans: Principles; techniques and updated outcomes. Animals. 2021;11:2949. doi: 10.3390/ani11102949. PubMed DOI PMC

Wang N., Hao H.S., Li C.Y., Zhao Y.H., Wang H.Y., Yan C.L., Du W.H., Wang D., Liu Y., Pang Y.W., et al. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci. Rep. 2017;7:10652. doi: 10.1038/s41598-017-10907-9. PubMed DOI PMC

Aman R.R., Parks J.E. Effects of cooling and rewarming on the meiotic spindle and chromosomes of in vitro-matured bovine oocytes. Biol. Reprod. 1994;50:103–110. doi: 10.1095/biolreprod50.1.103. PubMed DOI

Morató R., Izquierdo D., Albarracín J.L., Anguita B., Palomo M.J., Jiménez-Macedo A.R., Paramio M.T., Mogas T. Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification. Mol. Reprod. Dev. 2008;75:191–201. doi: 10.1002/mrd.20725. PubMed DOI

Chen H., Zhang L., Deng T., Zou P., Wang Y., Quan F., Zhang Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology. 2016;86:868–878. doi: 10.1016/j.theriogenology.2016.03.008. PubMed DOI

Yodrug T., Parnpai R., Hirao Y., Somfai T. Effect of vitrification at different meiotic stages on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Anim. Sci. J. 2021;92:e13596. doi: 10.1111/asj.13596. PubMed DOI

Castillo-Martín M., Bonet S., Morató R., Yeste M. Supplementing culture and vitrification-warming media with l-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression. Cryobiology. 2014;68:451–458. doi: 10.1016/j.cryobiol.2014.03.001. PubMed DOI

Zhao X.M., Hao H.S., Du W.H., Zhao S.J., Wang H.Y., Wang N., Wang D., Liu Y., Qin T., Zhu H.B. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal. Res. 2016;60:132–141. doi: 10.1111/jpi.12290. PubMed DOI

Iwata H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod. Med. Biol. 2021;20:419–426. doi: 10.1002/rmb2.12401. PubMed DOI PMC

Amoushahi M., Salehnia M., Mowla S.J. Vitrification of Mouse MII Oocyte Decreases the Mitochondrial DNA Copy Number; TFAM Gene Expression and Mitochondrial Enzyme Activity. J. Reprod. Infertil. 2017;18:343–351. PubMed PMC

Nazmara Z., Salehnia M., Hossein Khani S. Mitochondrial distribution and ATP content of vitrified; in vitro matured mouse oocytes. Avicenna J. Med. Biotechnol. 2014;6:210–217. PubMed PMC

Zhao X.M., Du W.H., Wang D., Hao H.S., Liu Y., Qin T., Zhu H.B. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil. Steril. 2011;95:2786–2788. doi: 10.1016/j.fertnstert.2011.04.089. PubMed DOI

Wada Y., Sun-Wada G.H., Kawamura N., Aoyama M. Role of autophagy in embryogenesis. Curr. Opin. Genet. Dev. 2014;27:60–66. doi: 10.1016/j.gde.2014.03.010. PubMed DOI

Gutierrez-Castillo E., Diaz F.A., Talbot S.A., Bondioli K.R. Recovery of spindle morphology and mitochondrial function through extended culture after vitrification-warming of bovine oocytes. Theriogenology. 2022;189:192–198. doi: 10.1016/j.theriogenology.2022.06.021. PubMed DOI

Zhao X.M., Du W.H., Wang D., Hao H.S., Liu Y., Qin T., Zhu H.B. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 2011;78:942–950. doi: 10.1002/mrd.21389. PubMed DOI

Succu S., Gadau S.D., Serra E., Zinellu A., Carru C., Porcu C., Naitana S., Berlinguer F., Leoni G.G. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology. 2018;110:18–26. doi: 10.1016/j.theriogenology.2017.12.031. PubMed DOI

Meister A., Anderson M.E. Glutathione. Annu. Rev. Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. PubMed DOI

Sutovsky P., Schatten G. Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol. Reprod. 1997;56:1503–1512. doi: 10.1095/biolreprod56.6.1503. PubMed DOI

Soto-Heras S., Paramio M.T. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res. Vet. Sci. 2020;132:342–350. doi: 10.1016/j.rvsc.2020.07.013. PubMed DOI

Cetica P.D., Pintos L.N., Dalvit G.C., Beconi M.T. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life. 2001;51:57–64. doi: 10.1080/15216540152035073. PubMed DOI

Lei X.G., Cheng W.H., McClung J.P. Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr. 2007;27:41–61. doi: 10.1146/annurev.nutr.27.061406.093716. PubMed DOI

Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC

Rocha-Frigoni N.A., Leão B.C., Nogueira É., Accorsi M.F., Mingoti G.Z. Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reprod. Fertil. Dev. 2014;26:797–805. doi: 10.1071/RD12354. PubMed DOI

Lapointe S., Sullivan R., Sirard M.A. Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol. Reprod. 1998;58:747–753. doi: 10.1095/biolreprod58.3.747. PubMed DOI

Wiesak T., Wasielak M., Złotkowska A., Milewski R. Effect of vitrification on the zona pellucida hardening and follistatin and cathepsin B genes expression and developmental competence of in vitro matured bovine oocytes. Cryobiology. 2017;76:18–23. doi: 10.1016/j.cryobiol.2017.05.001. PubMed DOI

Chankitisakul V., Somfai T., Inaba Y., Techakumphu M., Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology. 2013;79:590–598. doi: 10.1016/j.theriogenology.2012.11.011. PubMed DOI

Van Soom A., Van Vlaenderen I., Mahmoudzadeh A.R., Deluyker H., de Kruif A. Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology. 1992;38:905–919. doi: 10.1016/0093-691X(92)90165-N. PubMed DOI

Grisart B., Massip A., Dessy F. Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J. Reprod. Fertil. 1994;101:257–264. doi: 10.1530/jrf.0.1010257. PubMed DOI

Vandaele L., Mateusen B., Maes D.G., de Kruif A., Van Soom A. Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction. 2007;133:709–718. doi: 10.1530/REP-06-0109. PubMed DOI

Hasler J.F., Henderson W.B., Hurtge P.J., Jin Z.Q., McCauley A.D., Mower S.A., Trimmer S.A. Production, freezing and transfer of bovine IVF embryos and subsequent calving results. Theriogenology. 1995;43:141–152. doi: 10.1016/0093-691X(94)00020-U. DOI

Milazzotto M.P., Goissis M.D., Chitwood J.L., Annes K., Soares C.A., Ispada J., Assumpção M.E., Ross P.J. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol. Reprod. Dev. 2016;83:324–336. doi: 10.1002/mrd.22619. PubMed DOI

Ispada J., de Lima C.B., Sirard M.A., Fontes P.K., Nogueira M.F.G., Annes K., Milazzotto M.P. Genome-wide screening of DNA methylation in bovine blastocysts with different kinetics of development. Epigenetics Chromatin. 2018;11:1. doi: 10.1186/s13072-017-0171-z. PubMed DOI PMC

Phongnimitr T., Liang Y., Srirattana K., Panyawai K., Sripunya N., Treetampinich C., Parnpai R. Effect of L-carnitine on maturation; cryo-tolerance and embryo developmental competence of bovine oocytes. Anim. Sci. J. 2013;84:719–725. doi: 10.1111/asj.12067. PubMed DOI

Yashiro I., Tagiri M., Ogawa H., Tashima K., Takashima S., Hara H., Hirabayashi M., Hochi S. High revivability of vitrified-warmed bovine mature oocytes after recovery culture with α-tocopherol. Reproduction. 2015;149:347–355. doi: 10.1530/REP-14-0594. PubMed DOI

Lim H.Y.G., Plachta N. Cytoskeletal control of early mammalian development. Nat. Rev. Mol. Cell Biol. 2021;22:548–562. doi: 10.1038/s41580-021-00363-9. PubMed DOI

Dhali A., Anchamparuthy V.M., Butler S.P., Pearson R.E., Mullarky I.K., Gwazdauskas F.C. Effect of droplet vitrification on development competence; actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos. Theriogenology. 2009;71:1408–1416. doi: 10.1016/j.theriogenology.2009.01.011. PubMed DOI

Dalcin L., Silva R.C., Paulini F., Silva B.D., Neves J.P., Lucci C.M. Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology. 2013;67:137–145. doi: 10.1016/j.cryobiol.2013.05.012. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...