Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0111
Slovak Research and Development Agency
313011V387
Operational Programme Integrated Infrastructure
grant no. IGA_PrF_2022_024
Palacky University
PubMed
36670897
PubMed Central
PMC9854658
DOI
10.3390/antiox12010035
PII: antiox12010035
Knihovny.cz E-zdroje
- Klíčová slova
- bovine oocyte, glutathione, vitrification,
- Publikační typ
- časopisecké články MeSH
Vitrification of bovine oocytes can impair subsequent embryo development mostly due to elevated oxidative stress. This study was aimed at examining whether glutathione, a known antioxidant, can improve further embryo development when added to devitrified oocytes for a short recovery period. Bovine in vitro matured oocytes were vitrified using an ultra-rapid cooling technique on electron microscopy grids. Following warming, the oocytes were incubated in the recovery medium containing glutathione (0, 1.5, or 5 mmol L-1) for 3 h (post-warm recovery). Afterwards, the oocytes were lysed for measuring the total antioxidant capacity (TAC), activity of peroxidase, catalase and glutathione reductase, and ROS formation. The impact of vitrification on mitochondrial and lysosomal activities was also examined. Since glutathione, added at 5 mmol L-1, significantly increased the TAC of warmed oocytes, in the next set of experiments this dose was applied for post-warm recovery of oocytes used for IVF. Glutathione in the recovery culture did not change the total blastocyst rate, while increased the proportion of faster developing blastocysts (Day 6-7), reduced the apoptotic cell ratio and reversed the harmful impact of vitrification on the actin cytoskeleton. These results suggest that even a short recovery culture with antioxidant(s) can improve the development of bovine devitrified oocytes.
Zobrazit více v PubMed
Somfai T., Ozawa M., Noguchi J., Kaneko H., Kuriani Karja N.W., Farhudin M., Dinnyés A., Nagai T., Kikuchi K. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: Effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology. 2007;55:115–126. doi: 10.1016/j.cryobiol.2007.06.008. PubMed DOI
Gupta M.K., Uhm S.J., Lee H.T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 2010;93:2602–2607. doi: 10.1016/j.fertnstert.2010.01.043. PubMed DOI
Tatone C., Di Emidio G., Vento M., Ciriminna R., Artini P.G. Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 2010;26:563–567. doi: 10.3109/09513591003686395. PubMed DOI
Dai J., Wu C., Muneri C.W., Niu Y., Zhang S., Rui R., Zhang D. Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology. 2015;71:291–298. doi: 10.1016/j.cryobiol.2015.08.002. PubMed DOI
Mateo-Otero Y., Yeste M., Damato A., Giaretta E. Cryopreservation and oxidative stress in porcine oocytes. Res. Vet. Sci. 2021;135:20–26. doi: 10.1016/j.rvsc.2020.12.024. PubMed DOI
Aitken R.J. Impact of oxidative stress on male and female germ cells: Implications for fertility. Reproduction. 2020;159:R189–R201. doi: 10.1530/REP-19-0452. PubMed DOI
Len J.S., Koh W.S.D., Tan S.X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 2019;39:BSR20191601. doi: 10.1042/BSR20191601. PubMed DOI PMC
Maru Y., Nishino T., Kakinuma K. Expression of Nox genes in rat organs; mouse oocytes; and sea urchin eggs. DNA Seq. 2005;16:83–88. doi: 10.1080/10425170500069734. PubMed DOI
Mogas T. Update on the vitrification of bovine oocytes and in vitro-produced embryos. Reprod. Fertil. Dev. 2018;31:105–117. doi: 10.1071/RD18345. PubMed DOI
Hwang I.S., Hochi S. Recent progress in cryopreservation of bovine oocytes. Biomed. Res. Int. 2014;2014:570647. doi: 10.1155/2014/570647. PubMed DOI PMC
Ashibe S., Miyamoto R., Kato Y., Nagao Y. Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI) Theriogenology. 2019;133:71–78. doi: 10.1016/j.theriogenology.2019.04.012. PubMed DOI
García-Martínez T., Vendrell-Flotats M., Martínez-Rodero I., Ordóñez-León E.A., Álvarez-Rodríguez M., López-Béjar M., Yeste M., Mogas T. Glutathione ethyl ester protects in vitro-maturing bovine oocytes against oxidative stress induced by subsequent vitrification/warming. Int. J. Mol. Sci. 2020;21:7547. doi: 10.3390/ijms21207547. PubMed DOI PMC
De Flora S., Bennicelli C., Camoirano A., Serra D., Romano M., Rossi G.A., Morelli A., De Flora A. In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis. 1985;6:1735–1745. doi: 10.1093/carcin/6.12.1735. PubMed DOI
Li Z., Gu R., Lu X., Zhao S., Feng Y., Sun Y. Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes. J. Assist. Reprod. Genet. 2018;35:1169–1178. doi: 10.1007/s10815-018-1215-4. PubMed DOI PMC
Trapphoff T., Heiligentag M., Simon J., Staubach N., Seidel T., Otte K., Fröhlich T., Arnold G.J., Eichenlaub-Ritter U. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod. 2016;22:867–881. doi: 10.1093/molehr/gaw059. PubMed DOI
Wang Y., Zhang M., Chen Z.J., Du Y. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In Vitro Cell Dev. Biol. Anim. 2018;54:430–438. doi: 10.1007/s11626-018-0262-6. PubMed DOI
Ahmadi E., Shirazi A., Shams-Esfandabadi N., Nazari H. Antioxidants and glycine can improve the developmental competence of vitrified/warmed ovine immature oocytes. Reprod. Domest. Anim. 2019;54:595–603. doi: 10.1111/rda.13402. PubMed DOI
Ruiz-Conca M., Vendrell M., Sabés-Alsina M., Mogas T., Lopez-Bejar M. Coenzyme Q10 supplementation during in vitro maturation of bovine oocytes (Bos Taurus) helps to preserve oocyte integrity after vitrification. Reprod. Domest. Anim. 2017;52((Suppl. S4)):52–54. doi: 10.1111/rda.13056. PubMed DOI
Kafi M., Ashrafi M., Azari M., Jandarroodi B., Abouhamzeh B., Asl A.R. Niacin improves maturation and cryo-tolerance of bovine in vitro matured oocytes: An experimental study. Int. J. Reprod. Biomed. 2019;17:621–628. doi: 10.18502/ijrm.v17i9.5096. PubMed DOI PMC
Olexiková L., Dujíčková L., Kubovičová E., Pivko J., Chrenek P., Makarevich A.V. Development and ultrastructure of bovine matured oocytes vitrified using electron microscopy grids. Theriogenology. 2020;158:258–266. doi: 10.1016/j.theriogenology.2020.09.009. PubMed DOI
Aurrekoetxea I., Ruiz-Sanz J.I., Del Agua A.R., Navarro R., Hernández M.L., Matorras R., Prieto B., Ruiz-Larrea M.B. Serum oxidizability and antioxidant status in patients undergoing in vitro fertilization. Fertil. Steril. 2010;94:1279–1286. doi: 10.1016/j.fertnstert.2009.05.028. PubMed DOI
Rahiminejad M.E., Moaddab A., Ganji M., Eskandari N., Yepez M., Rabiee S., Wise M., Ruano R., Ranjbar A. Oxidative stress biomarkers in endometrial secretions: A comparison between successful and unsuccessful in vitro fertilization cycles. J. Reprod. Immunol. 2016;116:70–75. doi: 10.1016/j.jri.2016.05.003. PubMed DOI
Lyttle C.R., DeSombre E.R. Uterine peroxidase as a marker for estrogen action. Proc. Natl. Acad. Sci. USA. 1977;74:3162–3166. doi: 10.1073/pnas.74.8.3162. PubMed DOI PMC
Singh A.K., Chattopadhyay R., Chakravarty B., Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013;42:116–124. doi: 10.1016/j.reprotox.2013.08.005. PubMed DOI
Jeseta M., Ctvrtlikova Knitlova D., Hanzalova K., Hulinska P., Hanulakova S., Milakovic I., Nemcova L., Kanka J., Machatkova M. Mitochondrial patterns in bovine oocytes with different meiotic competence related to their in vitro maturation. Reprod. Domest. Anim. 2014;49:469–475. doi: 10.1111/rda.12313. PubMed DOI
Makarevich A.V., Kubovičová E., Hegedušová Z., Pivko J., Louda F. Post-thaw culture in presence of insulin-like growth factor I improves the quality of cattle cryopreserved embryos. Zygote. 2012;20:97–102. doi: 10.1017/S0967199410000675. PubMed DOI
Dujíčková L., Makarevich A.V., Olexiková L., Kubovičová E., Strejček F. Methodological approaches for vitrification of bovine oocytes. Zygote. 2021;29:1–11. doi: 10.1017/S0967199420000465. PubMed DOI
Tharasanit T., Thuwanut P. Oocyte cryopreservation in domestic animals and humans: Principles; techniques and updated outcomes. Animals. 2021;11:2949. doi: 10.3390/ani11102949. PubMed DOI PMC
Wang N., Hao H.S., Li C.Y., Zhao Y.H., Wang H.Y., Yan C.L., Du W.H., Wang D., Liu Y., Pang Y.W., et al. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci. Rep. 2017;7:10652. doi: 10.1038/s41598-017-10907-9. PubMed DOI PMC
Aman R.R., Parks J.E. Effects of cooling and rewarming on the meiotic spindle and chromosomes of in vitro-matured bovine oocytes. Biol. Reprod. 1994;50:103–110. doi: 10.1095/biolreprod50.1.103. PubMed DOI
Morató R., Izquierdo D., Albarracín J.L., Anguita B., Palomo M.J., Jiménez-Macedo A.R., Paramio M.T., Mogas T. Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification. Mol. Reprod. Dev. 2008;75:191–201. doi: 10.1002/mrd.20725. PubMed DOI
Chen H., Zhang L., Deng T., Zou P., Wang Y., Quan F., Zhang Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology. 2016;86:868–878. doi: 10.1016/j.theriogenology.2016.03.008. PubMed DOI
Yodrug T., Parnpai R., Hirao Y., Somfai T. Effect of vitrification at different meiotic stages on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Anim. Sci. J. 2021;92:e13596. doi: 10.1111/asj.13596. PubMed DOI
Castillo-Martín M., Bonet S., Morató R., Yeste M. Supplementing culture and vitrification-warming media with l-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression. Cryobiology. 2014;68:451–458. doi: 10.1016/j.cryobiol.2014.03.001. PubMed DOI
Zhao X.M., Hao H.S., Du W.H., Zhao S.J., Wang H.Y., Wang N., Wang D., Liu Y., Qin T., Zhu H.B. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal. Res. 2016;60:132–141. doi: 10.1111/jpi.12290. PubMed DOI
Iwata H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod. Med. Biol. 2021;20:419–426. doi: 10.1002/rmb2.12401. PubMed DOI PMC
Amoushahi M., Salehnia M., Mowla S.J. Vitrification of Mouse MII Oocyte Decreases the Mitochondrial DNA Copy Number; TFAM Gene Expression and Mitochondrial Enzyme Activity. J. Reprod. Infertil. 2017;18:343–351. PubMed PMC
Nazmara Z., Salehnia M., Hossein Khani S. Mitochondrial distribution and ATP content of vitrified; in vitro matured mouse oocytes. Avicenna J. Med. Biotechnol. 2014;6:210–217. PubMed PMC
Zhao X.M., Du W.H., Wang D., Hao H.S., Liu Y., Qin T., Zhu H.B. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil. Steril. 2011;95:2786–2788. doi: 10.1016/j.fertnstert.2011.04.089. PubMed DOI
Wada Y., Sun-Wada G.H., Kawamura N., Aoyama M. Role of autophagy in embryogenesis. Curr. Opin. Genet. Dev. 2014;27:60–66. doi: 10.1016/j.gde.2014.03.010. PubMed DOI
Gutierrez-Castillo E., Diaz F.A., Talbot S.A., Bondioli K.R. Recovery of spindle morphology and mitochondrial function through extended culture after vitrification-warming of bovine oocytes. Theriogenology. 2022;189:192–198. doi: 10.1016/j.theriogenology.2022.06.021. PubMed DOI
Zhao X.M., Du W.H., Wang D., Hao H.S., Liu Y., Qin T., Zhu H.B. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 2011;78:942–950. doi: 10.1002/mrd.21389. PubMed DOI
Succu S., Gadau S.D., Serra E., Zinellu A., Carru C., Porcu C., Naitana S., Berlinguer F., Leoni G.G. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology. 2018;110:18–26. doi: 10.1016/j.theriogenology.2017.12.031. PubMed DOI
Meister A., Anderson M.E. Glutathione. Annu. Rev. Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. PubMed DOI
Sutovsky P., Schatten G. Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol. Reprod. 1997;56:1503–1512. doi: 10.1095/biolreprod56.6.1503. PubMed DOI
Soto-Heras S., Paramio M.T. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res. Vet. Sci. 2020;132:342–350. doi: 10.1016/j.rvsc.2020.07.013. PubMed DOI
Cetica P.D., Pintos L.N., Dalvit G.C., Beconi M.T. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life. 2001;51:57–64. doi: 10.1080/15216540152035073. PubMed DOI
Lei X.G., Cheng W.H., McClung J.P. Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr. 2007;27:41–61. doi: 10.1146/annurev.nutr.27.061406.093716. PubMed DOI
Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC
Rocha-Frigoni N.A., Leão B.C., Nogueira É., Accorsi M.F., Mingoti G.Z. Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reprod. Fertil. Dev. 2014;26:797–805. doi: 10.1071/RD12354. PubMed DOI
Lapointe S., Sullivan R., Sirard M.A. Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol. Reprod. 1998;58:747–753. doi: 10.1095/biolreprod58.3.747. PubMed DOI
Wiesak T., Wasielak M., Złotkowska A., Milewski R. Effect of vitrification on the zona pellucida hardening and follistatin and cathepsin B genes expression and developmental competence of in vitro matured bovine oocytes. Cryobiology. 2017;76:18–23. doi: 10.1016/j.cryobiol.2017.05.001. PubMed DOI
Chankitisakul V., Somfai T., Inaba Y., Techakumphu M., Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology. 2013;79:590–598. doi: 10.1016/j.theriogenology.2012.11.011. PubMed DOI
Van Soom A., Van Vlaenderen I., Mahmoudzadeh A.R., Deluyker H., de Kruif A. Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology. 1992;38:905–919. doi: 10.1016/0093-691X(92)90165-N. PubMed DOI
Grisart B., Massip A., Dessy F. Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J. Reprod. Fertil. 1994;101:257–264. doi: 10.1530/jrf.0.1010257. PubMed DOI
Vandaele L., Mateusen B., Maes D.G., de Kruif A., Van Soom A. Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction. 2007;133:709–718. doi: 10.1530/REP-06-0109. PubMed DOI
Hasler J.F., Henderson W.B., Hurtge P.J., Jin Z.Q., McCauley A.D., Mower S.A., Trimmer S.A. Production, freezing and transfer of bovine IVF embryos and subsequent calving results. Theriogenology. 1995;43:141–152. doi: 10.1016/0093-691X(94)00020-U. DOI
Milazzotto M.P., Goissis M.D., Chitwood J.L., Annes K., Soares C.A., Ispada J., Assumpção M.E., Ross P.J. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol. Reprod. Dev. 2016;83:324–336. doi: 10.1002/mrd.22619. PubMed DOI
Ispada J., de Lima C.B., Sirard M.A., Fontes P.K., Nogueira M.F.G., Annes K., Milazzotto M.P. Genome-wide screening of DNA methylation in bovine blastocysts with different kinetics of development. Epigenetics Chromatin. 2018;11:1. doi: 10.1186/s13072-017-0171-z. PubMed DOI PMC
Phongnimitr T., Liang Y., Srirattana K., Panyawai K., Sripunya N., Treetampinich C., Parnpai R. Effect of L-carnitine on maturation; cryo-tolerance and embryo developmental competence of bovine oocytes. Anim. Sci. J. 2013;84:719–725. doi: 10.1111/asj.12067. PubMed DOI
Yashiro I., Tagiri M., Ogawa H., Tashima K., Takashima S., Hara H., Hirabayashi M., Hochi S. High revivability of vitrified-warmed bovine mature oocytes after recovery culture with α-tocopherol. Reproduction. 2015;149:347–355. doi: 10.1530/REP-14-0594. PubMed DOI
Lim H.Y.G., Plachta N. Cytoskeletal control of early mammalian development. Nat. Rev. Mol. Cell Biol. 2021;22:548–562. doi: 10.1038/s41580-021-00363-9. PubMed DOI
Dhali A., Anchamparuthy V.M., Butler S.P., Pearson R.E., Mullarky I.K., Gwazdauskas F.C. Effect of droplet vitrification on development competence; actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos. Theriogenology. 2009;71:1408–1416. doi: 10.1016/j.theriogenology.2009.01.011. PubMed DOI
Dalcin L., Silva R.C., Paulini F., Silva B.D., Neves J.P., Lucci C.M. Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology. 2013;67:137–145. doi: 10.1016/j.cryobiol.2013.05.012. PubMed DOI
Reactive oxygen and nitrogen species: multifaceted regulators of ovarian activity†