• This record comes from PubMed

Reactive oxygen and nitrogen species: multifaceted regulators of ovarian activity†

. 2025 May 13 ; 112 (5) : 789-806.

Language English Country United States Media print

Document type Journal Article, Review

Grant support
QK22010270 Ministry of Agriculture of the Czech Republic
APVV-19-0111 Slovak Research and Development Agency, Slovak Republic

Reactive oxygen and nitrogen species are essential components of diverse intracellular signaling pathways. In addition to their involvement in apoptosis, reactive oxygen and nitrogen species are crucial in the regulation of multiple developmental and physiological processes. This review aims to summarize their role in the regulation of key ovarian stages: ovulation, maturation and postovulatory ageing of the oocyte, and the formation and regression of the corpus luteum. At the cellular level, a mild increase in reactive oxygen and nitrogen species is associated with the initiation of a number of regulatory mechanisms, which might be suppressed by increased activity of the antioxidant system. Moreover, a mild increase in reactive oxygen and nitrogen species has been linked to the control of mitochondrial biogenesis and abundance in response to increased cellular energy demands. Thus, reactive oxygen and nitrogen species should also be perceived in terms of their positive role in cellular signaling. On the other hand, an uncontrolled increase in reactive oxygen species production or strong down-regulation of the antioxidant system results in oxidative stress and damage of cellular components associated with ovarian pathologies and ageing. Similarly, the disturbance of signaling functions of reactive nitrogen species caused by dysregulation of nitric oxide production by nitric oxide synthases in ovarian tissues interferes with the proper regulation of physiological processes in the ovary.

See more in PubMed

Li  L, Shi  X, Shi  Y, Wang  Z. The Signaling pathways involved in ovarian follicle development. Front Physiol  2021; 12:730196. PubMed PMC

Thatcher  WW. A 100-year review: historical development of female reproductive physiology in dairy cattle. J Dairy Sci  2017; 100:10272–10291. PubMed

Davis  JS, Rueda  BR. The corpus luteum: an ovarian structure with maternal instincts and suicidal tendencies. Front Biosci  2002; 7:d1949–d1978. PubMed

Mlyczynska  E, Kiezun  M, Kurowska  P, Dawid  M, Pich  K, Respekta  N, Daudon  M, Rytelewska  E, Dobrzyn  K, Kaminska  B, Kaminski  T, Smolinska  N, et al.  New aspects of corpus luteum regulation in physiological and pathological conditions: involvement of adipokines and neuropeptides. Cells  2022; 11:957. PubMed PMC

Agarwal  A, Aponte-Mellado  A, Premkumar  BJ, Shaman  A, Gupta  S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol  2012; 10:49. PubMed PMC

Ciani  F, Cocchia  N, d’Angelo  D, Tafuri  S. In: Wu  B (ed.), Influence of ROS on Ovarian Functions. IntechOpen; 2015: 10.5772/61003. DOI

Fujii  J, Iuchi  Y, Okada  F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol  2005; 3:43. PubMed PMC

Basini  G, Grasselli  F. Nitric oxide in follicle development and oocyte competence. Reproduction  2015; 150:R1–R9. PubMed

Hattori  M, Sakamoto  K, Fujihara  N, Kojima  I. Nitric oxide: a modulator for the epidermal growth factor receptor expression in developing ovarian granulosa cells. Am J Phys  1996; 270:C812–C818. PubMed

Luo  Y, Zhu  Y, Basang  W, Wang  X, Li  C, Zhou  X. Roles of nitric oxide in the regulation of reproduction: a review. Front Endocrinol (Lausanne)  2021; 12:752410. PubMed PMC

Nath  P, Maitra  S. Physiological relevance of nitric oxide in ovarian functions: an overview. Gen Comp Endocrinol  2019; 279:35–44. PubMed

Nishikimi  A, Matsukawa  T, Hoshino  K, Ikeda  S, Kira  Y, Sato  EF, Inoue  M, Yamada  M. Localization of nitric oxide synthase activity in unfertilised oocytes and fertilised embryos during preimplantation development in mice. Reproduction  2001; 122:957–963. PubMed

Rosselli  M, Keller  PJ, Dubey  RK. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update  1998; 4:3–24. PubMed

Zhao  Y, Vanhoutte  PM, Leung  SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci  2015a; 129:83–94. PubMed

Jîtcă  G, Ősz  BE, Tero-Vescan  A, Miklos  AP, Rusz  CM, Bătrînu  MG, Vari  CE. Positive aspects of oxidative stress at different levels of the human body: a review. Antioxidants (Basel)  2022; 11:572. PubMed PMC

Kawagishi  H, Finkel  T. Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat Med  2014; 20:711–713. PubMed

Poljsak  B, Suput  D, Milisav  I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Med Cell Longev  2013; 2013:956792. PubMed PMC

Checa  J, Aran  JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res  2020; 13:1057–1073. PubMed PMC

Harris  IS, DeNicola  GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol  2020; 30:440–451. PubMed

Tang  Z, Chen  J, Zhang  Z, Bi  J, Xu  R, Lin  Q, Wang  Z. HIF-1alpha activation promotes Luteolysis by enhancing ROS levels in the corpus luteum of Pseudopregnant rats. Oxidative Med Cell Longev  2021; 2021:1764929. PubMed PMC

Zamberlam  G, Sahmi  F, Price  CA. Nitric oxide synthase activity is critical for the preovulatory epidermal growth factor-like cascade induced by luteinising hormone in bovine granulosa cells. Free Radic Biol Med  2014; 74:237–244. PubMed

Motta  AB, Estevez  A, de  Gimeno  MF. The involvement of nitric oxide in corpus luteum regression in the rat: feedback mechanism between prostaglandin F(2alpha) and nitric oxide. Mol Hum Reprod  1999; 5:1011–1016. PubMed

Noda  Y, Ota  K, Shirasawa  T, Shimizu  T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod  2012; 86:1–8. PubMed

Gonzalez-Pacheco  FR, Deudero  JJ, Castellanos  MC, Castilla  MA, Alvarez-Arroyo  MV, Yague  S, Caramelo  C. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol  2006; 291:H1395–H1401. PubMed

Wang  K, Zheng  J. Signaling regulation of fetoplacental angiogenesis. J Endocrinol  2012; 212:243–255. PubMed PMC

Brillo  V, Chieregato  L, Leanza  L, Muccioli  S, Costa  R. Mitochondrial dynamics, ROS, and cell Signaling: a blended overview. Life (Basel)  2021; 11:332. PubMed PMC

Venditti  P, Di Meo  S. The role of reactive oxygen species in the life cycle of the mitochondrion. Int J Mol Sci  2020; 21:2173. PubMed PMC

Yoboue  ED, Devin  A. Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol  2012; 2012:403870. PubMed PMC

Yan  F, Zhao  Q, Li  Y, Zheng  Z, Kong  X, Shu  C, Liu  Y, Shi  Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res  2022; 15:100. PubMed PMC

Gao  X, Wang  B, Huang  Y, et al.  Role of the Nrf2 Signaling pathway in ovarian aging: potential mechanism and protective strategies. Int J Mol Sci  2023; 24:13327. PubMed PMC

Goutami  L, Jena  SR, Swain  A, Samanta  L. Pathological role of reactive oxygen species on female reproduction. Adv Exp Med Biol  2022; 1391:201–220. PubMed

Shi  L, Zhang  J, Lai  Z, Tian  Y, Fang  L, Wu  M, Xiong  J, Qin  X, Luo  A, Wang  S. Long-term moderate oxidative stress decreased ovarian reproductive function by reducing follicle quality and progesterone production. PLoS One  2016; 11:e0162194. PubMed PMC

Yang  L, Chen  Y, Liu  Y, Xing  Y, Miao  C, Zhao  Y, Chang  X, Zhang  Q. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol  2021; 11:617843. PubMed PMC

Yu  C, Xiao  JH. The Keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxidative Med Cell Longev  2021; 2021:6635460. PubMed PMC

Liang  J, Gao  Y, Feng  Z, Zhang  B, Na  Z, Li  D. Reactive oxygen species and ovarian diseases: antioxidant strategies. Redox Biol  2023a; 62:102659. PubMed PMC

Lu  J, Wang  Z, Cao  J, Chen  Y, Dong  Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol  2018a; 16:80. PubMed PMC

Supruniuk  E, Baczewska  M, Żebrowska  E, Maciejczyk  M, Lauko  KK, Dajnowicz-Brzezik  P, Milewska  P, Knapp  P, Zalewska  A, Chabowski  A. Redox biomarkers and matrix Remodeling molecules in ovarian cancer. Antioxidants  2024; 13:200. PubMed PMC

Zeber-Lubecka  N, Ciebiera  M, Hennig  EE. Polycystic ovary syndrome and oxidative stress-from bench to bedside. Int J Mol Sci  2023; 24:14126. PubMed PMC

Juan  CA, Perez de la Lastra  JM, Plou  FJ, Perez-Lebena  E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci  2021; 22:4642. PubMed PMC

Surai  PF, Kochish  II, Fisinin  VI, Juniper  DT. Revisiting oxidative stress and the use of organic selenium in dairy cow nutrition. Animals  2019; 9:462. PubMed PMC

Winterbourn  CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol  2008; 4:278–286. PubMed

Upadhyay  VR, Ramesh  V, Dewry  RK, Yadav  DK, Ponraj  P. Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function. Theriogenology  2022; 187:82–94. PubMed

Adams  L, Franco  MC, Estevez  AG. Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood)  2015; 240:711–717. PubMed PMC

Kapil  V, Khambata  RS, Jones  DA, Rathod  K, Primus  C, Massimo  G, Fukuto  JM, Ahluwalia  A. The noncanonical pathway for In vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway. Pharmacol Rev  2020; 72:692–766. PubMed

Heinrich  TA, da  Silva  RS, Miranda  KM, Switzer  CH, Wink  DA, Fukuto  JM. Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol  2013; 169:1417–1429. PubMed PMC

Sies  H, Jones  DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol  2020; 21:363–383. PubMed

Santos  AL, Sinha  S, Lindner  AB. The good, the bad, and the ugly of ROS: new insights on aging and aging-related diseases from eukaryotic and prokaryotic model organisms. Oxidative Med Cell Longev  2018; 2018:1941285. PubMed PMC

Weidinger  A, Kozlov  AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomol Ther  2015; 5:472–484. PubMed PMC

Dujíčková  L, Olexiková  L, Makarevich  AV, Bartková  AR, Němcová  L, Chrenek  P, Strejček  F. Astaxanthin added during post-warm recovery mitigated oxidative stress in bovine vitrified oocytes and improved quality of resulting blastocysts. Antioxidants  2024; 13:556. PubMed PMC

Hejel  P, Sáfár  J, Bognár  B, Kiss  L, Jurkovich  V, Brydl  E, Könyves  L. The impact of the oxidative status on the reproduction of cows and the calves' health - a review. Acta Vet Brno  2021; 90:3–13.

Jóźwik  A, Krzyżewski  J, Strzałkowska  N, Poławska  E, Bagnicka  E, Wierzbicka  A, Niemczuk  K, Lipińska  P, Horbańczuk  JO. Relations between the oxidative status, mastitis, milk quality and disorders of reproductive functions in dairy cows - a review. Anim Sci Paper Rep  2012; 30:297–307.

Zhao  XJ, Wang  XY, Wang  JH, Wang  ZY, Wang  L, Wang  ZH. Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biol Trace Elem Res  2015c; 164:43–49. PubMed

Abuelo  A, Hernandez  J, Benedito  JL, Castillo  C. The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr (Berl)  2015; 99:1003–1016. PubMed

Lushchak  VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact  2014; 224:164–175. PubMed

Chainy  GBN, Sahoo  DK. Hormones and oxidative stress: an overview. Free Radic Res  2020; 54:1–26. PubMed

Cruz-Topete  D, Dominic  P, Stokes  KY. Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol  2020; 31:101490. PubMed PMC

Kochman  J, Jakubczyk  K, Bargiel  P, Janda-Milczarek  K. The influence of oxidative stress on thyroid diseases. Antioxidants  2021; 10:1442. PubMed PMC

Srinivasan  V, Spence  DW, Pandi-Perumal  SR, Brown  GM, Cardinali  DP. Melatonin in mitochondrial dysfunction and related disorders. Int. J Alzheimers Dis  2011;2011:326320. PubMed PMC

Dutta  S, Biswas  A, Sengupta  P, Nwagha  U. Ghrelin and male reproduction. Asian Pac J Reprod  2019; 8:227–232.

Kurzawa  R, Glabowski  W, Baczkowski  T, Wiszniewska  B, Marchlewicz  M. Growth factors protect in vitro cultured embryos from the consequences of oxidative stress. Zygote  2004; 12:231–240. PubMed

Alvarez-Delgado  C. The role of mitochondria and mitochondrial hormone receptors on the bioenergetic adaptations to lactation. Mol Cell Endocrinol  2022; 551:111661. PubMed

Baba  SP, Bhatnagar  A. Role of thiols in oxidative stress. Curr Opin Toxicol  2018; 7:133–139. PubMed PMC

Sies  H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol  2017; 11:613–619. PubMed PMC

Zandalinas  SI, Mittler  R. ROS-induced ROS release in plant and animal cells. Free Radic Biol Med  2018; 122:21–27. PubMed

Mailloux  RJ. An update on mitochondrial reactive oxygen species production. Antioxidants (Basel)  2020; 9:472. PubMed PMC

Dikalov  S. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med  2011; 51:1289–1301. PubMed PMC

Bedard  K, Krause  KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev  2007; 87:245–313. PubMed

Vermot  A, Petit-Hartlein  I, Smith  SME, Fieschi  F. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel)  2021; 10:890. PubMed PMC

Li  W, Young  JF, Sun  J. NADPH oxidase-generated reactive oxygen species in mature follicles are essential for drosophila ovulation. Proc Natl Acad Sci USA  2018; 115:7765–7770. PubMed PMC

Battelli  MG, Polito  L, Bortolotti  M, Bolognesi  A. Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxidative Med Cell Longev  2016; 2016:3527579. PubMed PMC

Isik  H, Aynioglu  O, Timur  H, Sahbaz  A, Harma  M, Can  M, Guven  B, Alptekin  H, Kokturk  F. Is xanthine oxidase activity in polycystic ovary syndrome associated with inflammatory and cardiovascular risk factors?  J Reprod Immunol  2016; 116:98–103. PubMed

Budani  MC, Tiboni  GM. Novel insights on the role of nitric oxide in the ovary: a review of the literature. Int J Environ Res Public Health  2021; 18:980. PubMed PMC

Tao  Y, Fu  Z, Zhang  M, Xia  G, Yang  J, Xie  H. Immunohistochemical localisation of inducible and endothelial nitric oxide synthase in porcine ovaries and effects of NO on antrum formation and oocyte meiotic maturation. Mol Cell Endocrinol  2004; 222:93–103. PubMed

Popov  LD. Mitochondrial biogenesis: an update. J Cell Mol Med  2020; 24:4892–4899. PubMed PMC

Sahebnasagh  A, Hashemi  J, Khoshi  A, Saghafi  F, Avan  R, Faramarzi  F, Azimi  S, Habtemariam  S, Sureda  A, Khayatkashani  M, Safdari  M, Rezai Ghaleno  H, et al.  Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion  2021; 61:85–101. PubMed

Weitzel  JM, Iwen  KA, Seitz  HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol  2003; 88:121–128. PubMed

Bishop  DJ, Botella  J, Genders  AJ, Lee  MJ, Saner  NJ, Kuang  J, Yan  X, Granata  C. High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. Physiology (Bethesda)  2019; 34:56–70. PubMed

Liang  H, Ward  WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ  2006; 30:145–151. PubMed

Vainshtein  A, Tryon  LD, Pauly  M, Hood  DA. Role of PGC-1alpha during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol  2015; 308:C710–C719. PubMed PMC

Lee  HC, Wei  YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol  2005; 37:822–834. PubMed

Kageyama  M, Ito  J, Shirasuna  K, Kuwayama  T, Iwata  H. Mitochondrial reactive oxygen species regulate mitochondrial biogenesis in porcine embryos. J Reprod Dev  2021; 67:141–147. PubMed PMC

Orrenius  S, Gogvadze  V, Zhivotovsky  B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol  2007; 47:143–183. PubMed

Redza-Dutordoir  M, Averill-Bates  DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta  2016; 1863:2977–2992. PubMed

Killackey  SA, Philpott  DJ, Girardin  SE. Mitophagy pathways in health and disease. J Cell Biol  2020; 219:e202004029. PubMed PMC

Ray  B, Bhat  A, Mahalakshmi  AM, Tuladhar  S, Bishir  M, Mohan  SK, Veeraraghavan  VP, Chandra  R, Essa  MM, Chidambaram  SB, Sakharkar  MK. Mitochondrial and Organellar crosstalk in Parkinson's disease. ASN Neuro  2021; 13:1–10. PubMed PMC

Vincow  ES, Merrihew  G, Thomas  RE, Shulman  NJ, Beyer  RP, MacCoss  MJ, Pallanck  LJ. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci USA  2013; 110:6400–6405. PubMed PMC

Wang  S, Chen  Y, Li  X, Zhang  W, Liu  Z, Wu  M, Pan  Q, Liu  H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother  2020; 128:110272. PubMed

Mansueto  G, Armani  A, Viscomi  C, D'Orsi  L, De Cegli  R, Polishchuk  EV, Lamperti  C, Di Meo  I, Romanello  V, Marchet  S, Saha  PK, Zong  H, et al.  Transcription factor EB controls metabolic flexibility during exercise. Cell Metab  2017; 25:182–196. PubMed PMC

Olexiková  L, Dujíčková  L, Makarevich  AV, Bezdíček  J, Sekaninová  J, Nesvadbová  A, Chrene  P. Glutathione during post-thaw recovery culture Can mitigate deleterious impact of Vitrification on bovine oocytes. Antioxidants  2023; 12:35. PubMed PMC

Richani  D, Gilchrist  RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update  2018; 24:1–14. PubMed

Duffy  DM, Ko  C, Jo  M, Brännström  M, Curry  TE. Ovulation: parallels with inflammatory processes. Endocr Rev  2019; 40:369–416. PubMed PMC

Espey  LL, Stein  VI, Dumitrescu  J. Survey of antiinflammatory agents and related drugs as inhibitors of ovulation in the rabbit. Fertil Steril  1982; 38:238–247. PubMed

Gaytan  M, Morales  C, Bellido  C, Sanchez-Criado  JE, Gaytan  F. Non-steroidal anti-inflammatory drugs (NSAIDs) and ovulation: lessons from morphology. Histol Histopathol  2006; 21:541–556. PubMed

Brännström  M, Mayrhofer  G, Robertson  SA. Localisation of leukocyte subsets in the rat ovary during the periovulatory period. Biol Reprod  1993; 48:277–286. PubMed

Ho  YS, Gargano  M, Cao  J, Bronson  RT, Heimler  I, Hutz  RJ. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem  1998; 273:7765–7769. PubMed

Miyazaki  T, Sueoka  K, Dharmarajan  AM, Atlas  SJ, Bulkley  GB, Wallach  EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil  1991; 91:207–212. PubMed

Shkolnik  K, Tadmor  A, Ben-Dor  S, Nevo  N, Galiani  D, Dekel  N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci USA  2011; 108:1462–1467. PubMed PMC

Basini  G, Tamanini  C. Interrelationship between nitric oxide and prostaglandins in bovine granulosa cells. Prostaglandins Other Lipid Mediat  2001; 66:179–202. PubMed

Zerani  M, Polisca  A, Boiti  C, Maranesi  M. Current knowledge on the multifactorial regulation of corpora Lutea lifespan: the rabbit model. Animals (Basel)  2021; 11:296. PubMed PMC

Abdelnaby  EA, El-Maaty  AMA, Ragab  RSA, Seida  AA. Assessment of uterine vascular perfusion during the Estrous cycle of mares in connection to circulating leptin and nitric oxide concentrations. J Equine Vet Sci  2016; 39:25–32.

El-Sherry  TM, Derar  R, Bakry  R. Changes in blood flow in ovine follicles and serum concentration of estradiol 17 beta (E2) and nitric oxide (NO) around the time of ovulation in Ossimi ewes. Anim Reprod Sci  2013; 138:188–193. PubMed

White  RE. Estrogen and vascular function. Vasc Pharmacol  2002; 38:73–80. PubMed

Aréchiga-Flores  C, Zimri  CV, Hernández-Briano  P, Flores-Flores  G, Rochín-Berumen  F, Ruiz-Fernández  E. Review: function and regression of the corpus luteum during the estrous cycle. Abanico Veterinario  2019; 9:1–21.

Fraser  HM, Dickson  SE, Lunn  SF, Wulff  C, Morris  KD, Carroll  VA, Bicknell  R. Suppression of luteal angiogenesis in the primate after neutralisation of vascular endothelial growth factor. Endocrinology  2000; 141:995–1000. PubMed

Kim  YM, Kim  SJ, Tatsunami  R, Yamamura  H, Fukai  T, Ushio-Fukai  M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol  2017; 312:C749–C764. PubMed PMC

Chua  CC, Hamdy  RC, Chua  BH. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med  1998; 25:891–897. PubMed

Yoshioka  S, Acosta  TJ, Okuda  K. Roles of cytokines and progesterone in the regulation of the nitric oxide generating system in bovine luteal endothelial cells. Mol Reprod Dev  2012; 79:689–696. PubMed

Isaacs  JS, Jung  YJ, Mimnaugh  EG, Martinez  A, Cuttitta  F, Neckers  LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem  2002; 277:29936–29944. PubMed

Tang  W, Zhao  G. Small molecules targeting HIF-1alpha pathway for cancer therapy in recent years. Bioorg Med Chem  2020; 28:115235. PubMed

Bonello  S, Zahringer  C, BelAiba  RS, Djordjevic  T, Hess  J, Michiels  C, Kietzmann  T, Gorlach  A. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol  2007; 27:755–761. PubMed

Brunelle  JK, Bell  EL, Quesada  NM, Vercauteren  K, Tiranti  V, Zeviani  M, Scarpulla  RC, Chandel  NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab  2005; 1:409–414. PubMed

Guzy  RD, Hoyos  B, Robin  E, Chen  H, Liu  L, Mansfield  KD, Simon  MC, Hammerling  U, Schumacker  PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab  2005; 1:401–408. PubMed

Parraguez  VH, Urquieta  B, Perez  L, Castellaro  G, De los Reyes  M, Torres-Rovira  L, Aguado-Martinez  A, Astiz  S, Gonzalez-Bulnes  A. Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress. Reprod Biol Endocrinol  2013; 11:24. PubMed PMC

Farias  JG, Bustos-Obregon  E, Reyes  JG. Increase in testicular temperature and vascularisation induced by hypobaric hypoxia in rats. J Androl  2005; 26:693–697. PubMed

Neuvians  TP, Schams  D, Berisha  B, Pfaffl  MV. Involvement of pro-inflammatory cytokines, mediators of inflammation, and basic fibroblast growth factor in prostaglandin F2a-induced Luteolysis in bovine corpus luteum. Biol Reprod  2004; 70:473–480. PubMed

Okuda  K, Uenoyama  Y, Berisha  B, Lange  IG, Taniguchi  H, Kobayashi  S, Kobayashi  S, Miyamoto  A, Schams  D. Estradiol-17b is produced in bovine corpus luteum. Biol Reprod  2001; 65:1634–1639. PubMed

Shirasuna  K, Shimizu  T, Hayashi  KG, Nagai  K, Matsui  M, Miyamoto  A. Positive association, in local release, of luteal oxytocin with endothelin 1 and prostaglandin F2alpha during spontaneous Luteolysis in the cow: a possible Intermediatory role for Luteolytic Cascade within the corpus luteum. Biol Reprod  2007; 76:965–970. PubMed

Przygrodzka  E, Plewes  MR, Davis  JS. Luteinizing hormone regulation of inter-organelle communication and fate of the corpus luteum. Int J Mol Sci  2021; 22:9972. PubMed PMC

Al-Gubory  KH, Garrel  C, Faure  P, Sugino  N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online  2012; 25:551–560. PubMed

Christenson  LK, Devoto  L. Cholesterol transport and steroidogenesis by the corpus luteum. Reprod Biol Endocrinol  2003; 1:90. PubMed PMC

Rekawiecki  R, Nowik  M, Kotwica  J. Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat  2005; 78:169–184. PubMed

Fridén  BE, Runesson  E, Hahlin  M, Brännström  M. Evidence for nitric oxide acting as a luteolytic factor in the human corpus luteum. Mol Hum Reprod  2000; 6:397–403. PubMed

Vega  M, Johnson  MC, Diaz  HA, Urrutia  LR, Troncoso  JL, Devoto  L. Regulation of human luteal steroidogenesis in vitro by nitric oxide. Endocrine  1998; 8:185–191. PubMed

Van Voorhis  BJ, Dunn  MS, Snyder  GD, Weiner  CP. Nitric oxide: an autocrine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology  1994; 1994:1799–1806. PubMed

Masuda  M, Kubota  T, Aso  T. Effects of nitric oxide on steroidogenesis in porcine granulosa cells during different stages of follicular development. Eur J Endocrinol  2001; 144:303–308. PubMed

Dave  S, Farrance  DP, Whitehead  SA. Evidence that nitric oxide inhibits steroidogenesis in cultured rat granulosa cells. Clin Sci  1979; 92:277–284. PubMed

Jaroszewski  JJ, Skarzynski  DJ, Blair  RM, Hansel  W. Influence of nitric oxide on the secretory function of the bovine corpus luteum: dependence on cell composition and cell-to-cell communication. Exp Biol Med (Maywood)  2003a; 228:741–748. PubMed

Sugino  N, Hirosawa-Takamori  M, Zhong  L, Telleria  CM, Shiota  K, Gibori  G. Hormonal regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase messenger ribonucleic acid in the rat corpus luteum: induction by prolactin and placental lactogens. Biol Reprod  1998; 59:599–605. PubMed

Jablonka-Shariff  A, Olson  LM. Nitric oxide is essential for optimal meiotic maturation of murine cumulus-oocyte complexes in vitro. Mol Reprod Dev  2000; 55:412–421. PubMed

Tiwari  M, Chaube  SK. Moderate increase of reactive oxygen species triggers meiotic resumption in rat follicular oocytes. J Obstet Gynaecol Res  2016; 42:536–546. PubMed

Yuan  Y, Krisher  R. 275 effect of reactive oxygen species during in vitro maturation on porcine oocyte nuclear maturation and developmental competence. Reprod Fertil Dev  2010; 23:235–236.

Curnow  EC, Ryan  JP, Saunders  DM, Hayes  ES. Developmental potential of bovine oocytes following IVM in the presence of glutathione ethyl ester. Reprod Fertil Dev  2010; 22:597–605. PubMed

Zhao  XM, Min  JT, Du  WH, Hao  HS, Liu  Y, Qin  T, Wang  D, Zhu  HB. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote  2015b; 23:525–536. PubMed

Almiñana  C, Gil  MA, Cuello  C, Caballero  I, Roca  J, Vazquez  JM, Gomez  E, Martinez  EA. In vitro maturation of porcine oocytes with retinoids improves embryonic development. Reprod Fertil Dev  2008; 20:483–489. PubMed

Gómez  E, Royo  LJ, Duque  P, Carneiro  G, Hidalgo  C, Goyache  F, Lorenzo  PL, Alvarez  I, Facal  N, Diez  C. 9-cis-retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus-granulosa cells. Mol Reprod Dev  2003; 66:247–255. PubMed

Chaube  SK, Prasad  PV, Thakur  SC, Shrivastav  TG. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis  2005; 10:863–874. PubMed

Takami  M, Preston  SL, Toyloy  VA, Behrman  HR. Antioxidants reversibly inhibit the spontaneous resumption of meiosis. Am J Phys  1999; 276:E684–E688. PubMed

Tripathi  A, Khatun  S, Pandey  AN, Mishra  SK, Chaube  R, Shrivastav  TG, Chaube  SK. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic Res  2009; 43:287–294. PubMed

De Vos  A, Van Steirteghem  A. Zona hardening, zona drilling and assisted hatching: new achievements in assisted reproduction. Cells Tissues Organs  2000; 166:220–227. PubMed

Miao  Y, Zhou  C, Cui  Z, Zhang  M, ShiYang  X, Lu  Y, Xiong  B. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J  2018; 32:1328–1337. PubMed PMC

Goud  AP, Goud  PT, Diamond  MP, Gonik  B, Abu-Soud  HM. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med  2008; 44:1295–1304. PubMed PMC

Zhang  M, ShiYang  X, Zhang  Y, Miao  Y, Chen  Y, Cui  Z, Xiong  B. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med  2019; 143:84–94. PubMed

Preutthipan  S, Chen  SH, Tilly  JL, Kugu  K, Lareu  RR, Dharmarajan  AM. Inhibition of nitric oxide synthesis potentiates apoptosis in the rabbit corpus luteum. Reprod Biomed Online  2004; 9:264–270. PubMed

Miyamoto  A, Shirasuna  K. Luteolysis in the cow: a novel concept of vasoactive molecules. Anim Reprod  2009; 6:47–59.

Korzekwa  A, Woclawek-Potocka  I, Okuda  K, Acosta  TJ, Skarzynski  DJ. Nitric oxide in bovine corpus luteum: possible mechanisms of action in luteolysis. Anim Sci J  2007; 78:233–242.

Jaroszewski  JJ, Bogacki  M, Skarzynski  DJ. Progesterone production in bovine luteal cells treated with drugs that modulate nitric oxide production. Reproduction  2003; 125:389–395. PubMed

Skarzynski  DJ, Okuda  K. Different actions of noradrenaline and nitric oxide on the output of prostaglandins and progesterone in cultured bovine luteal cells. Prostaglandins Other Lipid Mediat  2000; 2008:35–47. PubMed

Skarzynski  DJ, Jaroszewski  JJ, Bah  MM, Deptula  KM, Barszczewska  B, Gawronska  B, Hansel  W. Administration of a nitric oxide synthase inhibitor counteracts prostaglandin F2-induced luteolysis in cattle. Biol Reprod  2003; 68:1674–1681. PubMed

Weems  YS, Lennon  E, Uchima  T, Raney  A, Goto  K, Ong  A, Zaleski  H, Weems  CW. Mechanism whereby nitric oxide (NO) infused chronically intrauterine in ewes is antiluteolytic rather than being luteolytic. Prostaglandins Other Lipid Mediat  2008; 85:33–41. PubMed

Liszewska  E, Rekawiecki  R, Kotwica  J. Effect of progesterone on the expression of bax and bcl-2 and on caspase activity in bovine luteal cells. Prostag Lipid Mediat  2005; 78:67–81. PubMed

Vallcaneras  S, Morales  L, Delsouc  MB, Ramirez  D, Filippa  V, Fernandez  M, Telleria  CM, Casais  M. Interplay between nitric oxide and gonadotrophin-releasing hormone in the neuromodulation of the corpus luteum during late pregnancy in the rat. Reprod Biol Endocrinol  2022; 20:19. PubMed PMC

Lashari  MH, Tasawar  Z. The effect of PGF2α on persistent corpus luteum in Sahiwal cows. Int J Livest Prod  2012; 3:1–5.

Mogheiseh  A, Ahmadi  MR, Nazifi  S, Mirzaei  A, Fallah  E. Destination of corpus luteum in postpartum clinical endometritis cows and factors affecting self-recovery. Vet Anim Sci  2020; 9:100067. PubMed PMC

Vu  HV, Lee  S, Acosta  TJ, Yoshioka  S, Abe  H, Okuda  K. Roles of prostaglandin F2alpha and hydrogen peroxide in the regulation of copper/zinc superoxide dismutase in bovine corpus luteum and luteal endothelial cells. Reprod Biol Endocrinol  2012; 10:87. PubMed PMC

Rapoport  R, Sklan  D, Wolfenson  D, Shaham-Albalancy  A, Hanukoglu  I. Antioxidant capacity is correlated with steroidogenic status of the corpus luteum during the bovine estrous cycle. Biochim Biophys Acta  1998; 1380:133–140. PubMed

Perkins  A, Nelson  KJ, Parsonage  D, Poole  LB, Karplus  PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci  2015; 40:435–445. PubMed PMC

Rhee  SG, Kil  IS. Multiple functions and regulation of mammalian Peroxiredoxins. Annu Rev Biochem  2017; 86:749–775. PubMed

Park  HJ, Lee  DG, Seong  JB, Lee  HS, Kwon  OS, Kang  BS, Park  JW, Lee  SR, Lee  DS. Peroxiredoxin I maintains luteal function by regulating unfolded protein response. Reprod Biol Endocrinol  2018; 16:79. PubMed PMC

Park  SJ, Kim  JH, Kim  TS, Lee  SR, Park  JW, Lee  S, Kim  JM, Lee  DS. Peroxiredoxin 2 regulates PGF2alpha-induced corpus luteum regression in mice by inhibiting ROS-dependent JNK activation. Free Radic Biol Med  2017; 108:44–55. PubMed

Qian  Y, Shao  L, Yuan  C, Jiang  CY, Liu  J, Gao  C, Gao  L, Cui  YG, Jiang  SW, Liu  JY, Meng  Y. Implication of differential Peroxiredoxin 4 expression with age in ovaries of mouse and human for ovarian aging. Curr Mol Med  2016; 16:243–251. PubMed

Rueda  BR, Tilly  KI, Hansen  TR, Hoyer  PB, Tilly  JL. Expression of superoxide dismutase, catalase and glutathione peroxidase in the bovine corpus luteum: evidence supporting a role for oxidative stress in luteolysis. Endocrine  1995; 3:227–232. PubMed

Sugino  N. Reactive oxygen species in ovarian physiology. Reprod Med Biol  2005; 4:31–44. PubMed PMC

Sugino  N. Roles of reactive oxygen species in the corpus luteum. Anim Sci J  2006; 77:556–565.

Sugino  N, Takiguchi  S, Kashida  S, Karube  A, Nakamura  Y, Kato  H. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod  2000; 6:19–25. PubMed

Riley  JC, Behrman  HR. In vivo generation of hydrogen peroxide in the rat corpus luteum during luteolysis. Endocrinology  1991; 128:1749–1753. PubMed

Sugimoto  Y, Yamasaki  A, Segi  E, Tsuboi  K, Aze  Y, Nishimura  T, Oida  H, Yoshida  N, Tanaka  T, Katsuyama  M, Hasumoto  K, Murata  T, et al.  Failure of parturition in mice lacking the prostaglandin F receptor. Science  1997; 277:681–683. PubMed

Wiltbank  MC, Ottobre  JS. Regulation of intraluteal production of prostaglandins. Reprod Biol Endocrinol  2003; 1:91. PubMed PMC

Taniguchi  K, Matsuoka  A, Kizuka  F, Lee  L, Tamura  I, Maekawa  R, Asada  H, Taketani  T, Tamura  H, Sugino  N. Prostaglandin F2alpha (PGF2alpha) stimulates PTGS2 expression and PGF2alpha synthesis through NFKB activation via reactive oxygen species in the corpus luteum of pseudopregnant rats. Reproduction  2010; 140:885–892. PubMed

Benyo  DF, Pate  JL. Tumor necrosis factor-alpha alters bovine luteal cell synthetic capacity and viability. Endocrinology  1992; 130:854–860. PubMed

Bagnjuk  K, Stockl  JB, Frohlich  T, Arnold  GJ, Behr  R, Berg  U, Berg  D, Kunz  L, Bishop  C, Xu  J, Mayerhofer  A. Necroptosis in primate luteolysis: a role for ceramide. Cell Death Dis  2019; 5:67. PubMed PMC

Motta  AB, Estevez  A, Franchi  A, Perez-Martinez  S, Farina  M, Ribeiro  ML, Lasserre  A, Gimeno  MF. Regulation of lipid peroxidation by nitric oxide and PGF2alpha during luteal regression in rats. Reproduction  2001; 121:631–637. PubMed

Motta  AB, Franchi  AM, Gimeno  MF. Role of nitric oxide on uterine and ovarian prostaglandin synthesis during luteolysis in the rat. Prostaglandins Leukot Essent Fatty Acids  1997; 56:265–269. PubMed

Motta  AB, Gimeno  MA. Nitric oxide participates in the corpus luteum regression in ovaries isolated from pseudopregnant rats. Can J Physiol Pharmacol  1997; 75:1335–1339. PubMed

Jaroszewski  JJ, Skarzynski  DJ, Hansel  W. Nitric oxide as a local mediator of prostaglandin F2alpha-induced regression in bovine corpus luteum: an in vivo study. Exp Biol Med (Maywood)  2003b; 228:1057–1062. PubMed

Foyouzi  N, Cai  Z, Sugimoto  Y, Stocco  C. Changes in the expression of steroidogenic and antioxidant genes in the mouse corpus luteum during luteolysis. Biol Reprod  2005; 72:1134–1141. PubMed

Hojo  T, Siemieniuch  MJ, Lukasik  K, Piotrowska-Tomala  KK, Jonczyk  AW, Okuda  K, Skarzynski  DJ. Programmed necrosis - a new mechanism of steroidogenic luteal cell death and elimination during luteolysis in cows. Sci Rep  2016; 6:38211. PubMed PMC

Nishimura  R, Sakumoto  R, Tatsukawa  Y, Acosta  TJ, Okuda  K. Oxygen concentration is an important factor for modulating progesterone synthesis in bovine corpus luteum. Endocrinology  2006; 147:4273–4280. PubMed

Boiti  C, Guelfi  G, Zampini  D, Brecchia  G, Gobbetti  A, Zerani  M. Regulation of nitric oxide synthase isoforms and role of nitric oxide during prostaglandin F2alpha-induced luteolysis in rabbits. Reproduction  2003; 125:807–816. PubMed

Vega  M, Urrutia  L, Iniguez  G, Gabler  F, Devoto  L, Johnson  MC. Nitric oxide induces apoptosis in the human corpus luteum in vitro. Mol Hum Reprod  2000; 6:681–687. PubMed

Shirasuna  K, Watanabe  S, Asahi  T, Wijayagunawardane  MP, Sasahara  K, Jiang  C, Matsui  M, Sasaki  M, Shimizu  T, Davis  JS, Miyamoto  A. Prostaglandin F2alpha increases endothelial nitric oxide synthase in the periphery of the bovine corpus luteum: the possible regulation of blood flow at an early stage of luteolysis. Reproduction  2008; 135:527–539. PubMed

Shirasuna  K. Nitric oxide and luteal blood flow in the luteolytic cascade in the cow. J Reprod Dev  2010; 56:9–14. PubMed

Weems  YS, Lennon  E, Uchima  T, Raney  A, Goto  K, Ong  A, Zaleski  H, Weems  CW. Is nitric oxide luteolytic or antiluteolytic?  Prostaglandins Other Lipid Mediat  2005; 78:129–138. PubMed

Best  MP, Frimberger  AE. Ovarian carcinomatosis in a dog managed with surgery and intraperitoneal, systemic, and intrapleural chemotherapy utilizing indwelling pleural access ports. Can Vet J  2017; 58:493–497. PubMed PMC

Vanderhyden  BC, Shaw  TJ, Ethier  JF. Animal models of ovarian cancer. Reprod Biol Endocrinol  2003; 1:67. PubMed PMC

Hense  JD, Isola  JVV, Garcia  DN, et al.  The role of cellular senescence in ovarian aging. Aging  2024; 10:35. PubMed PMC

Wang  X, Wang  L, Xiang  W. Mechanisms of ovarian aging in women: a review. J Ovarian Res  2023; 16:67. PubMed PMC

Zhu  Z, Xu  W, Liu  L. Ovarian aging: mechanisms and intervention strategies. Medical Rev  2021; 2:590–610. PubMed PMC

Sasaki  H, Hamatani  T, Kamijo  S, Iwai  M, Kobanawa  M, Ogawa  S, Miyado  K, Tanaka  M. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front Endocrinol  2019; 2019:811. PubMed PMC

Rizzo  A, Roscino  MT, Binetti  F, Sciorsci  RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim  2012; 47:344–352. PubMed

Kaspar  JW, Niture  SK, Jaiswal  AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med  2009; 47:1304–1309. PubMed PMC

Bellezza  I, Giambanco  I, Minelli  A, Donato  R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta, Mol Cell Res  2018; 1865:721–733. PubMed

Espinosa-Diez  C, Miguel  V, Mennerich  D, Kietzmann  T, Sánchez-Pérez  P, Cadenas  S, Lamas  S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol  2015; 6:183–197. PubMed PMC

Ma  R, Liang  W, Sun  Q, Qiu  X, Lin  Y, Ge  X, Jueraitetibaike  K, Xie  M, Zhou  J, Huang  X, Wang  Q, Che  L. Sirt1/Nrf2 pathway is involved in oocyte aging by regulating cyclin B1. Aging  2018; 2018:2991–3004. PubMed PMC

Sze  SCW, Zhang  L, Zhang  S, Lin  K, Ng  B, Ng  ML, Lee  KF, Lam  JKW, Zhang  Z, Yung  KKL. Aberrant transferrin and ferritin upregulation elicits iron accumulation and oxidative Inflammaging causing Ferroptosis and undermines Estradiol biosynthesis in aging rat ovaries by upregulating NF-Κb-activated inducible nitric oxide synthase: first demonstration of an intricate mechanism. Int J Mol Sci  2022; 23:12689. PubMed PMC

Sadeghi  HM, Adeli  I, Calina  D, Docea  AO, Mousavi  T, Daniali  M, Nikfar  S, Tsatsakis  A, Abdollahi  M. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci  2022; 23:583. PubMed PMC

Stener-Victorin  E, Teede  H, Norman  RJ, Legro  R, Goodarzi  MO, Dokras  A, Laven  J, Hoeger  K, Piltonen  TT. Polycystic ovary syndrome. Nat Rev Dis Primers  2024; 10:27. PubMed

Li  W, Liu  C, Yang  Q, Zhou  Y, Liu  M, Shan  H. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front Nutr  2022; 9:1018674. PubMed PMC

Zuo  T, Zhu  M, Xu  W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative Med Cell Longev  2016;2016:8589318. PubMed PMC

Rudnicka  E, Duszewska  AM, Kucharski  M, Tyczyński  P, Smolarczyk  R. Oxidative stress and reproductive function: oxidative stress in polycystic ovary syndrome. Reproduction  2022; 164:F145–F154. PubMed

Awonuga  AO, Camp  OG, Abu-Soud  HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol  2023; 21:111. PubMed PMC

Nácul  AP, Andrade  CD, Schwarz  P, de  Bittencourt  PI, Jr, & Spritzer  PM.  Nitric oxide and fibrinogen in polycystic ovary syndrome: associations with insulin resistance and obesity. Eur J Obstet Gynecol Reprod Biol  2007; 133:191–196. PubMed

Krishna  MB, Joseph  A, Thomas  PL, Dsilva  B, Pillai  SM, Laloraya  M. Impaired arginine metabolism coupled to a defective redox conduit contributes to low plasma nitric oxide in polycystic ovary syndrome. Cell Physiol Biochem  2017; 43:1880–1892. PubMed

Meng  C. Nitric oxide (NO) levels in patients with polycystic ovary syndrome (PCOS): a meta-analysis. J Int Med Res  2019; 47:4083–4094. PubMed PMC

Kodama  H, Fukuda  J, Karube  H, Matsui  T, Shimizu  Y, Tanaka  T. High incidence of embryo transfer cancellations in patients with polycystic ovarian syndrome. Hum Reprod  1995; 10:1962–1967. PubMed

Hyderali  BN, Mala  K. Oxidative stress and cardiovascular complications in polycystic ovarian syndrome. Eur J Obstet Gynecol Reprod Biol  2015; 191:15–22. PubMed

Bódis  J, Várnagy  A, Sulyok  E, Kovács  GL, Martens-Lobenhoffer  J, Bode-Böger  SM. Negative association of L-arginine methylation products with oocyte numbers. Hum Reprod  2010; 25:3095–3100. PubMed

Li  T, Zhang  T, Wang  H, Zhang  Q, Gao  H, Liu  R, Yin  C. The ADMA-DDAH1 axis in ovarian apoptosis of polycystic ovary syndrome. J Steroid Biochem Mol Biol  2023; 225:106180. PubMed

Caldwell  RW, Rodriguez  PC, Toque  HA, Narayanan  SP, Caldwell  RB. Arginase: a multifaceted enzyme important in health and disease. Physiol Rev  2018; 98:641–665. PubMed PMC

Kyselova  A, Hinrichsmeyer  H, Zukunft  S, Mann  AW, Dornauf  I, Fleming  I, Randriamboavonjy  V. Association between arginase-containing platelet-derived microparticles and altered plasma arginine metabolism in polycystic ovary syndrome. Metabolism  2019; 90:16–19. PubMed

Stewart  C, Ralyea  C, Lockwood  S. Ovarian cancer: an integrated review. Semin Oncol Nurs  2019; 35:151–156. PubMed

Meshkovska  Y, Abramov  A, Mahira  S, Thatikonda  S. Understanding the impact of oxidative stress on ovarian cancer: advances in diagnosis and treatment. Future Pharmacol  2024; 4:651–675.

Santosh  SW, Freddy  AJ, Winkins  D. Oxidative Stress in the Pathogenesis of Ovarian Cancer. In: Chakraborti  S (ed.), Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Singapore: Springer; 2022.

Chan  DW, Liu  VW, Tsao  GS, Yao  KM, Furukawa  T, Chan  KK, Ngan  HY. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis  2008; 29:1742–1750. PubMed

Liu  LZ, Hu  XW, Xia  C, He  J, Zhou  Q, Shi  X, Fang  J, Jiang  BH. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med  2006; 41:1521–1533. PubMed

Xia  C, Meng  Q, Liu  LZ, Rojanasakul  Y, Wang  XR, Jiang  BH. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res  2007; 67:10823–10830. PubMed

Stieg  DC, Wang  Y, Liu  L-Z, Jiang  B-H. ROS and miRNA dysregulation in ovarian cancer development, angiogenesis and therapeutic resistance. Int J Mol Sci  2022; 23:6702. PubMed PMC

Xiong  X, Liao  X, Qiu  S, Xu  H, Zhang  S, Wang  S, Ai  J, Yang  L. CXCL8 in tumor biology and its implications for clinical translation. Front Mol Biosci  2022; 9:723846. PubMed PMC

Qiu J, Xu Q, Panah T, Morshed AKMH, Wang X, Zhou F, Liu W, Wang J, Zhang Y, Liu B, Jiang BH. Reactive oxygen species mediate ovarian cancer development, platinum resistance, and angiogenesis via CXCL8 and GSK-3β/p70S6K1 axis. Genes Dis 2024;12:101378. PubMed PMC

Kielbik  M, Szulc-Kielbik  I, Klink  M. The potential role of iNOS in ovarian cancer progression and chemoresistance. Int J Mol Sci  2019; 20:1751. PubMed PMC

Burke  AJ, Garrido  P, Johnson  C, Sullivan  FJ, Glynn  SA. Inflammation and Nitrosative stress effects in ovarian and prostate pathology and carcinogenesis. Antioxid Redox Signal  2017; 26:1078–1090. PubMed

Chen  L, Tang  Q, Zhang  K, Huang  Q, Ding  Y, Jin  B, Liu  S, Hwa  K, Chou  CJ, Zhang  Y, Thyparambil  S, Liao  W, et al.  Altered expression of the L-arginine/nitric oxide pathway in ovarian cancer: metabolic biomarkers and biological implications. BMC Cancer  2023; 23:844. PubMed PMC

El-Sehemy  A, Postovit  LM, Fu  Y. Nitric oxide signaling in human ovarian cancer: a potential therapeutic target. Nitric Oxide  2016; 54:30–37. PubMed

Stevens  EV, Carpenter  AW, Shin  JH, Liu  J, Der  CJ, Schoenfisch  MH. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm  2010; 7:775–785. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...