Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0111
Slovak Research and Development Agency
DS-FR-22-0003
Slovak Research and Development Agency
PubMed
38790660
PubMed Central
PMC11117980
DOI
10.3390/antiox13050556
PII: antiox13050556
Knihovny.cz E-zdroje
- Klíčová slova
- astaxanthin, embryo development, oocytes, vitrification,
- Publikační typ
- časopisecké články MeSH
Various antioxidants are tested to improve the viability and development of cryopreserved oocytes, due to their known positive health effects. The aim of this study was to find whether astaxanthin (AX), a xanthophyll carotenoid, could mitigate deteriorations that occurred during the vitrification/warming process in bovine oocytes. Astaxanthin (2.5 µM) was added to the maturation medium during the post-warm recovery period of vitrified oocytes for 3 h. Afterward, the oocytes were fertilized in vitro using frozen bull semen and presumptive zygotes were cultured in the B2 Menezo medium in a co-culture with BRL-1 cells at 38.5 °C and 5% CO2 until the blastocyst stage. AX addition significantly reduced ROS formation, lipid peroxidation, and lysosomal activity, while increasing mitochondrial activity in vitrified oocytes. Although the effect of AX on embryo development was not observed, it stimulated cell proliferation in the blastocysts derived from vitrified oocytes and improved their quality by upregulation or downregulation of some genes related to apoptosis (BCL2, CAS9), oxidative stress (GPX4, CDX2), and development (GJB5) compared to the vitrified group without AX. Therefore, the antioxidant properties of astaxanthin even during short exposure to bovine vitrified/warmed oocytes resulted in improved blastocyst quality comparable to those from fresh oocytes.
Zobrazit více v PubMed
Ren L., Fu B., Ma H., Liu D. Effects of mechanical delipation in porcine oocytes on mitochondrial distribution, ROS activity and viability after vitrification. Cryo Lett. 2015;36:30–36. PubMed
Kafi M., Ashrafi M., Azari M., Jandarroodi B., Abouhamzeh B., Asl A.R. Niacin improves maturation and cry-tolerance of bovine in vitro matured oocytes: An experimental study. Int. J. Reprod. Biomed. 2019;17:621–628. PubMed PMC
Oikonomou Z., Chatzimeletiou K., Sioga A., Oikonomou L., Tarlatzis B.C., Kolibianakis E. Effects of vitrification on blastomere viability and cytoskeletal integrity in mouse embryos. Zygote. 2017;25:75–84. doi: 10.1017/S0967199416000368. PubMed DOI
Iussig B., Maggiulli R., Fabozzi G., Bertelle S., Vaiarelli A., Cimadomo D., Ubaldi F.M., Rienzi L. A brief history of oocyte cryopreservation: Arguments and facts. Acta Obstet. Gynecol. Scand. 2019;98:550–558. doi: 10.1111/aogs.13569. PubMed DOI
Poljsak B., Šuput D., Milisav I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013;2013:956792. doi: 10.1155/2013/956792. PubMed DOI PMC
Kala M., Shaikh M.V., Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: A requisite for oocyte development and maturation. Reprod. Med. Biol. 2016;16:28–35. doi: 10.1002/rmb2.12013. PubMed DOI PMC
Lü J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanism of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010;14:840–860. doi: 10.1111/j.1582-4934.2009.00897.x. PubMed DOI PMC
Pham-Huy L.A., He H., Pham-Huy C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008;4:89–96. doi: 10.59566/IJBS.2008.4089. PubMed DOI PMC
Ofosu J., Zhang Y., Liu Y., Sun X., Quan G., Rodriguez M.A., Zhou G. Editorial: Cryopreservation of mammalian gametes and embryos: Implications of oxidative and nitrosative stress and potential role of antioxidants. Front. Vet. Sci. 2023;10:1174756. doi: 10.3389/fvets.2023.1174756. PubMed DOI PMC
Zarbakhsh S. Effect of antioxidants on preimplantation embryo development in vitro: A review. Zygote. 2021;29:179–193. doi: 10.1017/S0967199420000660. PubMed DOI
Phongnimitr T., Liang Y., Srirattana K., Panyawai K., Sripunya N., Treetampinich C., Parnpai R. Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim. Sci. J. 2013;84:719–725. doi: 10.1111/asj.12067. PubMed DOI
Trapphoff T., Heiligentag M., Simon J., Staubach N., Seidel T., Otte K. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod. 2016;22:867–881. PubMed
Sonowal J., Barua P.M., Borah P., Borgohain I., Gogoi C., Deuri N., Das A., Borgohain I., Pathak B. Effect of α-tocopherol and l-ascorbic acid on in vitro maturation of vitrified bovine oocytes. Int. J. Chem. Stud. 2017;5:1359–1362.
García-Martínez T., Vendrell-Flotats M., Martínez-Rodero I., Ordóñez-León E.A., Álvarez-Rodríguez M., López-Béjar M., Yeste M., Mogas T. Glutathione Ethyl Ester Protects In Vitro-Maturing Bovine Oocytes against Oxidative Stress Induced by Subsequent Vitrification/Warming. Int. J. Mol. Sci. 2020;21:7547. doi: 10.3390/ijms21207547. PubMed DOI PMC
Higuera-Ciapara I., Félix-Valenzuela L., Goycoolea F.M. Astaxanthin: A Review of its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006;46:185–196. doi: 10.1080/10408690590957188. PubMed DOI
Ispada J., Rodriguez T.A., Risolia P.H.B., Lima R.S., Goncalves D.R., Rettori D., Nichi M., Feitosa W.B., Paula-Lopes F.F. Astaxanthin counteracts the effects of heat shock on the maturation of bovine oocytes. Reprod. Fertil. Dev. 2018;38:1169–1179. doi: 10.1071/RD17271. PubMed DOI
Kato T., Kasai T., Sato A., Ishiwata S., Yatsu S., Matsumoto H., Shitara J., Murata A., Shimizu M., Suda S., et al. Effect of 3-Month Astaxanthin Supplementation on Cardiac Function in Heart Failure Patiens with Left Vantricular Systolic Dysfunction—A Pilot Study. Nutrients. 2020;12:1896. doi: 10.3390/nu12061896. PubMed DOI PMC
Chang M.X., Xiong F. Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules. 2020;25:5342. doi: 10.3390/molecules25225342. PubMed DOI PMC
Faraone I., Sinisgalli C., Ostuni A., Armentano M.F., Carmosino M., Milella L., Russo D., Labanca F., Khan H. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review. Pharmacol. Res. 2020;155:104689. doi: 10.1016/j.phrs.2020.104689. PubMed DOI
Kim H.Y., Kim Y.M., Hong S. Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a. Sci. Rep. 2019;9:9457. doi: 10.1038/s41598-019-45924-3. PubMed DOI PMC
Wang Z., Cai C.F., Cao X.M., Zhu J.M., He J., Wu P., Ye Y.T. Supplementation of dietary astaxanthin alleviated oxidative damage induced by chronic high pH stress, and enhanced carapace astaxanthin concentration on Chinese mitten crab Eriocheir sinensis. Aquaculture. 2018;438:230–237. doi: 10.1016/j.aquaculture.2017.10.006. DOI
Liu F., Shi H.Z., Guo Q.S., Yu Y.B., Wang A.M., Lv F., Shen W.B. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco) Fish. Shellfish. Immunol. 2016;51:125–135. doi: 10.1016/j.fsi.2016.02.020. PubMed DOI
Li M.Y., Guo W.Q., Guo G.L., Zhu X.M., Niu X.T., Shan X.F., Tian J.X., Wang G.Q., Zhang D.M. Effects of dietary astaxanthin on lipopolysaccharide-induced oxidative stress, immune responses and glucocorticoid receptor (GR)-related gene expression in Channa argus. Aquaculture. 2020;517:734816. doi: 10.1016/j.aquaculture.2019.734816. DOI
Maoka T. Carotenoids in Marine Animals. Mar. Drugs. 2011;9:278–293. doi: 10.3390/md9020278. PubMed DOI PMC
Palma J., Andrade J.P., Bureau D.P. The impact of dietary supplementation with astaxanthin on egg quality and growth of long snout seahorse (Hippocampus guttulatus) juveniles. Aquac. Nutr. 2016;23:304–312. doi: 10.1111/anu.12394. DOI
Jia B.Y., Xiang D.C., Shao Q.Y., Zhang B., Liu S.N., Hong Q.H. Inhibitory effects of astaxanthin on postovulatory porcine oocyte aging in vitro. Sci. Rep. 2020;10:20217. doi: 10.1038/s41598-020-77359-6. PubMed DOI PMC
Xiang D.C., Jia B.Y., Fu X.W., Guo J.X., Hong Q.H., Quan G.B., Wu G.Q. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes. Theriogenology. 2021;167:13–23. doi: 10.1016/j.theriogenology.2021.03.006. PubMed DOI
Bi F., Xiang H., Li J., Sun J., Wang N., Gao W., Sun M., Huan Y. Astaxanthin enhances the development of bovine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming of pluripotency genes. Theriogenology. 2023;209:193–201. doi: 10.1016/j.theriogenology.2023.06.033. PubMed DOI
Lee E., Kim D. Effects of Astaxanthin on Miniature Pig Sperm Cryopreservation. Biomed. Res. Int. 2018;2018:6784591. doi: 10.1155/2018/6784591. PubMed DOI PMC
Olexiková L., Dujíčková L., Kubovičová E., Pivko J., Chrenek P., Makarevich A.V. Development and ultrastructure of bovine matured oocytes vitrified using electron microscopy grids. Theriogenology. 2020;158:258–266. PubMed
Olexiková L., Dujíčková L., Makarevich A.V., Bezdíček J., Sekaninová J., Nesvadbová A., Chrenek P. Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes. Antioxidants. 2023;12:35. doi: 10.3390/antiox12010035. PubMed DOI PMC
Zhao X.M., Du W.H., Wang D., Hao H.S., Liu Y., Qin T., Zhu H.B. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 2011;78:942–950. doi: 10.1002/mrd.21389. PubMed DOI
Gutierrez-Castillo E., Diaz F.A., Talbot S.A., Bondioli K.R. Recovery of spindle morphology and mitochondrial function through extended culture after vitrification-warming of bovine oocytes. Theriogenology. 2022;189:192–198. doi: 10.1016/j.theriogenology.2022.06.021. PubMed DOI
Succu S., Gadau S.D., Serra E., Zinellu A., Carru C., Porcu C., Naitana S., Berlinguer F., Leoni G.G. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology. 2018;110:18–26. doi: 10.1016/j.theriogenology.2017.12.031. PubMed DOI
Abdel-Ghani M.A., Yanagawa Y., Balboula A.Z., Sakaguchi K., Kanno C., Katagiri S., Takahashi M., Nagano M. Astaxanthin improves the development competence of in vitro-grown oocytes and modified the steroidogenesis of granulosa cells derived from bovine early antral follicles. Reprod. Fertil. Dev. 2019;31:272–281. doi: 10.1071/RD17527. PubMed DOI
Soto-Heras S., Paramio M.T. Impact of oxidative stress on oocytes competence for in vitro embryo production programs. Res. Vet. Sci. 2020;132:342–350. doi: 10.1016/j.rvsc.2020.07.013. PubMed DOI
Ayala A., Muñoz M.F., Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC
Li Y., Dong Z., Liu S., Gao F., Zhang J., Peng Z., Wang L., Pan X. Astaxanthin improves the development of the follicles and oocytes through alleviating oxidative stress induced by BPA in cultured follicles. Sci. Rep. 2022;12:7853. doi: 10.1038/s41598-022-11566-1. PubMed DOI PMC
Shen K., Pender C.L., Bar-Ziv R., Zhang H., Wickham K., Willey E., Durieux J., Ahmad Q., Dilin A. Mitochondrial as Cellular and Organismal Signaling Hubs. Annu. Rev. Cell. Dev. 2021;38:179–218. doi: 10.1146/annurev-cellbio-120420-015303. PubMed DOI
Iwata H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod. Med. Biol. 2021;20:419–426. doi: 10.1002/rmb2.12401. PubMed DOI PMC
Hwang I.S., Hara H., Chung H.J., Hirabayashi M., Hochi S. Rescue of vitrified-warmed bovine oocytes with tho-associated coiled-coil kinase inhibitor. Biol. Reprod. 2013;78:1–6. PubMed
Xiang D., Jia B., Zhang B., Liang J., Hong Q., Wei H., Wu G. Astaxanthin Supplementation Improves the Subsequent Developmental Competence of Vitrified Porcine Zygotes. Frontiers. 2022;9:871289. doi: 10.3389/fvets.2022.871289. PubMed DOI PMC
Li R., Wu H., Zhuo W.W., Mao Q.F., Lan H., Zhang Y., Hua S. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation. Reprod. Domest. Anim. 2015;50:793–799. doi: 10.1111/rda.12589. PubMed DOI
Yang C.S., Ho C.T., Zhang J., Wan X., Zhang K., Lim J. Antioxidants: Differing Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018;66:3063–3068. doi: 10.1021/acs.jafc.7b05830. PubMed DOI
Kuroki T., Ikeda S., Okada T., Maoka T., Kitamura A., Sugimoto M., Kume S. Astaxanthin ameliorates heat stress-induced impairment of blastocyst development In Vitro: –Astaxanthin colocalization with and action on mitochondria–. J Assist Reprod Genet. 2013;30:623–631. doi: 10.1007/s10815-013-9987-z. PubMed DOI PMC
De Gheselle S., De Sutter P., Tilleman K. In-vitro development of embryos derived from vitrified-warmed oocytes is delayed compared with embryos derived from fresh oocytes: A time-lapse sibling oocyte study. Reprod. BioMedicine Online. 2019;40:82–90. doi: 10.1016/j.rbmo.2019.09.010. PubMed DOI
Shin M.R., Choi H.W., Kim M.K., Lee S.H., Lee H.S., Lim C.K. In vitro development and gene expression of frozen-thawed 8-cell stage mouse embryos following slow freezing and vitrification. Clin. Exp. Reprod. Med. 2011;38:203–209. doi: 10.5653/cerm.2011.38.4.203. PubMed DOI PMC
Huang D., Gou G., Yuan P., Ralston A., Sun L., Huss M., Mistri T., Pinello L., Ng H.H., Ji J., et al. The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation. Sci. Rep. 2017;7:17156. doi: 10.1038/s41598-017-16009-w. PubMed DOI PMC
Moussa M., Yang C.Y., Zheng H.Y., Li M.Q., Yu N.Q., Yan S.F., Huang J.X., Shang J.H. Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology. 2019;125:317–323. doi: 10.1016/j.theriogenology.2018.11.013. PubMed DOI
Kibschull M., Colaco K., Matysiak-Zablocki E., Winterhager E., Lye S.J. Connexin31.1 (Gjb5) deficiency blocks trophoblast stem cell differentiation and delays placental development. Stem Cells Dev. 2014;23:2649–2660. doi: 10.1089/scd.2014.0013. PubMed DOI PMC
Su J., Wang Y., Li Y., Li R., Li Q., Wu Y., Quan F., Liu J., Guo Z., Zhang Y. Oxamflatin Significantly Improves Nuclear Reprogramming, Blastocyst Quality, and In Vitro Development of Bovine SCNT Embryos. PLoS ONE. 2011;6:e23805. doi: 10.1371/journal.pone.0023805. PubMed DOI PMC
Mahdavinezhad F., Kazemi P., Fathalizadeh P., Sarmadi F., Sotoodeh L., Hashemi E., Hajarian H., Dashtizad M. In vitro versus in vivo: Development-, Apoptosis, and Implantation-Related Gene Expression in Mouse Blastocyst. Iran. J. Biotechnol. 2019;17:e2157. doi: 10.21859/ijb.2157. PubMed DOI PMC
Do L.T., Luu V.V., Morita Y., Taniguchi M., Nii M., Peter A.T., Otoi T. Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes. Reprod. Biol. 2015;15:86–93. doi: 10.1016/j.repbio.2015.01.002. PubMed DOI
Ran Q., Liang H., Ikeno Y., Qi W., Prolla T.A., Roberts L.J., 2nd, Wolf N., Van Remmen H., Richardson A. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:32–42. doi: 10.1093/gerona/62.9.932. PubMed DOI
Ufer C., Wang C.C. The Roles of Glutathione Peroxidases during Embryo Development. Front. Mol. Neurosci. 2011;4:1–14. doi: 10.3389/fnmol.2011.00012. PubMed DOI PMC
Egerszegi I., Somfai T., Nakai M., Tanihara F., Noguchi J., Kaneko H., Nagai T., Rátky J., Kikuchi K. Comparison of cytoskeletal integrity, fertilization and development competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology. 2013;67:287–292. doi: 10.1016/j.cryobiol.2013.08.009. PubMed DOI
Dobrinsky J.R., Pursel V.G., Long C.R., Johnson L.A. Birth of Piglets After Transfer of Embryos Cryopreserved by Cytoskeletal Stabilization and Vitrification. Biol. Reprod. 2000;62:564–570. doi: 10.1095/biolreprod62.3.564. PubMed DOI
Sun Q.Y., Schatten H. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction. 2006;131:193–205. doi: 10.1530/rep.1.00847. PubMed DOI
Dobrinsky J.R. Cellular approach to cryopreservation of embryos. Theriogenology. 1996;45:17–26. doi: 10.1016/0093-691X(95)00351-8. DOI
Bogliolo L., Murrone O., Piccinini M., Ariu F., Ledda S., Tilocca S., Albertini D.F. Evaluation of the impact of vitrification on the actin cytoskeleton of in vitro matured ovine oocytes by means of Raman microspectroscopy. J. Assist. Reprod. Gen. 2015;32:185–193. doi: 10.1007/s10815-014-0389-7. PubMed DOI PMC
Canesin H.S., Ortiz I., Rocha Filho A.N., Salgado M.R., Brom-de-Luna J.G., Hinrichs K. Effect of warming method on embryo quality in a simplified equine embryo vitrification system. Theriogenology. 2020;151:151–158. doi: 10.1016/j.theriogenology.2020.03.012. PubMed DOI
Reactive oxygen and nitrogen species: multifaceted regulators of ovarian activity†