• This record comes from PubMed

Proteome Mapping of Cervical Mucus and Its Potential as a Source of Biomarkers in Female Tract Disorders

. 2023 Jan 05 ; 24 (2) : . [epub] 20230105

Language English Country Switzerland Media electronic

Document type Journal Article

Cervical mucus (CM) is a viscous fluid that is produced by the cervical glands and functions as a uterine cervix plug. Its viscosity decreases during ovulation, providing a window for non-invasive sampling. This study focuses on proteomic characterization of CM to evaluate its potential as a non-invasively acquired source of biomarkers and in understanding of molecular (patho)physiology of the female genital tract. The first objective of this work was to optimize experimental workflow for CM processing and the second was to assess differences in the proteomic composition of CM during natural ovulatory cycles obtained from intrauterine insemination (IUI) cycles and in vitro fertilization (IVF) cycles with controlled ovarian hyperstimulation. Proteomic analysis of CM samples revealed 4370 proteins involved in processes including neutrophil degranulation, cellular stress responses, and hemostasis. Differential expression analysis revealed 199 proteins enriched in IUI samples and 422 enriched in IVF. The proteins enriched in IUI were involved in phosphatidic acid synthesis, responses to external stimulus, and neutrophil degranulation, while those enriched in IVF samples were linked to neutrophil degranulation, formation of a cornified envelope and hemostasis. Subsequent analyses clarified the protein composition of the CM and how it is altered by hormonal stimulation of the uterus.

See more in PubMed

Katz D.F. Human Cervical Mucus: Research Update. Am. J. Obstet. Gynecol. 1991;165:1984–1986. doi: 10.1016/S0002-9378(11)90559-6. PubMed DOI

Insler V., Melmed H., Eichenbrenner I., Serr D.M., Lunenfeld B. The Cervical Score. Int. J. Gynecol. Obstet. 1972;10:223–228. doi: 10.1002/j.1879-3479.1972.tb00857.x. DOI

Van Kooij R.J., Roelofs H.J., Kathmann G.A., Kramer M.F. Human Cervical Mucus and Its Mucous Glycoprotein during the Menstrual Cycle. Fertil. Steril. 1980;34:226–233. doi: 10.1016/S0015-0282(16)44952-6. PubMed DOI

Bigelow J.L., Dunson D.B., Stanford J.B., Ecochard R., Gnoth C., Colombo B. Mucus Observations in the Fertile Window: A Better Predictor of Conception than Timing of Intercourse. Hum. Reprod. Oxf. Engl. 2004;19:889–892. doi: 10.1093/humrep/deh173. PubMed DOI

Rai P., Kota V., Sundaram C.S., Deendayal M., Shivaji S. Proteome of Human Endometrium: Identification of Differentially Expressed Proteins in Proliferative and Secretory Phase Endometrium. Proteom. Clin. Appl. 2010;4:48–59. doi: 10.1002/prca.200900094. PubMed DOI

Salamonsen L.A., Edgell T., Rombauts L.J.F., Stephens A.N., Robertson D.M., Rainczuk A., Nie G., Hannan N.J. Proteomics of the Human Endometrium and Uterine Fluid: A Pathway to Biomarker Discovery. Fertil. Steril. 2013;99:1086–1092. doi: 10.1016/j.fertnstert.2012.09.013. PubMed DOI

Sadler T.W. Langman’s Medical Embryology. Williams & Wilkins; Baltimore, MD, USA: 1995.

Andersch-Björkman Y., Thomsson K.A., Holmén Larsson J.M., Ekerhovd E., Hansson G.C. Large Scale Identification of Proteins, Mucins, and Their O-Glycosylation in the Endocervical Mucus during the Menstrual Cycle. Mol. Cell. Proteom. MCP. 2007;6:708–716. doi: 10.1074/mcp.M600439-MCP200. PubMed DOI

Panicker G., Lee D.R., Unger E.R. Optimization of SELDI-TOF Protein Profiling for Analysis of Cervical Mucous. J. Proteom. 2009;71:637–646. doi: 10.1016/j.jprot.2008.11.004. PubMed DOI

Grande G., Milardi D., Vincenzoni F., Pompa G., Biscione A., Astorri A.L., Fruscella E., De Luca A., Messana I., Castagnola M., et al. Proteomic Characterization of the Qualitative and Quantitative Differences in Cervical Mucus Composition during the Menstrual Cycle. Mol. Biosyst. 2015;11:1717–1725. doi: 10.1039/C5MB00071H. PubMed DOI

Grande G., Vincenzoni F., Milardi D., Pompa G., Ricciardi D., Fruscella E., Mancini F., Pontecorvi A., Castagnola M., Marana R. Cervical Mucus Proteome in Endometriosis. Clin. Proteom. 2017;14:7. doi: 10.1186/s12014-017-9142-4. PubMed DOI PMC

Otani S., Fujii T., Kukimoto I., Yamamoto N., Tsukamoto T., Ichikawa R., Nishio E., Iwata A. Cytokine Expression Profiles in Cervical Mucus from Patients with Cervical Cancer and Its Precursor Lesions. Cytokine. 2019;120:210–219. doi: 10.1016/j.cyto.2019.05.011. PubMed DOI

Rocconi R.P., Wilhite A.M., Schambeau L., Scalici J., Pannell L., Finan M.A. A Novel Proteomic-Based Screening Method for Ovarian Cancer Using Cervicovaginal Fluids: A Window into the Abdomen. Gynecol. Oncol. 2022;164:181–186. doi: 10.1016/j.ygyno.2021.10.083. PubMed DOI

Finan M., Pannell L., Billheimer D., Schambeau L., Blandford J., Rocconi R. A Novel Method of Screening for Endometrial Cancer. Gynecol. Oncol. 2012;125:S165. doi: 10.1016/j.ygyno.2011.12.406. DOI

Simsek E., Haydardedeoglu B., Hacivelioglu S.O., Cok T., Parlakgumus A., Bagis T. Effect of Cervical Mucus Aspiration before Intrauterine Insemination. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2008;103:136–139. doi: 10.1016/j.ijgo.2008.05.030. PubMed DOI

Massai M.R., de Ziegler D., Lesobre V., Bergeron C., Frydman R., Bouchard P. Clomiphene Citrate Affects Cervical Mucus and Endometrial Morphology Independently of the Changes in Plasma Hormonal Levels Induced by Multiple Follicular Recruitment. Fertil. Steril. 1993;59:1179–1186. doi: 10.1016/S0015-0282(16)55973-1. PubMed DOI

Marchini M., Dorta M., Bombelli F., Ruspa M., Campana A., Dolcetta G., Radici E. Effects of Clomiphene Citrate on Cervical Mucus: Analysis of Some Influencing Factors. Int. J. Fertil. 1989;34:154–159. PubMed

Palomba A., Abbondio M., Fiorito G., Uzzau S., Pagnozzi D., Tanca A. Comparative Evaluation of MaxQuant and Proteome Discoverer MS1-Based Protein Quantification Tools. J. Proteome Res. 2021;20:3497–3507. doi: 10.1021/acs.jproteome.1c00143. PubMed DOI PMC

Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC

Thul P.J., Åkesson L., Wiking M., Mahdessian D., Geladaki A., Ait Blal H., Alm T., Asplund A., Björk L., Breckels L.M., et al. A Subcellular Map of the Human Proteome. Science. 2017;356:eaal3321. doi: 10.1126/science.aal3321. PubMed DOI

Shaw J.L.V., Smith C.R., Diamandis E.P. Proteomic Analysis of Human Cervico-Vaginal Fluid. J. Proteome Res. 2007;6:2859–2865. doi: 10.1021/pr0701658. PubMed DOI

Tang L.-J., De Seta F., Odreman F., Venge P., Piva C., Guaschino S., Garcia R.C. Proteomic Analysis of Human Cervical-Vaginal Fluids. J. Proteome Res. 2007;6:2874–2883. doi: 10.1021/pr0700899. PubMed DOI

Ma Z., Chen J., Luan T., Chu C., Wu W., Zhu Y., Gu Y. Proteomic Analysis of Human Cervical Adenocarcinoma Mucus to Identify Potential Protein Biomarkers. PeerJ. 2020;8:e9527. doi: 10.7717/peerj.9527. PubMed DOI PMC

Maddison J.W., Rickard J.P., Bernecic N.C., Tsikis G., Soleilhavoup C., Labas V., Combes-Soia L., Harichaux G., Druart X., Leahy T., et al. Oestrus Synchronisation and Superovulation Alter the Cervicovaginal Mucus Proteome of the Ewe. J. Proteom. 2017;155:1–10. doi: 10.1016/j.jprot.2017.01.007. PubMed DOI

Lee D.-C., Hassan S.S., Romero R., Tarca A.L., Bhatti G., Gervasi M.T., Caruso J.A., Stemmer P.M., Kim C.J., Hansen L.K., et al. Protein Profiling Underscores Immunological Functions of Uterine Cervical Mucus Plug in Human Pregnancy. J. Proteom. 2011;74:817–828. doi: 10.1016/j.jprot.2011.02.025. PubMed DOI PMC

Han L., Park D., Reddy A., Wilmarth P.A., Jensen J.T. Comparing Endocervical Mucus Proteome of Humans and Rhesus Macaques. Proteom. Clin. Appl. 2021;15:e2100023. doi: 10.1002/prca.202100023. PubMed DOI PMC

Comparetto C., Borruto F. Cervical Cancer Screening: A Never-Ending Developing Program. World J. Clin. Cases. 2015;3:614–624. doi: 10.12998/wjcc.v3.i7.614. PubMed DOI PMC

Rylova G., Ozdian T., Varanasi L., Soural M., Hlavac J., Holub D., Dzubak P., Hajduch M. Affinity-Based Methods in Drug-Target Discovery. Curr. Drug Targets. 2015;16:60–76. doi: 10.2174/1389450115666141120110323. PubMed DOI

Antharavally B.S., Mallia K.A., Rangaraj P., Haney P., Bell P.A. Quantitation of Proteins Using a Dye-Metal-Based Colorimetric Protein Assay. Anal. Biochem. 2009;385:342–345. doi: 10.1016/j.ab.2008.11.024. PubMed DOI

Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Ozdian T., Holub D., Maceckova Z., Varanasi L., Rylova G., Rehulka J., Vaclavkova J., Slavik H., Moudry P., Znojek P., et al. Proteomic Profiling Reveals DNA Damage, Nucleolar and Ribosomal Stress Are the Main Responses to Oxaliplatin Treatment in Cancer Cells. J. Proteom. 2017;162:73–85. doi: 10.1016/j.jprot.2017.05.005. PubMed DOI

Wiśniewski J.R. Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and Multienzyme Digestion FASP Protocols. Anal. Chem. 2016;88:5438–5443. doi: 10.1021/acs.analchem.6b00859. PubMed DOI

Erde J., Loo R.R.O., Loo J.A. Enhanced FASP (EFASP) to Increase Proteome Coverage and Sample Recovery for Quantitative Proteomic Experiments. J. Proteome Res. 2014;13:1885–1895. doi: 10.1021/pr4010019. PubMed DOI PMC

Odeblad E. The Discovery of Different Types of Cervical Mucus and the Billings Ovulation Method®. Bull. Ovul. Method Res. Ref. Cent. Aust. 1994;21:3–35.

Barrios De Tomasi J., Opata M.M., Mowa C.N. Immunity in the Cervix: Interphase between Immune and Cervical Epithelial Cells. J. Immunol. Res. 2019;2019:7693183. doi: 10.1155/2019/7693183. PubMed DOI PMC

Wang Y.-Y., Kannan A., Nunn K.L., Murphy M.A., Subramani D.B., Moench T., Cone R., Lai S.K. IgG in Cervicovaginal Mucus Traps HSV and Prevents Vaginal Herpes Infections. Mucosal Immunol. 2014;7:1036–1044. doi: 10.1038/mi.2013.120. PubMed DOI PMC

Hein M., Petersen A.C., Helmig R.B., Uldbjerg N., Reinholdt J. Immunoglobulin Levels and Phagocytes in the Cervical Mucus Plug at Term of Pregnancy. Acta Obstet. Gynecol. Scand. 2005;84:734–742. doi: 10.1111/j.0001-6349.2005.00525.x. PubMed DOI

Zheng Y., Li Z., Xiong M., Luo T., Dong X., Huang B., Zhang H., Ai J. Hormonal Replacement Treatment Improves Clinical Pregnancy in Frozen-Thawed Embryos Transfer Cycles: A Retrospective Cohort Study. Am. J. Transl. Res. 2013;6:85–90. PubMed PMC

De Sutter P., Veldeman L., Kok P., Szymczak N., Van der Elst J., Dhont M. Comparison of Outcome of Pregnancy after Intra-Uterine Insemination (IUI) and IVF. Hum. Reprod. 2005;20:1642–1646. doi: 10.1093/humrep/deh807. PubMed DOI

Gekka Y., Nakagawa K., Watanabe H., Kuroda K., Horikawa T., Takamizawa S., Sugiyama R. Comparison of Pregnancy Outcomes between Fresh Embryo Transfer in a Natural IVF Cycle and IUI Cycle Among Infertile Young Women. J. Reprod. Infertil. 2022;23:93–99. doi: 10.18502/jri.v23i2.8993. PubMed DOI PMC

von Wolff M., Fäh M., Roumet M., Mitter V., Stute P., Griesinger G., Kohl Schwartz A. Thin Endometrium Is Also Associated with Lower Clinical Pregnancy Rate in Unstimulated Menstrual Cycles: A Study Based on Natural Cycle IVF. Front. Endocrinol. 2018:9. doi: 10.3389/fendo.2018.00776. PubMed DOI PMC

Bourgain C., Devroey P. The Endometrium in Stimulated Cycles for IVF. Hum. Reprod. Update. 2003;9:515–522. doi: 10.1093/humupd/dmg045. PubMed DOI

Adams S.M., Terry V., Hosie M.J., Gayer N., Murphy C.R. Endometrial Response to IVF Hormonal Manipulation: Comparative Analysis of Menopausal, down Regulated and Natural Cycles. Reprod. Biol. Endocrinol. RBE. 2004;2:21. doi: 10.1186/1477-7827-2-21. PubMed DOI PMC

Li M.-Q., Jin L.-P. Ovarian Stimulation for in Vitro Fertilization Alters the Protein Profile Expression in Endometrial Secretion. Int. J. Clin. Exp. Pathol. 2013;6:1964. PubMed PMC

Han L., Padua E., Hart K.D., Edelman A., Jensen J.T. Comparing Cervical Mucus Changes in Response to an Oral Progestin or Oestrogen Withdrawal in Ovarian-Suppressed Women: A Clinical Pilot. Eur. J. Contracept. Reprod. Health Care Off. J. Eur. Soc. Contracept. 2019;24:209–215. doi: 10.1080/13625187.2019.1605503. PubMed DOI PMC

Natavio M.F., Taylor D., Lewis R.A., Blumenthal P., Felix J.C., Melamed A., Gentzschein E., Stanczyk F.Z., Mishell D.R. Temporal Changes in Cervical Mucus after Insertion of the Levonorgestrel-Releasing Intrauterine System. Contraception. 2013;87:426–431. doi: 10.1016/j.contraception.2012.09.034. PubMed DOI

Steward R., Melamed A., Granat A., Mishell D.R. Comparison of Cervical Mucus of 24/4 vs. 21/7 Combined Oral Contraceptives. Contraception. 2012;86:710–715. doi: 10.1016/j.contraception.2012.05.004. PubMed DOI

Wira C.R., Rodriguez-Garcia M., Patel M.V. The Role of Sex Hormones in Immune Protection of the Female Reproductive Tract. Nat. Rev. Immunol. 2015;15:217–230. doi: 10.1038/nri3819. PubMed DOI PMC

Boomsma C.M., Kavelaars A., Eijkemans M.J.C., Amarouchi K., Teklenburg G., Gutknecht D., Fauser B.J.C.M., Heijnen C.J., Macklon N.S. Cytokine Profiling in Endometrial Secretions: A Non-Invasive Window on Endometrial Receptivity. Reprod. Biomed. Online. 2009;18:85–94. doi: 10.1016/S1472-6483(10)60429-4. PubMed DOI

Devroey P., Aboulghar M., Garcia-Velasco J., Griesinger G., Humaidan P., Kolibianakis E., Ledger W., Tomás C., Fauser B.C.J.M. Improving the Patient’s Experience of IVF/ICSI: A Proposal for an Ovarian Stimulation Protocol with GnRH Antagonist Co-Treatment. Hum. Reprod. Oxf. Engl. 2009;24:764–774. doi: 10.1093/humrep/den468. PubMed DOI

Filicori M., Cognigni G.E., Arnone R., Carbone F., Falbo A., Tabarelli C., Ciampaglia W., Casadio P., Spettoli D., Pecorari R. Role of Different GnRH Agonist Regimens in Pituitary Suppression and the Outcome of Controlled Ovarian Hyperstimulation. Hum. Reprod. Oxf. Engl. 1996;11((Suppl. 3)):123–132. doi: 10.1093/humrep/11.suppl_3.123. PubMed DOI

Rappsilber J., Ishihama Y., Mann M. Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in Proteomics. Anal. Chem. 2003;75:663–670. doi: 10.1021/ac026117i. PubMed DOI

The M., MacCoss M.J., Noble W.S., Käll L. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. J. Am. Soc. Mass Spectrom. 2016;27:1719–1727. doi: 10.1007/s13361-016-1460-7. PubMed DOI PMC

MacLean B., Tomazela D.M., Shulman N., Chambers M., Finney G.L., Frewen B., Kern R., Tabb D.L., Liebler D.C., MacCoss M.J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinforma. Oxf. Engl. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC

Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...