Proteome Mapping of Cervical Mucus and Its Potential as a Source of Biomarkers in Female Tract Disorders
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36674559
PubMed Central
PMC9863546
DOI
10.3390/ijms24021038
PII: ijms24021038
Knihovny.cz E-resources
- Keywords
- cervical mucus, gynecology, in vitro fertilization, intrauterine insemination, proteomics,
- MeSH
- Biomarkers MeSH
- Cervix Mucus * MeSH
- Fertilization in Vitro MeSH
- Humans MeSH
- Proteome MeSH
- Proteomics MeSH
- Insemination, Artificial * MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- Proteome MeSH
Cervical mucus (CM) is a viscous fluid that is produced by the cervical glands and functions as a uterine cervix plug. Its viscosity decreases during ovulation, providing a window for non-invasive sampling. This study focuses on proteomic characterization of CM to evaluate its potential as a non-invasively acquired source of biomarkers and in understanding of molecular (patho)physiology of the female genital tract. The first objective of this work was to optimize experimental workflow for CM processing and the second was to assess differences in the proteomic composition of CM during natural ovulatory cycles obtained from intrauterine insemination (IUI) cycles and in vitro fertilization (IVF) cycles with controlled ovarian hyperstimulation. Proteomic analysis of CM samples revealed 4370 proteins involved in processes including neutrophil degranulation, cellular stress responses, and hemostasis. Differential expression analysis revealed 199 proteins enriched in IUI samples and 422 enriched in IVF. The proteins enriched in IUI were involved in phosphatidic acid synthesis, responses to external stimulus, and neutrophil degranulation, while those enriched in IVF samples were linked to neutrophil degranulation, formation of a cornified envelope and hemostasis. Subsequent analyses clarified the protein composition of the CM and how it is altered by hormonal stimulation of the uterus.
See more in PubMed
Katz D.F. Human Cervical Mucus: Research Update. Am. J. Obstet. Gynecol. 1991;165:1984–1986. doi: 10.1016/S0002-9378(11)90559-6. PubMed DOI
Insler V., Melmed H., Eichenbrenner I., Serr D.M., Lunenfeld B. The Cervical Score. Int. J. Gynecol. Obstet. 1972;10:223–228. doi: 10.1002/j.1879-3479.1972.tb00857.x. DOI
Van Kooij R.J., Roelofs H.J., Kathmann G.A., Kramer M.F. Human Cervical Mucus and Its Mucous Glycoprotein during the Menstrual Cycle. Fertil. Steril. 1980;34:226–233. doi: 10.1016/S0015-0282(16)44952-6. PubMed DOI
Bigelow J.L., Dunson D.B., Stanford J.B., Ecochard R., Gnoth C., Colombo B. Mucus Observations in the Fertile Window: A Better Predictor of Conception than Timing of Intercourse. Hum. Reprod. Oxf. Engl. 2004;19:889–892. doi: 10.1093/humrep/deh173. PubMed DOI
Rai P., Kota V., Sundaram C.S., Deendayal M., Shivaji S. Proteome of Human Endometrium: Identification of Differentially Expressed Proteins in Proliferative and Secretory Phase Endometrium. Proteom. Clin. Appl. 2010;4:48–59. doi: 10.1002/prca.200900094. PubMed DOI
Salamonsen L.A., Edgell T., Rombauts L.J.F., Stephens A.N., Robertson D.M., Rainczuk A., Nie G., Hannan N.J. Proteomics of the Human Endometrium and Uterine Fluid: A Pathway to Biomarker Discovery. Fertil. Steril. 2013;99:1086–1092. doi: 10.1016/j.fertnstert.2012.09.013. PubMed DOI
Sadler T.W. Langman’s Medical Embryology. Williams & Wilkins; Baltimore, MD, USA: 1995.
Andersch-Björkman Y., Thomsson K.A., Holmén Larsson J.M., Ekerhovd E., Hansson G.C. Large Scale Identification of Proteins, Mucins, and Their O-Glycosylation in the Endocervical Mucus during the Menstrual Cycle. Mol. Cell. Proteom. MCP. 2007;6:708–716. doi: 10.1074/mcp.M600439-MCP200. PubMed DOI
Panicker G., Lee D.R., Unger E.R. Optimization of SELDI-TOF Protein Profiling for Analysis of Cervical Mucous. J. Proteom. 2009;71:637–646. doi: 10.1016/j.jprot.2008.11.004. PubMed DOI
Grande G., Milardi D., Vincenzoni F., Pompa G., Biscione A., Astorri A.L., Fruscella E., De Luca A., Messana I., Castagnola M., et al. Proteomic Characterization of the Qualitative and Quantitative Differences in Cervical Mucus Composition during the Menstrual Cycle. Mol. Biosyst. 2015;11:1717–1725. doi: 10.1039/C5MB00071H. PubMed DOI
Grande G., Vincenzoni F., Milardi D., Pompa G., Ricciardi D., Fruscella E., Mancini F., Pontecorvi A., Castagnola M., Marana R. Cervical Mucus Proteome in Endometriosis. Clin. Proteom. 2017;14:7. doi: 10.1186/s12014-017-9142-4. PubMed DOI PMC
Otani S., Fujii T., Kukimoto I., Yamamoto N., Tsukamoto T., Ichikawa R., Nishio E., Iwata A. Cytokine Expression Profiles in Cervical Mucus from Patients with Cervical Cancer and Its Precursor Lesions. Cytokine. 2019;120:210–219. doi: 10.1016/j.cyto.2019.05.011. PubMed DOI
Rocconi R.P., Wilhite A.M., Schambeau L., Scalici J., Pannell L., Finan M.A. A Novel Proteomic-Based Screening Method for Ovarian Cancer Using Cervicovaginal Fluids: A Window into the Abdomen. Gynecol. Oncol. 2022;164:181–186. doi: 10.1016/j.ygyno.2021.10.083. PubMed DOI
Finan M., Pannell L., Billheimer D., Schambeau L., Blandford J., Rocconi R. A Novel Method of Screening for Endometrial Cancer. Gynecol. Oncol. 2012;125:S165. doi: 10.1016/j.ygyno.2011.12.406. DOI
Simsek E., Haydardedeoglu B., Hacivelioglu S.O., Cok T., Parlakgumus A., Bagis T. Effect of Cervical Mucus Aspiration before Intrauterine Insemination. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2008;103:136–139. doi: 10.1016/j.ijgo.2008.05.030. PubMed DOI
Massai M.R., de Ziegler D., Lesobre V., Bergeron C., Frydman R., Bouchard P. Clomiphene Citrate Affects Cervical Mucus and Endometrial Morphology Independently of the Changes in Plasma Hormonal Levels Induced by Multiple Follicular Recruitment. Fertil. Steril. 1993;59:1179–1186. doi: 10.1016/S0015-0282(16)55973-1. PubMed DOI
Marchini M., Dorta M., Bombelli F., Ruspa M., Campana A., Dolcetta G., Radici E. Effects of Clomiphene Citrate on Cervical Mucus: Analysis of Some Influencing Factors. Int. J. Fertil. 1989;34:154–159. PubMed
Palomba A., Abbondio M., Fiorito G., Uzzau S., Pagnozzi D., Tanca A. Comparative Evaluation of MaxQuant and Proteome Discoverer MS1-Based Protein Quantification Tools. J. Proteome Res. 2021;20:3497–3507. doi: 10.1021/acs.jproteome.1c00143. PubMed DOI PMC
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Thul P.J., Åkesson L., Wiking M., Mahdessian D., Geladaki A., Ait Blal H., Alm T., Asplund A., Björk L., Breckels L.M., et al. A Subcellular Map of the Human Proteome. Science. 2017;356:eaal3321. doi: 10.1126/science.aal3321. PubMed DOI
Shaw J.L.V., Smith C.R., Diamandis E.P. Proteomic Analysis of Human Cervico-Vaginal Fluid. J. Proteome Res. 2007;6:2859–2865. doi: 10.1021/pr0701658. PubMed DOI
Tang L.-J., De Seta F., Odreman F., Venge P., Piva C., Guaschino S., Garcia R.C. Proteomic Analysis of Human Cervical-Vaginal Fluids. J. Proteome Res. 2007;6:2874–2883. doi: 10.1021/pr0700899. PubMed DOI
Ma Z., Chen J., Luan T., Chu C., Wu W., Zhu Y., Gu Y. Proteomic Analysis of Human Cervical Adenocarcinoma Mucus to Identify Potential Protein Biomarkers. PeerJ. 2020;8:e9527. doi: 10.7717/peerj.9527. PubMed DOI PMC
Maddison J.W., Rickard J.P., Bernecic N.C., Tsikis G., Soleilhavoup C., Labas V., Combes-Soia L., Harichaux G., Druart X., Leahy T., et al. Oestrus Synchronisation and Superovulation Alter the Cervicovaginal Mucus Proteome of the Ewe. J. Proteom. 2017;155:1–10. doi: 10.1016/j.jprot.2017.01.007. PubMed DOI
Lee D.-C., Hassan S.S., Romero R., Tarca A.L., Bhatti G., Gervasi M.T., Caruso J.A., Stemmer P.M., Kim C.J., Hansen L.K., et al. Protein Profiling Underscores Immunological Functions of Uterine Cervical Mucus Plug in Human Pregnancy. J. Proteom. 2011;74:817–828. doi: 10.1016/j.jprot.2011.02.025. PubMed DOI PMC
Han L., Park D., Reddy A., Wilmarth P.A., Jensen J.T. Comparing Endocervical Mucus Proteome of Humans and Rhesus Macaques. Proteom. Clin. Appl. 2021;15:e2100023. doi: 10.1002/prca.202100023. PubMed DOI PMC
Comparetto C., Borruto F. Cervical Cancer Screening: A Never-Ending Developing Program. World J. Clin. Cases. 2015;3:614–624. doi: 10.12998/wjcc.v3.i7.614. PubMed DOI PMC
Rylova G., Ozdian T., Varanasi L., Soural M., Hlavac J., Holub D., Dzubak P., Hajduch M. Affinity-Based Methods in Drug-Target Discovery. Curr. Drug Targets. 2015;16:60–76. doi: 10.2174/1389450115666141120110323. PubMed DOI
Antharavally B.S., Mallia K.A., Rangaraj P., Haney P., Bell P.A. Quantitation of Proteins Using a Dye-Metal-Based Colorimetric Protein Assay. Anal. Biochem. 2009;385:342–345. doi: 10.1016/j.ab.2008.11.024. PubMed DOI
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Ozdian T., Holub D., Maceckova Z., Varanasi L., Rylova G., Rehulka J., Vaclavkova J., Slavik H., Moudry P., Znojek P., et al. Proteomic Profiling Reveals DNA Damage, Nucleolar and Ribosomal Stress Are the Main Responses to Oxaliplatin Treatment in Cancer Cells. J. Proteom. 2017;162:73–85. doi: 10.1016/j.jprot.2017.05.005. PubMed DOI
Wiśniewski J.R. Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and Multienzyme Digestion FASP Protocols. Anal. Chem. 2016;88:5438–5443. doi: 10.1021/acs.analchem.6b00859. PubMed DOI
Erde J., Loo R.R.O., Loo J.A. Enhanced FASP (EFASP) to Increase Proteome Coverage and Sample Recovery for Quantitative Proteomic Experiments. J. Proteome Res. 2014;13:1885–1895. doi: 10.1021/pr4010019. PubMed DOI PMC
Odeblad E. The Discovery of Different Types of Cervical Mucus and the Billings Ovulation Method®. Bull. Ovul. Method Res. Ref. Cent. Aust. 1994;21:3–35.
Barrios De Tomasi J., Opata M.M., Mowa C.N. Immunity in the Cervix: Interphase between Immune and Cervical Epithelial Cells. J. Immunol. Res. 2019;2019:7693183. doi: 10.1155/2019/7693183. PubMed DOI PMC
Wang Y.-Y., Kannan A., Nunn K.L., Murphy M.A., Subramani D.B., Moench T., Cone R., Lai S.K. IgG in Cervicovaginal Mucus Traps HSV and Prevents Vaginal Herpes Infections. Mucosal Immunol. 2014;7:1036–1044. doi: 10.1038/mi.2013.120. PubMed DOI PMC
Hein M., Petersen A.C., Helmig R.B., Uldbjerg N., Reinholdt J. Immunoglobulin Levels and Phagocytes in the Cervical Mucus Plug at Term of Pregnancy. Acta Obstet. Gynecol. Scand. 2005;84:734–742. doi: 10.1111/j.0001-6349.2005.00525.x. PubMed DOI
Zheng Y., Li Z., Xiong M., Luo T., Dong X., Huang B., Zhang H., Ai J. Hormonal Replacement Treatment Improves Clinical Pregnancy in Frozen-Thawed Embryos Transfer Cycles: A Retrospective Cohort Study. Am. J. Transl. Res. 2013;6:85–90. PubMed PMC
De Sutter P., Veldeman L., Kok P., Szymczak N., Van der Elst J., Dhont M. Comparison of Outcome of Pregnancy after Intra-Uterine Insemination (IUI) and IVF. Hum. Reprod. 2005;20:1642–1646. doi: 10.1093/humrep/deh807. PubMed DOI
Gekka Y., Nakagawa K., Watanabe H., Kuroda K., Horikawa T., Takamizawa S., Sugiyama R. Comparison of Pregnancy Outcomes between Fresh Embryo Transfer in a Natural IVF Cycle and IUI Cycle Among Infertile Young Women. J. Reprod. Infertil. 2022;23:93–99. doi: 10.18502/jri.v23i2.8993. PubMed DOI PMC
von Wolff M., Fäh M., Roumet M., Mitter V., Stute P., Griesinger G., Kohl Schwartz A. Thin Endometrium Is Also Associated with Lower Clinical Pregnancy Rate in Unstimulated Menstrual Cycles: A Study Based on Natural Cycle IVF. Front. Endocrinol. 2018:9. doi: 10.3389/fendo.2018.00776. PubMed DOI PMC
Bourgain C., Devroey P. The Endometrium in Stimulated Cycles for IVF. Hum. Reprod. Update. 2003;9:515–522. doi: 10.1093/humupd/dmg045. PubMed DOI
Adams S.M., Terry V., Hosie M.J., Gayer N., Murphy C.R. Endometrial Response to IVF Hormonal Manipulation: Comparative Analysis of Menopausal, down Regulated and Natural Cycles. Reprod. Biol. Endocrinol. RBE. 2004;2:21. doi: 10.1186/1477-7827-2-21. PubMed DOI PMC
Li M.-Q., Jin L.-P. Ovarian Stimulation for in Vitro Fertilization Alters the Protein Profile Expression in Endometrial Secretion. Int. J. Clin. Exp. Pathol. 2013;6:1964. PubMed PMC
Han L., Padua E., Hart K.D., Edelman A., Jensen J.T. Comparing Cervical Mucus Changes in Response to an Oral Progestin or Oestrogen Withdrawal in Ovarian-Suppressed Women: A Clinical Pilot. Eur. J. Contracept. Reprod. Health Care Off. J. Eur. Soc. Contracept. 2019;24:209–215. doi: 10.1080/13625187.2019.1605503. PubMed DOI PMC
Natavio M.F., Taylor D., Lewis R.A., Blumenthal P., Felix J.C., Melamed A., Gentzschein E., Stanczyk F.Z., Mishell D.R. Temporal Changes in Cervical Mucus after Insertion of the Levonorgestrel-Releasing Intrauterine System. Contraception. 2013;87:426–431. doi: 10.1016/j.contraception.2012.09.034. PubMed DOI
Steward R., Melamed A., Granat A., Mishell D.R. Comparison of Cervical Mucus of 24/4 vs. 21/7 Combined Oral Contraceptives. Contraception. 2012;86:710–715. doi: 10.1016/j.contraception.2012.05.004. PubMed DOI
Wira C.R., Rodriguez-Garcia M., Patel M.V. The Role of Sex Hormones in Immune Protection of the Female Reproductive Tract. Nat. Rev. Immunol. 2015;15:217–230. doi: 10.1038/nri3819. PubMed DOI PMC
Boomsma C.M., Kavelaars A., Eijkemans M.J.C., Amarouchi K., Teklenburg G., Gutknecht D., Fauser B.J.C.M., Heijnen C.J., Macklon N.S. Cytokine Profiling in Endometrial Secretions: A Non-Invasive Window on Endometrial Receptivity. Reprod. Biomed. Online. 2009;18:85–94. doi: 10.1016/S1472-6483(10)60429-4. PubMed DOI
Devroey P., Aboulghar M., Garcia-Velasco J., Griesinger G., Humaidan P., Kolibianakis E., Ledger W., Tomás C., Fauser B.C.J.M. Improving the Patient’s Experience of IVF/ICSI: A Proposal for an Ovarian Stimulation Protocol with GnRH Antagonist Co-Treatment. Hum. Reprod. Oxf. Engl. 2009;24:764–774. doi: 10.1093/humrep/den468. PubMed DOI
Filicori M., Cognigni G.E., Arnone R., Carbone F., Falbo A., Tabarelli C., Ciampaglia W., Casadio P., Spettoli D., Pecorari R. Role of Different GnRH Agonist Regimens in Pituitary Suppression and the Outcome of Controlled Ovarian Hyperstimulation. Hum. Reprod. Oxf. Engl. 1996;11((Suppl. 3)):123–132. doi: 10.1093/humrep/11.suppl_3.123. PubMed DOI
Rappsilber J., Ishihama Y., Mann M. Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in Proteomics. Anal. Chem. 2003;75:663–670. doi: 10.1021/ac026117i. PubMed DOI
The M., MacCoss M.J., Noble W.S., Käll L. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. J. Am. Soc. Mass Spectrom. 2016;27:1719–1727. doi: 10.1007/s13361-016-1460-7. PubMed DOI PMC
MacLean B., Tomazela D.M., Shulman N., Chambers M., Finney G.L., Frewen B., Kern R., Tabb D.L., Liebler D.C., MacCoss M.J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinforma. Oxf. Engl. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC