The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS21/149/OHK2/3T/12
Ministry of Education Youth and Sports
PubMed
36675171
PubMed Central
PMC9864084
DOI
10.3390/ijms24021656
PII: ijms24021656
Knihovny.cz E-zdroje
- Klíčová slova
- corrosion, nitrides, nitrogen ion implantation, titanium alloy,
- MeSH
- elektrochemické techniky MeSH
- koroze MeSH
- niob chemie MeSH
- povrchové vlastnosti MeSH
- slitiny * chemie MeSH
- tantal chemie MeSH
- testování materiálů MeSH
- titan * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- niob MeSH
- slitiny * MeSH
- tantal MeSH
- titan * MeSH
Titanium beta alloys represent the new generation of materials for the manufacturing of joint implants. Their Young's modulus is lower and thus closer to the bone tissue compared to commonly used alloys. The surface tribological properties of these materials should be improved by ion implantation. The influence of this surface treatment on corrosion behaviour is unknown. The surface of Ti-36Nb-6Ta, Ti-36Nb-4Zr, and Ti-39Nb titanium β-alloys was modified using nitrogen ion implantation. X-ray photoelectron spectroscopy was used for surface analysis, which showed the presence of titanium, niobium, and tantalum nitrides in the treated samples and the elimination of less stable oxides. Electrochemical methods, electrochemical impedance spectra, polarisation resistance, and Mott-Schottky plot were measured in a physiological saline solution. The results of the measurements showed that ion implantation does not have a significant negative effect on the corrosion behaviour of the material. The best results of the alloys investigated were achieved by the Ti-36Nb-6Ta alloy. The combination of niobium and tantalum nitrides had a positive effect on the corrosion resistance of this alloy. After surface treatment, the polarization resistance of this alloy increased, 2.3 × 106 Ω·cm2, demonstrating higher corrosion resistance of the alloy. These results were also supported by the results of electrochemical impedance spectroscopy.
Zobrazit více v PubMed
Geetha M., Singh A., Asokamani R., Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Romanov D., Sosnin K., Pronin S., Konovalov S., Moskovskii S., Gromov V., Ivanov Y., Bataev V., Semin A. Electroexplosive hafnium coating on titanium implant modified by nitrogen ions and electron beam processing. Surf. Coat. Technol. 2021;409:126895. doi: 10.1016/j.surfcoat.2021.126895. DOI
Stráský J., Harcuba P., Václavová K., Horváth K., Landa M., Srba O., Janeček M. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. Mater. 2017;71:329–336. doi: 10.1016/j.jmbbm.2017.03.026. PubMed DOI
Vlcak P., Fojt J., Weiss Z., Kopeček J., Perina V. The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surf. Coat. Technol. 2019;358:144–152. doi: 10.1016/j.surfcoat.2018.11.004. DOI
Rautray T., Narayanan R., Kim K.-H. Ion implantation of titanium based biomaterials. Prog. Mater. Sci. 2011;56:1137–1177. doi: 10.1016/j.pmatsci.2011.03.002. DOI
Dong H., Bell T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear. 2000;238:131–137. doi: 10.1016/S0043-1648(99)00359-2. DOI
Budzynski P., Youssef A., Sielanko J. Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear. 2006;261:1271–1276. doi: 10.1016/j.wear.2006.03.008. DOI
Vishnu J., Manivasagam G. Surface Modification and Biological Approaches for Tackling Titanium Wear-Induced Aseptic Loosening. J. Bio- Tribo-Corros. 2021;7:32. doi: 10.1007/s40735-021-00474-y. DOI
Liu H., Hou X., Sun T., Yao J., Wu P., Li D., Li J., Han J. Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes. Surf. Coat. Technol. 2019;359:468–475. doi: 10.1016/j.surfcoat.2018.12.108. DOI
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008;1:30–42. doi: 10.1016/j.jmbbm.2007.07.001. PubMed DOI
Cui F., Luo Z. Biomaterials modification by ion-beam processing. Surf. Coat. Technol. 1999;112:278–285. doi: 10.1016/S0257-8972(98)00763-4. DOI
Gordin D., Busardo D., Cimpean A., Vasilescu C., Höche D., Drob S., Mitran V., Cornen M., Gloriant T. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications. Mater. Sci. Eng. C. 2013;33:4173–4182. doi: 10.1016/j.msec.2013.06.008. PubMed DOI
Lei M., Ou Y., Wang K., Chen L. Wear and corrosion properties of plasma-based low-energy nitrogen ion implanted titanium. Surf. Coat. Technol. 2011;205:4602–4607. doi: 10.1016/j.surfcoat.2011.03.141. DOI
El-Hossary F., Negm N., Khalil S., Raaif M. Surface modification of titanium by radio frequency plasma nitriding. Thin Solid Films. 2006;497:196–202. doi: 10.1016/j.tsf.2005.09.193. DOI
Fukumoto S., Tsubakino H., Inoue S., Liu L., Terasawa M., Mitamura T. Surface modification of titanium by nitrogen ion implantation. Mater. Sci. Eng. A. 1999;263:205–209. doi: 10.1016/S0921-5093(98)01166-6. DOI
Vlcak P., Drahokoupil J., Vertat P., Sepitka J., Duchon J. Hardness response to the stability of a Ti(+N) solid solution in an annealed TiN/Ti(+N)/Ti mixture layer formed by nitrogen ion implantation into titanium. J. Alloys Compd. 2018;746:490–495. doi: 10.1016/j.jallcom.2018.02.301. DOI
Vlcak P., Fojt J., Koller J., Drahokoupil J., Smola V. Surface pre-treatments of Ti-Nb-Zr-Ta beta titanium alloy: The effect of chemical, electrochemical and ion sputter etching on morphology, residual stress, corrosion stability and the MG-63 cell response. Results Phys. 2021;28:104613. doi: 10.1016/j.rinp.2021.104613. DOI
Nakai M., Niinomi M., Akahori T., Ohtsu N., Nishimura H., Toda H., Fukui H., Ogawa M. Surface hardening of biomedical Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V ELI by gas nitriding. Mater. Sci. Eng. A. 2008;486:193–201. doi: 10.1016/j.msea.2007.08.065. DOI
Fojt J., Hybasek V., Joska L. Electrochemical behaviour of the nanostructured surface of Ti-35Nb-2Zr alloy for biomedical applications. Mater. Corros. 2016;67:915–920. doi: 10.1002/maco.201508766. DOI
Fojt J., Joska L., Malek J., Sefl V. Corrosion behavior of Ti–39Nb alloy for dentistry. Mater. Sci. Eng. C. 2015;56:532–537. doi: 10.1016/j.msec.2015.07.029. PubMed DOI
Speight P.J. Lange’s Handbook of Chemistry. 16th ed. McGraw-Hill Education; New York, NY, USA: 2005.
Liu Y., Zu X., Zhu S., Wang L. Phase formation and corrosion behavior of nitrogen implanted Zr–Sn–Nb alloy in alkaline environment. Nucl. Instrum. Methods Phys. Res. Sect. B. 2006;246:345–350. doi: 10.1016/j.nimb.2006.01.004. DOI
Lee S., Kwon H., Kim W., Choi B. Effects of compositional and structural change on the corrosion behaviour of nitrogen implanted Zircaloy-4. Mater. Sci. Eng. A. 1999;263:23–31. doi: 10.1016/S0921-5093(98)01036-3. DOI
Miyagawa Y., Nakao S., Baba K., Hatada R., Ikeyama M., Miyagawa S. Depth profile of nitrogen concentration and nano-hardness in nitrogen implanted Zr at RT and at 600 °C. Surf. Coat. Technol. 1998;103–104:323–327. doi: 10.1016/S0257-8972(98)00408-3. DOI
Reger N., Balla V., Das M., Bhargava A. Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications. Surf. Coat. Technol. 2018;334:357–364. doi: 10.1016/j.surfcoat.2017.11.064. DOI
Sharma P., Dhawan A., Sharma S. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy. J. Non-Cryst. Solids. 2019;511:186–193. doi: 10.1016/j.jnoncrysol.2019.02.009. DOI
Liu Y., Zu X., Qiu S., Li C., Ma W., Huang X. Surface characteristics and oxidation behavior of nitrogen ion-implanted Zr–Sn–Nb alloy. Surf. Coat. Technol. 2006;200:5631–5635. doi: 10.1016/j.surfcoat.2005.07.103. DOI
Fojt J., Joska L., Hnilica F. Tantalum effect on the corrosion behavior of titanium-tantalum alloys in an environment containing fluoride ions. Kov. Mater. 2012;50:335–343. doi: 10.4149/km_2012_5_335. PubMed DOI
de Souza K., Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions. Mater. Chem. Phys. 2007;103:351–360. doi: 10.1016/j.matchemphys.2007.02.026. DOI
Zhou Y., Niinomi M., Akahori T., Fukui H., Toda H. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. A. 2005;398:28–36. doi: 10.1016/j.msea.2005.03.032. DOI
Zhao D., Han C., Li Y., Li J., Zhou K., Wei Q., Liu J., Shi Y. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J. Alloys Compd. 2019;804:288–298. doi: 10.1016/j.jallcom.2019.06.307. DOI
Metikos-Huković M., Kwokal A., Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24:3765–3775. doi: 10.1016/S0142-9612(03)00252-7. PubMed DOI
Han M.-K., Kim J.-Y., Hwang M., Song H.-J., Park Y.-J. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys. Materials. 2015;8:5986–6003. doi: 10.3390/ma8095287. PubMed DOI PMC
Vishnu D.S.M., Sure J., Liu Y., Kumar R.V., Schwandt C. Electrochemical synthesis of porous Ti-Nb alloys for biomedical applications. Mater. Sci. Eng. C. 2019;96:466–478. doi: 10.1016/j.msec.2018.11.025. PubMed DOI
Han M.-K., Hwang M.-J., Yang M.-S., Yang H.-S., Song H.-J., Park Y.-J. Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys. Mater. Sci. Eng. A. 2014;616:268–274. doi: 10.1016/j.msea.2014.08.010. DOI
Martins D., Osório W., Souza M., Caram R., Garcia A. Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochim. Acta. 2008;53:2809–2817. doi: 10.1016/j.electacta.2007.10.060. DOI
Vasilescu C., Drob S., Neacsu E., Rosca J.M. Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corros. Sci. 2012;65:431–440. doi: 10.1016/j.corsci.2012.08.042. DOI
Radovanović M., Tasić Ž., Simonović A., Mihajlović M.P., Antonijević M. Corrosion Behavior of Titanium in Simulated Body Solutions with the Addition of Biomolecules. ACS Omega. 2020;5:12768–12776. doi: 10.1021/acsomega.0c00390. PubMed DOI PMC
Souza J., Ponthiaux P., Henriques M., Oliveira R., Teughels W., Celis J., Rocha L. Corrosion behaviour of titanium in the presence of Streptococcus mutans. J. Dent. 2013;41:528–534. doi: 10.1016/j.jdent.2013.03.008. PubMed DOI
Milošev I., Kosec T., Strehblow H. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim. Acta. 2008;53:3547–3558. doi: 10.1016/j.electacta.2007.12.041. DOI
Orazem M., Tribollet B. Electrochemical Impedance Spectroscopy. Wiley; Hoboken, NJ, USA: 2011.
Yılmaz E., Gökçe A., Findik F., Gulsoy H., İyibilgin O. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater. 2018;87:59–67. doi: 10.1016/j.jmbbm.2018.07.018. PubMed DOI
Lasia A. Electrochemical Impedance Spectroscopy and Its Applications Springer. Springer; New York, NY, USA: 2014.
Macdonald J., Johnson W., Raistrick I.D., Franceschetti D.R., Wagner N., Mckubre M., Macdonald D., Sayers B., Bonanos N., Steele B.C.H., et al. Impedance Spectroscopy: Theory, Experiment, and Applications. 3rd ed. Wiley-Interscience; Hoboken, NJ, USA: 2018.
Hou W., He F., Liu Z. Characterization methods for sulfate ions diffusion coefficient in calcium sulphoaluminate mortar based on AC impedance spectroscopy. Constr. Build. Mater. 2021;289:123169. doi: 10.1016/j.conbuildmat.2021.123169. DOI
Wang H., Zhang R., Yuan Z., Shu X., Liu E., Han Z. A comparative study of the corrosion performance of titanium (Ti), titanium nitride (TiN), titanium dioxide (TiO2) and nitrogen-doped titanium oxides (N–TiO2), as coatings for biomedical applications. Ceram. Int. 2015;41 Pt B:11844–11851. doi: 10.1016/j.ceramint.2015.05.153. DOI
Huang H.-H., Liu C.-F., Wang S., Chen C.-S., Chang J.-H. Nitrogen plasma immersion ion implantation treatment of Ti6Al7Nb alloy for bone-implant applications: Enhanced in vitro biological responses and in vivo initial bone-implant contact. Surf. Coat. Technol. 2021;405:126551. doi: 10.1016/j.surfcoat.2020.126551. DOI
Jin W., Wu G., Li P., Chu P. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride. Thin Solid Films. 2014;572:85–90. doi: 10.1016/j.tsf.2014.07.057. DOI
Ramírez G., Rodil S., Arzate H., Muhl S., Olaya J. Niobium based coatings for dental implants. Appl. Surf. Sci. 2011;257:2555–2559. doi: 10.1016/j.apsusc.2010.10.021. DOI
Alishahi M., Mahboubi F., Khoie S.M., Aparicio M., Lopez-Elvira E., Méndez J., Gago R. Structural properties and corrosion resistance of tantalum nitride coatings produced by reactive DC magnetron sputtering. RSC Adv. 2016;6:89061–89072. doi: 10.1039/C6RA17869C. DOI
Zhang Y., Zheng Y., Li Y., Wang L., Bai Y., Zhao Q., Xiong X., Cheng Y., Tang Z., Deng Y., et al. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application. PLoS ONE. 2015;10:e0130774. doi: 10.1371/journal.pone.0130774. PubMed DOI PMC
Hussein M., Yilbas B., Kumar A., Drew R., Al-Aqeeli N. Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications. J. Mater. Eng. Perform. 2018;27:4655–4664. doi: 10.1007/s11665-018-3569-2. DOI
Preethi L., Antony R., Mathews T., Walczak L., Gopinath C. A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting. Sci. Rep. 2017;7:14314. doi: 10.1038/s41598-017-14463-0. PubMed DOI PMC
Khan T., Bari G., Kang H.-J., Lee T.-G., Park J.-W., Hwang H., Hossain S., Mun J., Suzuki N., Fujishima A., et al. Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx. Catalysts. 2021;11:109. doi: 10.3390/catal11010109. DOI
Guo H., Lu B., Luo J. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis. Electrochim. Acta. 2006;52:1108–1116. doi: 10.1016/j.electacta.2006.07.026. DOI
National Institute of Standards and Technology, Gaithersburg NIST X-ray Photoelectron Spectroscopy Database, Version 4.0. [(accessed on 6 December 2021)];2008 Available online: http://www.xpsfitting.com/p/about.html.
X-ray Photoelectron Spectroscopy (XPS) Reference Pages, Surface Science Western. [(accessed on 6 December 2021)];2009 Available online: https://srdata.nist.gov/xps/Default.aspx.