The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys

. 2023 Jan 14 ; 24 (2) : . [epub] 20230114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36675171

Grantová podpora
SGS21/149/OHK2/3T/12 Ministry of Education Youth and Sports

Titanium beta alloys represent the new generation of materials for the manufacturing of joint implants. Their Young's modulus is lower and thus closer to the bone tissue compared to commonly used alloys. The surface tribological properties of these materials should be improved by ion implantation. The influence of this surface treatment on corrosion behaviour is unknown. The surface of Ti-36Nb-6Ta, Ti-36Nb-4Zr, and Ti-39Nb titanium β-alloys was modified using nitrogen ion implantation. X-ray photoelectron spectroscopy was used for surface analysis, which showed the presence of titanium, niobium, and tantalum nitrides in the treated samples and the elimination of less stable oxides. Electrochemical methods, electrochemical impedance spectra, polarisation resistance, and Mott-Schottky plot were measured in a physiological saline solution. The results of the measurements showed that ion implantation does not have a significant negative effect on the corrosion behaviour of the material. The best results of the alloys investigated were achieved by the Ti-36Nb-6Ta alloy. The combination of niobium and tantalum nitrides had a positive effect on the corrosion resistance of this alloy. After surface treatment, the polarization resistance of this alloy increased, 2.3 × 106 Ω·cm2, demonstrating higher corrosion resistance of the alloy. These results were also supported by the results of electrochemical impedance spectroscopy.

Zobrazit více v PubMed

Geetha M., Singh A., Asokamani R., Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI

Romanov D., Sosnin K., Pronin S., Konovalov S., Moskovskii S., Gromov V., Ivanov Y., Bataev V., Semin A. Electroexplosive hafnium coating on titanium implant modified by nitrogen ions and electron beam processing. Surf. Coat. Technol. 2021;409:126895. doi: 10.1016/j.surfcoat.2021.126895. DOI

Stráský J., Harcuba P., Václavová K., Horváth K., Landa M., Srba O., Janeček M. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. Mater. 2017;71:329–336. doi: 10.1016/j.jmbbm.2017.03.026. PubMed DOI

Vlcak P., Fojt J., Weiss Z., Kopeček J., Perina V. The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surf. Coat. Technol. 2019;358:144–152. doi: 10.1016/j.surfcoat.2018.11.004. DOI

Rautray T., Narayanan R., Kim K.-H. Ion implantation of titanium based biomaterials. Prog. Mater. Sci. 2011;56:1137–1177. doi: 10.1016/j.pmatsci.2011.03.002. DOI

Dong H., Bell T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear. 2000;238:131–137. doi: 10.1016/S0043-1648(99)00359-2. DOI

Budzynski P., Youssef A., Sielanko J. Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear. 2006;261:1271–1276. doi: 10.1016/j.wear.2006.03.008. DOI

Vishnu J., Manivasagam G. Surface Modification and Biological Approaches for Tackling Titanium Wear-Induced Aseptic Loosening. J. Bio- Tribo-Corros. 2021;7:32. doi: 10.1007/s40735-021-00474-y. DOI

Liu H., Hou X., Sun T., Yao J., Wu P., Li D., Li J., Han J. Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes. Surf. Coat. Technol. 2019;359:468–475. doi: 10.1016/j.surfcoat.2018.12.108. DOI

Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008;1:30–42. doi: 10.1016/j.jmbbm.2007.07.001. PubMed DOI

Cui F., Luo Z. Biomaterials modification by ion-beam processing. Surf. Coat. Technol. 1999;112:278–285. doi: 10.1016/S0257-8972(98)00763-4. DOI

Gordin D., Busardo D., Cimpean A., Vasilescu C., Höche D., Drob S., Mitran V., Cornen M., Gloriant T. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications. Mater. Sci. Eng. C. 2013;33:4173–4182. doi: 10.1016/j.msec.2013.06.008. PubMed DOI

Lei M., Ou Y., Wang K., Chen L. Wear and corrosion properties of plasma-based low-energy nitrogen ion implanted titanium. Surf. Coat. Technol. 2011;205:4602–4607. doi: 10.1016/j.surfcoat.2011.03.141. DOI

El-Hossary F., Negm N., Khalil S., Raaif M. Surface modification of titanium by radio frequency plasma nitriding. Thin Solid Films. 2006;497:196–202. doi: 10.1016/j.tsf.2005.09.193. DOI

Fukumoto S., Tsubakino H., Inoue S., Liu L., Terasawa M., Mitamura T. Surface modification of titanium by nitrogen ion implantation. Mater. Sci. Eng. A. 1999;263:205–209. doi: 10.1016/S0921-5093(98)01166-6. DOI

Vlcak P., Drahokoupil J., Vertat P., Sepitka J., Duchon J. Hardness response to the stability of a Ti(+N) solid solution in an annealed TiN/Ti(+N)/Ti mixture layer formed by nitrogen ion implantation into titanium. J. Alloys Compd. 2018;746:490–495. doi: 10.1016/j.jallcom.2018.02.301. DOI

Vlcak P., Fojt J., Koller J., Drahokoupil J., Smola V. Surface pre-treatments of Ti-Nb-Zr-Ta beta titanium alloy: The effect of chemical, electrochemical and ion sputter etching on morphology, residual stress, corrosion stability and the MG-63 cell response. Results Phys. 2021;28:104613. doi: 10.1016/j.rinp.2021.104613. DOI

Nakai M., Niinomi M., Akahori T., Ohtsu N., Nishimura H., Toda H., Fukui H., Ogawa M. Surface hardening of biomedical Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V ELI by gas nitriding. Mater. Sci. Eng. A. 2008;486:193–201. doi: 10.1016/j.msea.2007.08.065. DOI

Fojt J., Hybasek V., Joska L. Electrochemical behaviour of the nanostructured surface of Ti-35Nb-2Zr alloy for biomedical applications. Mater. Corros. 2016;67:915–920. doi: 10.1002/maco.201508766. DOI

Fojt J., Joska L., Malek J., Sefl V. Corrosion behavior of Ti–39Nb alloy for dentistry. Mater. Sci. Eng. C. 2015;56:532–537. doi: 10.1016/j.msec.2015.07.029. PubMed DOI

Speight P.J. Lange’s Handbook of Chemistry. 16th ed. McGraw-Hill Education; New York, NY, USA: 2005.

Liu Y., Zu X., Zhu S., Wang L. Phase formation and corrosion behavior of nitrogen implanted Zr–Sn–Nb alloy in alkaline environment. Nucl. Instrum. Methods Phys. Res. Sect. B. 2006;246:345–350. doi: 10.1016/j.nimb.2006.01.004. DOI

Lee S., Kwon H., Kim W., Choi B. Effects of compositional and structural change on the corrosion behaviour of nitrogen implanted Zircaloy-4. Mater. Sci. Eng. A. 1999;263:23–31. doi: 10.1016/S0921-5093(98)01036-3. DOI

Miyagawa Y., Nakao S., Baba K., Hatada R., Ikeyama M., Miyagawa S. Depth profile of nitrogen concentration and nano-hardness in nitrogen implanted Zr at RT and at 600 °C. Surf. Coat. Technol. 1998;103–104:323–327. doi: 10.1016/S0257-8972(98)00408-3. DOI

Reger N., Balla V., Das M., Bhargava A. Wear and corrosion properties of in-situ grown zirconium nitride layers for implant applications. Surf. Coat. Technol. 2018;334:357–364. doi: 10.1016/j.surfcoat.2017.11.064. DOI

Sharma P., Dhawan A., Sharma S. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy. J. Non-Cryst. Solids. 2019;511:186–193. doi: 10.1016/j.jnoncrysol.2019.02.009. DOI

Liu Y., Zu X., Qiu S., Li C., Ma W., Huang X. Surface characteristics and oxidation behavior of nitrogen ion-implanted Zr–Sn–Nb alloy. Surf. Coat. Technol. 2006;200:5631–5635. doi: 10.1016/j.surfcoat.2005.07.103. DOI

Fojt J., Joska L., Hnilica F. Tantalum effect on the corrosion behavior of titanium-tantalum alloys in an environment containing fluoride ions. Kov. Mater. 2012;50:335–343. doi: 10.4149/km_2012_5_335. PubMed DOI

de Souza K., Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions. Mater. Chem. Phys. 2007;103:351–360. doi: 10.1016/j.matchemphys.2007.02.026. DOI

Zhou Y., Niinomi M., Akahori T., Fukui H., Toda H. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. A. 2005;398:28–36. doi: 10.1016/j.msea.2005.03.032. DOI

Zhao D., Han C., Li Y., Li J., Zhou K., Wei Q., Liu J., Shi Y. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J. Alloys Compd. 2019;804:288–298. doi: 10.1016/j.jallcom.2019.06.307. DOI

Metikos-Huković M., Kwokal A., Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24:3765–3775. doi: 10.1016/S0142-9612(03)00252-7. PubMed DOI

Han M.-K., Kim J.-Y., Hwang M., Song H.-J., Park Y.-J. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys. Materials. 2015;8:5986–6003. doi: 10.3390/ma8095287. PubMed DOI PMC

Vishnu D.S.M., Sure J., Liu Y., Kumar R.V., Schwandt C. Electrochemical synthesis of porous Ti-Nb alloys for biomedical applications. Mater. Sci. Eng. C. 2019;96:466–478. doi: 10.1016/j.msec.2018.11.025. PubMed DOI

Han M.-K., Hwang M.-J., Yang M.-S., Yang H.-S., Song H.-J., Park Y.-J. Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys. Mater. Sci. Eng. A. 2014;616:268–274. doi: 10.1016/j.msea.2014.08.010. DOI

Martins D., Osório W., Souza M., Caram R., Garcia A. Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochim. Acta. 2008;53:2809–2817. doi: 10.1016/j.electacta.2007.10.060. DOI

Vasilescu C., Drob S., Neacsu E., Rosca J.M. Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corros. Sci. 2012;65:431–440. doi: 10.1016/j.corsci.2012.08.042. DOI

Radovanović M., Tasić Ž., Simonović A., Mihajlović M.P., Antonijević M. Corrosion Behavior of Titanium in Simulated Body Solutions with the Addition of Biomolecules. ACS Omega. 2020;5:12768–12776. doi: 10.1021/acsomega.0c00390. PubMed DOI PMC

Souza J., Ponthiaux P., Henriques M., Oliveira R., Teughels W., Celis J., Rocha L. Corrosion behaviour of titanium in the presence of Streptococcus mutans. J. Dent. 2013;41:528–534. doi: 10.1016/j.jdent.2013.03.008. PubMed DOI

Milošev I., Kosec T., Strehblow H. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim. Acta. 2008;53:3547–3558. doi: 10.1016/j.electacta.2007.12.041. DOI

Orazem M., Tribollet B. Electrochemical Impedance Spectroscopy. Wiley; Hoboken, NJ, USA: 2011.

Yılmaz E., Gökçe A., Findik F., Gulsoy H., İyibilgin O. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. J. Mech. Behav. Biomed. Mater. 2018;87:59–67. doi: 10.1016/j.jmbbm.2018.07.018. PubMed DOI

Lasia A. Electrochemical Impedance Spectroscopy and Its Applications Springer. Springer; New York, NY, USA: 2014.

Macdonald J., Johnson W., Raistrick I.D., Franceschetti D.R., Wagner N., Mckubre M., Macdonald D., Sayers B., Bonanos N., Steele B.C.H., et al. Impedance Spectroscopy: Theory, Experiment, and Applications. 3rd ed. Wiley-Interscience; Hoboken, NJ, USA: 2018.

Hou W., He F., Liu Z. Characterization methods for sulfate ions diffusion coefficient in calcium sulphoaluminate mortar based on AC impedance spectroscopy. Constr. Build. Mater. 2021;289:123169. doi: 10.1016/j.conbuildmat.2021.123169. DOI

Wang H., Zhang R., Yuan Z., Shu X., Liu E., Han Z. A comparative study of the corrosion performance of titanium (Ti), titanium nitride (TiN), titanium dioxide (TiO2) and nitrogen-doped titanium oxides (N–TiO2), as coatings for biomedical applications. Ceram. Int. 2015;41 Pt B:11844–11851. doi: 10.1016/j.ceramint.2015.05.153. DOI

Huang H.-H., Liu C.-F., Wang S., Chen C.-S., Chang J.-H. Nitrogen plasma immersion ion implantation treatment of Ti6Al7Nb alloy for bone-implant applications: Enhanced in vitro biological responses and in vivo initial bone-implant contact. Surf. Coat. Technol. 2021;405:126551. doi: 10.1016/j.surfcoat.2020.126551. DOI

Jin W., Wu G., Li P., Chu P. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride. Thin Solid Films. 2014;572:85–90. doi: 10.1016/j.tsf.2014.07.057. DOI

Ramírez G., Rodil S., Arzate H., Muhl S., Olaya J. Niobium based coatings for dental implants. Appl. Surf. Sci. 2011;257:2555–2559. doi: 10.1016/j.apsusc.2010.10.021. DOI

Alishahi M., Mahboubi F., Khoie S.M., Aparicio M., Lopez-Elvira E., Méndez J., Gago R. Structural properties and corrosion resistance of tantalum nitride coatings produced by reactive DC magnetron sputtering. RSC Adv. 2016;6:89061–89072. doi: 10.1039/C6RA17869C. DOI

Zhang Y., Zheng Y., Li Y., Wang L., Bai Y., Zhao Q., Xiong X., Cheng Y., Tang Z., Deng Y., et al. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application. PLoS ONE. 2015;10:e0130774. doi: 10.1371/journal.pone.0130774. PubMed DOI PMC

Hussein M., Yilbas B., Kumar A., Drew R., Al-Aqeeli N. Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications. J. Mater. Eng. Perform. 2018;27:4655–4664. doi: 10.1007/s11665-018-3569-2. DOI

Preethi L., Antony R., Mathews T., Walczak L., Gopinath C. A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting. Sci. Rep. 2017;7:14314. doi: 10.1038/s41598-017-14463-0. PubMed DOI PMC

Khan T., Bari G., Kang H.-J., Lee T.-G., Park J.-W., Hwang H., Hossain S., Mun J., Suzuki N., Fujishima A., et al. Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx. Catalysts. 2021;11:109. doi: 10.3390/catal11010109. DOI

Guo H., Lu B., Luo J. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis. Electrochim. Acta. 2006;52:1108–1116. doi: 10.1016/j.electacta.2006.07.026. DOI

National Institute of Standards and Technology, Gaithersburg NIST X-ray Photoelectron Spectroscopy Database, Version 4.0. [(accessed on 6 December 2021)];2008 Available online: http://www.xpsfitting.com/p/about.html.

X-ray Photoelectron Spectroscopy (XPS) Reference Pages, Surface Science Western. [(accessed on 6 December 2021)];2009 Available online: https://srdata.nist.gov/xps/Default.aspx.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace