The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36684752
PubMed Central
PMC9846276
DOI
10.3389/fpls.2022.1083960
Knihovny.cz E-zdroje
- Klíčová slova
- Zn-finger proteins, abiotic stresses, gene signalling ABA - abscisic acid, mechanisms, plants,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Department of Agronomy and Horticulture University of Nebraska Lincoln Scottsbluff NE United States
Department of Crop Physiology and Biochemistry Sri University Cuttack Odisha India
Department of Environmental Science University of Kalyani Nadia West Bengal India
Division of Agronomy Bangladesh Wheat and Maize Research Institute Dinajpur Bangladesh
Institute of Plant and Environmental Sciences Slovak University of Agriculture Nitra Slovakia
School of Agricultural Sciences Sharda University Greater Noida Uttar Pradesh India
Zobrazit více v PubMed
Abercrombie J. M., Halfhill M. D., Ranjan P., Rao M. R., Saxton A. M., Yuan J. S., et al. . (2008). Transcriptional responses of arabidopsis thaliana plants to as (V) stress. BMC Plant Biol. 8, 87. doi: 10.1186/1471-2229-8-87 PubMed DOI PMC
Abou-Elwafa S. F., Amin A. E. E. A. Z., Shehzad T. (2019). Genetic mapping and transcriptional profiling of phytoremediation and heavy metals responsive genes in sorghum. Ecotoxicol. Environ. Safety. 173, 366–372. doi: 10.1016/j.ecoenv.2019.02.022 PubMed DOI
Agarwal P., Arora R., Ray S., Singh A. K., Singh V. P., Takatsuji H., et al. . (2007). Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol. Biol. 65, 467–485. doi: 10.1007/S11103-007-9199-Y PubMed DOI
Ahammed G. J., Li C. X., Li X., Liu A., Chen S., Zhou J. (2020). Overexpression of tomato RING E3 ubiquitin ligase gene SlRING1 confers cadmium tolerance by attenuating cadmium accumulation and oxidative stress. Physiol. Plant 173, 449–459. doi: 10.1111/ppl.13294 PubMed DOI
Ali F., Wang Q., Fazal A., Wang L. J., Song S., Kong M. J., et al. . (2022). The DnaJ-like zinc finger protein ORANGE promotes proline biosynthesis in drought-stressed arabidopsis seedlings. Int. J. Mol. Sci. 23 (7), 3907. doi: 10.3390/ijms23073907 PubMed DOI PMC
Andreini C., Banci L., Bertini I., Rosato A. (2006). Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5 (1), 196–201. doi: 10.1021/pr050361j PubMed DOI
An Y., Han X., Tang S., Xia X., Yin W. (2014). Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in arabidopsis under varying nitrogen levels. Plant Cell Tissue Organ Culture. 119 (2), 313–327. doi: 10.1007/s11240-014-0536-y DOI
An J. P., Zhang X. W., Bi S. Q., You C. X., Wang X. F., Hao Y. J. (2019). MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. New Phytol. 222, 735–751. doi: 10.1111/nph.15628 PubMed DOI
Aslam M., Fakher B., Ashraf M. A., Cheng Y., Wang B., Qin Y. (2022). Plant low-temperature stress: Signaling and response. Agron. 12 (3), 702. doi: 10.3390/agronomy12030702 DOI
Bai H., Lin P., Li X., Liao X., Wan L., Yang X., et al. . (2021). DgC3H1, a CCCH zinc finger protein gene, confers cold tolerance in transgenic chrysanthemum. Sci. Hortic. 281, 109901. doi: 10.1016/j.scienta.2021.109901 DOI
Bakshi M., Oelmüller R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav. 9 (2), e27700. doi: 10.4161/psb.27700 PubMed DOI PMC
Barman D., Sathee L., Padhan B. K., Watts A. (2022). “Compatible solutes engineering to balance salt (Na+) and ROS-induced changes in potassium homeostasis”. In Response of field crops to abiotic stress: Current status and future prospects Choudhury Eds. S, Moulick D. (Boca Raton, USA: CRC Press; ), 139–152.
Barth O., Vogt S., Uhlemann R., Zschiesche W., Humbeck K. (2009). Stress induced and nuclear localized HIPP26 from arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol. Biol. 69 (1–2), 213–226. doi: 10.1007/s11103-008-9419-0 PubMed DOI
Basu S., Ramegowda V., Kumar A., Pereira A. (2016). Plant adaptation to drought stress. F1000 Res. 5, 1554. doi: 10.12688/f1000research.7678.1 PubMed DOI PMC
Behringer C., Schwechheimer C. (2015). B-GATA transcription factors – insights into their structure, regulation, and role in plant development. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00090 PubMed DOI PMC
Bhadra P., Maitra S., Shankar T., Hossain A., Praharaj S., Aftab T. (2012). “Climate change impact on plants: Plant responses and adaptations,” in Plant perspectives to global climate changes. Eds. Aftab T., Roychoudhury A. (Elsevier Inc., Academic Press; ), 1–24. doi: 10.1016/B978-0-323-85665-2.00004-2 DOI
Blasiak J., Pawlowska E., Szczepanska J., Kaarniranta K. (2019). Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration. Int. J. Mol. Sci. 20, 210. doi: 10.3390/ijms20010210 PubMed DOI PMC
Bogamuwa S., Jang J. (2013). The arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid and gibberellic acid-mediated regulation of seed germination. Plant Cell Environ. 36, 1507–1519. doi: 10.1111/pce.12084 PubMed DOI
Bogamuwa S., Jang J. (2016). Plant tandem CCCH zinc finger proteins interact with ABA, drought, and stress response regulators in processing-bodies and stress granules. PloS One 11, e0151574. doi: 10.1371/journal.pone.0151574 PubMed DOI PMC
Brayer K. J., Segal D. J. (2008). Keep your fingers off my DNA: Protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem. Biophys. 50, 111–131. doi: 10.1007/s12013-008-9008-5 PubMed DOI
Chai G., Hu R., Zhang D., Qi G., Zuo R., Cao Y., et al. . (2012). Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genom. 13, 253. doi: 10.1186/1471-2164-13-253 PubMed DOI PMC
Chakrabarty D., Trivedi P. K., Misra P., Tiwari M., Shri M., Shukla D., et al. . (2009). Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74 (5), 688–702. doi: 10.1016/j.chemosphere.2008.09.082 PubMed DOI
Cheng M. N., Huang Z. J., Hua Q. Z., Shan W., Kuang J. F., Lu W. J., et al. . (2017). The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Hortic. Res. 4, 17039. doi: 10.1038/hortres.2017.39 PubMed DOI PMC
Chen W. F., Wei X. B., Rety S., Huang L. Y., Liu N. N., Dou S. X., et al. . (2019). Structural analysis reveals a “molecular calipers” mechanism for a LATERAL ORGAN BOUNDARIES DOMAIN transcription factor protein from wheat. Journal of Biological Chemistry 294 (1), 142–156. PubMed PMC
Chen F., Liu H. L., Wang K., Gao Y. M., Wu M., Xiang Y. (2020). Identification of CCCH zinc finger proteins family in moso bamboo (Phyllostachys edulis), and PeC3H74 confers drought tolerance to transgenic plants. Front.Plant Sci. 11, 579255. doi: 10.3389/fpls.2020.579255 PubMed DOI PMC
Chen S., Li X., Yang C., Yan W., Liu C., Tang X., et al. . (2021. a). Genome-wide identification and characterization of FCS-like zinc finger (FLZ) family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int. J. Mol. Sci. 22 (7), 3529. doi: 10.3390/ijms22073529 PubMed DOI PMC
Chen Y., Sun A., Wang M., Zhu Z., Ouwerkerk P. B. F. (2014). Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice. Plant Mol. Biol. 84, 621–634. doi: 10.1007/s11103-013-0158-5 PubMed DOI
Chen W. C., Wang Q., Cao T. J., Lu S. (2021. b). UBC19 is a new interacting protein of ORANGE for its nuclear localization in arabidopsis thaliana. Plant Signal Behav. 16 (11), 1964847. doi: 10.1080/15592324.2021.1964847 PubMed DOI PMC
Chen J., Yang L., Yan X., Liu Y., Wang R., Fan T., et al. . (2016). Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in arabidopsis. Plant Physiol. 171, 707–719. doi: 10.1104/pp.15.01882 PubMed DOI PMC
Chong L., Guo P., Zhuand Zhu Y. (2020). Mediator complex: A pivotal regulator of ABA signaling pathway and abiotic stress response in plants. Int. J. Mol. Sci. 21, 7755. doi: 10.3390/ijms21207755 PubMed DOI PMC
Choudhury S., Mazumder M. K., Moulick D., Sharma P., Tata S. K., Ghosh D., et al. . (2022. a). Computational study of the role of secondary metabolites for mitigation of acid soil stress in cereals using dehydroascorbate and mono-dehydroascorbate reductases. Antioxidant. 11 (3), 458. doi: 10.3390/antiox11030458 PubMed DOI PMC
Choudhury S., Moulick D. (2022). Response of field crops to abiotic stress: Current status and future prospects. (Boca Raton, USA: CRC Press; ), 1–332 doi: 10.1201/9781003258063 DOI
Choudhury S., Moulick D., Ghosh D., Soliman M., Alkhedaide A., Gaber A., et al. . (2022. b). Drought-induced oxidative stress in pearl millet (Cenchrus americanus l.) at seedling stage: Survival mechanisms through alteration of morphophysiological and antioxidants activity. Life. 12 (8), 1171. doi: 10.3390/life12081171 PubMed DOI PMC
Choudhury S., Moulick D., Mazumder M. K., Pattnaik B. K., Ghosh D., Vemireddy L. R., et al. . (2022. c). An In vitro and in silico perspective study of seed priming with zinc on the phytotoxicity and accumulation pattern of arsenic in rice seedlings. Antioxidants 11 (8), 1500. doi: 10.3390/antiox11081500 PubMed DOI PMC
Choudhury S., Moulick D., Mazumder M. K. (2021. a). Secondary metabolites protect against metal and metalloid stress in rice: An in silico investigation using dehydroascorbate reductase. Acta Physiol. Plantarum. 43 (1), 1–10. doi: 10.1007/s11738-020-03173-2 DOI
Choudhury S., Sharma P., Moulick D., Mazumder M. K. (2021. b). Unrevealing metabolomics for abiotic stress adaptation and tolerance in plants. J.Crop Sci. Biotechnol. 24, 5479–5493. doi: 10.1007/s12892-021-00102-8 DOI
Chowardhara B., Borgohain P., Saha B., Awasthi J. P., Moulick D., Panda S. K. (2019. a). Phytotoxicity of cd and zn on three popular Indian mustard varieties during germination and early seedling growth. Biocatalysis Agric. Biotechnol. 21, 101349. doi: 10.1016/j.bcab.2019.101349 DOI
Chowardhara B., Borgohain P., Saha B., Prakash J., Awasthi D. M., Panda S. K. (2019. b). Assessment of phytotoxicity of zinc on Indian mustard (Brassica juncea) varieties during germination and early seedling growth. Ann. Plant Soil Res. 21 (3), 239–244. doi: 10.1016/j.bcab.2019.101349 DOI
Ciftci-Yilmaz S., Mittler R. (2008). The zinc finger network of plants. Cell Mol. Life Sci. 65, 1150–1160. doi: 10.1007/s00018-007-7473-4 PubMed DOI PMC
Ciftci-Yilmaz S., Morsy M. R., Song L., Coutu A., Krizek B. A., Lewis M. W., et al. . (2007). The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of arabidopsis to salinity stress. J.Biol. Chem. 282 (12), 9260–9268. doi: 10.1074/jbc.M611093200 PubMed DOI
Claeys H., Inzéand Inzé D. (2013). The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiol. 162, 1768–1779. doi: 10.1104/pp.113.220921 PubMed DOI PMC
Clemens S., Aarts M. G. M., Thomine S., Verbruggen N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trend. Plant Sci. 18, 92–99. doi: 10.1016/j.tplants.2012.08.003 PubMed DOI
Cuypers A., Smeets K., Vangronsveld J. (2009). “Heavy metal stress in plants,” in Plant stress biology: From genomics to systems biology. Ed. Hirt H. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; ), 161–178.
Dash G. K., Barik M., Parida S., Baig M. J., Swain P., Sahoo S. K., et al. . (2022). “Drought and high-temperature stress tolerance in field crops”, in Response of field crops to abiotic stress: Current status and future prospects. Eds. Choudhury S., Moulick D.. (Boca Raton, USA: CRC Press; ) 103-109.
Das K., Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53. doi: 10.3389/fenvs.2014.00053 DOI
Davies M. J. (2005). The oxidative environment and protein damage. Biochim. Biophys. Acta 1703 (2), 93–109. doi: 10.1016/j.bbapap.2004.08.007 PubMed DOI
de Abreu-Neto J. B., Turchetto-Zolet A. C., de Oliveira L. F. V., Bodanese Zanettini M. H., Margis Pinheiro M. (2013). Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 280 (7), 1604–1616. doi: 10.1111/febs.12159 PubMed DOI
De Zelicourt A., Colcombet J., Hirtand Hirt H. (2016). The role of MAPK modules and ABA during abiotic stress signaling. trends. Plant Sci. 21, 677–685. doi: 10.1016/j.tplants.2016.04.004 PubMed DOI
Dixit A. R., Dhankher O. P. (2011). A novel stress-associated protein ‘AtSAP10’ from arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PloS One 6 (6), e20921. doi: 10.1371/journal.pone.0020921 PubMed DOI PMC
Duan J., Zhang M., Zhang H., Xiong H., Liu P., Ali J., et al. . (2012). OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa l.). Plant Sci. 196, 143–151. doi: 10.1016/j.plantsci.2012.08.003 PubMed DOI
Fairall L., Rhodes D., Klug A. (1986). Mapping of the sites of protection on a 5 s RNA gene by the xenopus transcription factor IIIA: A model for the interaction. J. Mol. Biol. 192 (3), 577–591. doi: 10.1016/0022-2836(86)90278-0 PubMed DOI
Fan Y., Zhang Y., Rui C., et al. (2021). Zinc finger transcription factor ZAT family genes confer multi-tolerances in gossypium hirsutum l. J. Cotton Res. 4, 24. doi: 10.1186/s42397-021-00098-0 DOI
Fang H., Dong Y., Yue X., Hu J., Jiang S., Xu H., et al. . (2019). The b-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ. 42 (7), 2090–2104. doi: 10.1111/pce.13552 PubMed DOI
Fang C. X., Wang Q. S., Yu Y., Li Q. M., Zhang H. L., Wu X. C., et al. . (2011). Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Reg. 65 (1), 1–10. doi: 10.1007/s10725-011-9569-y DOI
Flores-Cáceres M. L., Hattab S., Hattab S., Boussetta H., Banni M., Hernández L. E. (2015). Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. Plant SciPlant Sci. 233, 165–173. doi: 10.1016/j.plantsci.2015.01.013 PubMed DOI
Gamsjaeger R., Liew C. K., Loughlin F. E., Crossley M., Mackay J. P. (2007). Sticky fingers: Zinc-fingers as protein-recognition motifs. Trends Biochem. Sci. 32, 63–70. doi: 10.1016/j.tibs.2006.12.007 PubMed DOI
Gangappa S. N., Botto J. F. (2014). The BBX family of plant transcription factors. Trends Plant Sci. 19 (7), 460–470. doi: 10.1016/j.tplants.2014.01.010 PubMed DOI
Gao H., Song A., Zhu X., Chen F., Jiang J., Chen Y., et al. . (2012). The heterologous expression in arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Plant. 235 (5), 979–993. doi: 10.1007/s00425-011-1558-x PubMed DOI
Ghosh D., Brahmachari K., Brestic M., Ondrisik P., Hossain A., Skalicky M., et al. . (2020. a). Integrated weed and nutrient management improve yield, nutrient uptake and economics of maize in the rice-maize cropping system of Eastern India. Agron 10 (12), 1906. doi: 10.3390/agronomy10121906 DOI
Ghosh D., Brahmachari K., Das A., Hassan M. M., Mukherjee P. K., Sarkar S., et al. . (2021). Assessment of energy budgeting and its indicator for sustainable nutrient and weed management in a rice-Maize-Green gram cropping system. Agron. 11 (1), 166. doi: 10.3390/agronomy11010166 DOI
Ghosh D., Brahmachari K., Sarkar S., Dinda N. K., Das A., Moulick D. (2022. a). Impact of nutrient management in rice-maize-greengram cropping system and integrated weed management treatments on summer greengram productivity. Ind. J. Weed Sci. 54 (1), 25–30. doi: 10.5958/0974-8164.2022.00004.1 DOI
Ghosh D., Brahmachari K., Skalicky M., Hossain A., Sarkar S., Dinda N. K., et al. . (2020. b). Nutrients supplementation through organic manures influence the growth of weeds and maize productivity. Molecules 25 (21), 4924. doi: 10.3390/molecules25214924 PubMed DOI PMC
Ghosh D., Brahmachari K., Skalický M., Roy D., Das A., Sarkar S., et al. . (2022. b). The combination of organic and inorganic fertilizers influence the weed growth, productivity and soil fertility of monsoon rice. PloS One 17 (1), e0262586. doi: 10.1371/journal.pone.0262586 PubMed DOI PMC
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMed DOI
Giri J., Vij S., Dansana P. K., Tyagi A. K. (2011). Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic arabidopsis plants. New Phytol. 191 (3), 721–732. doi: 10.1111/j.1469-8137.2011.03740.x PubMed DOI
Guo J., Bai X., Dai K., Yuan X., Guo P., Zhou M., et al. . (2021). Identification of GATA transcription factors in Brachypodium distachyon and functional characterization of BdGATA13 in drought tolerance and response to gibberellins. Front. Plant Sci. 11, 2386. doi: 10.3389/fpls.2021.763665 PubMed DOI PMC
Gupta D. K., Nicoloso F. T., Schetinger M. R. C., Rossato L. V., Pereira L. B., Castro G. Y., et al. . (2009). Antioxidant defense mechanism in hydroponically grown zea mays seedlings under moderate lead stress. J. Hazardous Materials 172 (1), 479–484. doi: 10.1016/j.jhazmat.2009.06.141 PubMed DOI
Gupta P., Nutan K. K., Singla-Pareek S. L., Pareek A. (2017). Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in rice. Front. Plant Sci. 8, 1944. doi: 10.3389/fpls.2017.01944 PubMed DOI PMC
Haider F. U., Liqun C., Coulter J. A., Cheema S. A., Wu J., Zhang R., et al. . (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Safety. 211, 111887. doi: 10.1016/j.ecoenv.2020.111887 PubMed DOI
Haider S., Raza A., Iqbal J., Shaukat M., Mahmood T. (2022). Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: A brief appraisal. Mol. Biol. Rep. ;49 (6), 1–15. doi: 10.1007/s11033-022-07190-x PubMed DOI
Han G., Lu C., Guo J., Qiao Z., Sui N., Qiu N., et al. . (2020). C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants. Front. Plant Sci. 11, 115. doi: 10.3389/fpls.2020.00115 PubMed DOI PMC
Han G., Qiao Z., Li Y., Wang C., Wang B. (2021). The roles of CCCH zinc-finger proteins in plant abiotic stress tolerance. Int. J. Mol. Sci. 22 (15), 8327. doi: 10.3390/ijms22158327 PubMed DOI PMC
Han G., Wang M., Yuan F., Sui N., Song J., Wang B. (2014). The CCCH zinc finger protein gene AtZFP1 improves salt resistance in arabidopsis thaliana. Plant Mol. Biol. 86, 237–253. doi: 10.1007/s11103-014-0226-5 PubMed DOI
Harrison M. D., Jones C. E., Solioz M., Dameron C. T. (2000). Intracellular copper routing: the role of chaperones. Trends Biochem. Sci. 25, 29–32. doi: 10.1016/S0968-0004(99)01492-9 PubMed DOI
Hasanuzzaman M., Bhuyan M. H. M. B., Anee T. I., Parvin K., Nahar K., Mahmud J. A., et al. . (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8 (9), 384. doi: 10.3390/antiox8090384 PubMed DOI PMC
Hasanuzzaman M., Hossain M. A., Silva J. A., Fujita M. (2012). “Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor,” in Crop stress and its management: Perspectives and strategies (Singapore: Springer; ), 261–315.
Hassinen V., Vallinkoski V.-M., Issakainen S., Tervahauta A., Kärenlampi S., Servomaa K. (2009). Correlation of foliar MT2b expression with cd and zn concentrations in hybrid aspen (Populus tremula×tremuloides) grown in contaminated soil. Environ. pollut. 157, 922–930. doi: 10.1016/j.envpol.2008.10.023 PubMed DOI
Hernandez J. A., Jimenez A., Mullineaux P. M., Sevilla F. (2000). Tolerance of pea (Pisum sativum l.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 23, 853–862. doi: 10.1046/j.1365-3040.2000.00602.x DOI
Hernández L. E., Sobrino-Plata J., Montero-Palmero M. B., Carrasco-Gil S., Flores-Cáceres M. L., Ortega-Villasante C., et al. . (2015). Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 66, 2901–2911. doi: 10.1093/jxb/erv063 PubMed DOI
He X., Wang C., Wang H., Li L., Wang C. (2020). The function of MAPK cascades in response to various stresses in horticultural plants. Front. Plant Sci. 11, 952. doi: 10.3389/fpls.2020.00952 PubMed DOI PMC
Hiratsu K., Mitsuda N., Matsui K., Ohme-Takagi M. (2004). Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in arabidopsis. Biochem. Biophys. Res. Commun. 321, 172–178. doi: 10.1016/j.bbrc.2004.06.115 PubMed DOI
Hirayama T., Shinozaki K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 61, 1041–1052. doi: 10.1111/j.1365-313X.2010.04124.x PubMed DOI
Hossain A., Maitra S., Pramanick B., Bhutia K. L., Ahmad Z., Moulik D., et al. . (2022). “Wild relatives of plants as sources for the development of abiotic stress tolerance in plants,” in Plant perspectives to global climate changes (Springer, Singapore: Academic Press; ), 471–518. doi: 10.1016/B978-0-323-85665-2.00011-X DOI
Hossain A., Pramanick B., Bhutia K. L., Ahmad Z., Moulick D., Maitra S., et al. . (2021). “Emerging roles of osmoprotectant glycine betaine against salt-induced oxidative stress in plants: A major outlook of maize (Zea mays l.),” in Frontiers in plant-soil interaction (Springer, Singapore: Academic Press; ), 567–587. doi: 10.1016/B978-0-323-90943-3.00015-8 DOI
Huang P., Ju H., Min J., Zhang X., Chung J., Cheong H., et al. . (2012). Molecular and physiological characterization of the arabidopsis thaliana oxidation-related zinc finger 2, a plasma membrane protein involved in ABA and salt stress response tThrough the ABI2-mediated signaling pathway. Plant Cell Physiol. 53, 193–203. doi: 10.1093/pcp/pcr162 PubMed DOI
Huang T. L., Nguyen Q. T. T., Fu S. F., Lin C. Y., Chen Y. C., Huang H. J. (2012). Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol. Biol. 80 (6), 587–608. doi: 10.1007/s11103-012-9969-z PubMed DOI
Huang J., Sun S. J., Xu D. Q., Yang X., Bao Y. M., Wang Z. F., et al. . (2009). Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. biochem. Biophy. Res. Commun. 389 (3), 556–561. doi: 10.1016/j.bbrc.2009.09.032 PubMed DOI
Huang J., Wang M., Jiang Y., Bao Y., Huang X., Sun H., et al. . (2008). Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene. 420, 135–144. doi: 10.1016/j.gene.2008.05.019 PubMed DOI
Huang J., Yang X., Wang M. M., Tang H. J., Ding L. Y., Shen Y., et al. . (2007). A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim. Biophys. Acta 1769, 220–227. doi: 10.1016/j.bbaexp.2007.02.006 PubMed DOI
Hughes N. M., Carpenter K. L., Keidel T. S., Miller C. N., Waters M. N., Smith W. K. (2014). Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in colocasia esculenta ‘Mojito’. Plant. 240 (5), 971–981. doi: 10.1007/s00425-014-2090-6 PubMed DOI
Hwang S. G., Kim J. J., Lim S. D., Park Y. C., Moon J. C., Jang C. S. (2016). Molecular dissection of Oryza sativa salt-induced RING finger protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress. Physiol. Plant 158 (2), 168–179. doi: 10.1111/ppl.12459 PubMed DOI
Iida A., Kazuoka T., Torikai S., Kikuchi H., Oeda K. (2000). A zinc finger protein RHL41 mediates the light acclimation response in arabidopsis. Plant J. 24, 191–203. doi: 10.1046/j.1365-313x.2000.00864.x PubMed DOI
Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., et al. . (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in arabidopsis. Plant J. 27 (4), 325–333. doi: 10.1046/j.1365-313x.2001.01096.x PubMed DOI
Jadhav S. S., Kumari R., Mahtha S. K., Purama R. K., Lamba V., Yadav G. (2022). “Metabolomics and molecular physiology perspective for drought and salinity stress tolerance. response of field crops to abiotic stress: Current status and future prospects”, in Response of field crops to abiotic stress: Current status and future prospects. Eds. Choudhury S, Moulick D. (Boca Raton, USA: CRC Press; ), 153–166.
Jain R. G., Fletcher S. J., Manzie N., Robinson K. E., Li P., Lu E., et al. . (2022. b). Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plant 8 (5), 535–548. doi: 10.1038/s41477-022-01152-8 PubMed DOI
Jain R., Fletcher S., Mitter N. (2022. a). Effective RNAi-mediated control of the crop pest whitefly. Nat. Plant 8 (5), 461–462. doi: 10.1038/s41477-022-01160-8 PubMed DOI
Jaleel C. A., Manivannan P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11, 100–105.
Jalmi S. K., Sinha A. K. (2015). ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front. Plant Sci. Plant Sci. 6. doi: 10.3389/fpls.2015.00769 PubMed DOI PMC
Jamil W., Wu W., Gong H., Huang J. W., Ahmad M., Zhu Q. G., et al. . (2019). C2H2-type zinc finger proteins (DkZF1/2) synergistically control persimmon fruit deastringency. Int. J. Mol. Sci. 20 (22), 5611. doi: 10.3390/ijms20225611 PubMed DOI PMC
Jamsheer K. M., Sharma M., Singh D., Mannully C. T., Jindal S., Shukla B. N., et al. . (2018. a). FCS-like zinc finger 6 and 10 repress SnRK1 signalling in arabidopsis. Plant J. 94 (2), 232–245. doi: 10.1111/tpj.13854 PubMed DOI
Jamsheer K. M., Shukla B. N., Jindal S., Gopan N., Mannully C. T., Laxmi A. (2018. b). The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J. Biol. Chem. 293 (34), 13134–13150. doi: 10.1074/jbc.RA118.002073 PubMed DOI PMC
Jang J. (2016). Arginine-rich motif-tandem CCCH zinc finger proteins in plant stress responses and post-transcriptional regulation of gene expression. Plant Sci. 252, 118–124. doi: 10.1016/j.plantsci.2016.06.014 PubMed DOI
Jan A., Maruyama K., Todaka D., Kidokoro S., Abo M., Yoshimura E., et al. . (2013). OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol. 161, 1202–1216. doi: 10.1104/pp.112.205385 PubMed DOI PMC
Jiang A.-L., Xu Z.-S., Zhao G.-Y., Cui X.-Y., Chen M., Li L.-C., et al. (2014). Genome-wide analysis of the C3H zinc finger transcription factor family and drought responses of members in aegilops tauschii. Plant Mol. Biol. Report 32, 1241–1256.
Jin Y., Liu L., Zhang S., He R., Wu Y., Chen G., et al. . (2016). Cadmium exposure to murine macrophages decreases their inflammatory responses and increases their oxidative stress. Chemosphere. 144, 168–175. doi: 10.1016/j.chemosphere.2015.08.084 PubMed DOI
Jin Y., Wang M., Fu J., Xuan N., Zhu Y., Lian Y., et al. . (2007). Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics. 90 (2), 265–275. doi: 10.1016/j.ygeno.2007.03.019 PubMed DOI
Joazeiro C. A., Weissman A. M. (2000). RING finger proteins: Mediators of ubiquitin ligase activity. Cell 102, 549–552. doi: 10.1016/s0092-8674(00)00077-5 PubMed DOI
Jonak C., Nakagami H., Hirt H. (2004). Heavy metal stress. activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 136 (2), 3276–3283. PubMed PMC
Joo H., Lim C. W., Lee S. C. (2019). Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance. Plant J. 100, 399–410. doi: 10.1111/tpj.14451 PubMed DOI
Joo H., Lim C. W., Lee S. C. (2020). The pepper RING-type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1. Plant Cell Environ. Cell Environ. 43, 1911–1924. doi: 10.1111/pce.13789 PubMed DOI
Jozefczak M., Bohler S., Schat H., Horemans N., Guisez Y., Remans T., et al. . (2015). Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium. Ann. Bot. 116, 601–612. doi: 10.1093/aob/mcv075 PubMed DOI PMC
Kang J. S., Singh H., Singh G., Kang H., Kalra V. P., Kaur J. (2017). Abiotic stress and its amelioration in cereals and pulses: A review. Int. J. Curr. Microbiol. Appl. Sci. 6, 1019–1045. doi: 10.20546/ijcmas.2017.603.120 DOI
Kanneganti V., Gupta A. K. (2008). Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol. Biol. 66 (5), 445–462. doi: 10.1007/s11103-007-9284-2 PubMed DOI
Kao C. H. (2017). Mechanisms of salt tolerance in rice plants: Cell wall-related genes and expansins. J. Taiwan Agric. Res. 66, 87–93. doi: 10.6156/JTAR/2017.06602.01 DOI
Katny M. A. C., Hoffmann-Thoma G., Schrier A. A., Fangmeier A., Jäger H. J., van Bel A. J. (2005). Increase of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age. J. Plant Physiol. 162 (4), 429–438. doi: 10.1016/j.jplph.2004.07.005 PubMed DOI
Kaur H., Kaur H., Kaur H., Srivastava S. (2022). The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul., 1–18. doi: 10.1007/s10725-022-00837-6 DOI
Keilin D., Mann T. (1940). Carbonic anhydrase. purification and nature of the enzyme. Biochem.J. 34 (8-9), 1163. doi: 10.1042/bj0341163 PubMed DOI PMC
Khan M., Samrana S., Zhang Y., Malik Z., Khan M. D., Zhu S. (2020). Reduced glutathione protects subcellular compartments from Pb-induced ROS injury in leaves and roots of upland cotton (Gossypium hirsutum l.). Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00412 PubMed DOI PMC
Kielbowicz-Matuk A. (2012). Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses. Plant Sci. 185, 78–85. doi: 10.1016/j.plantsci.2011.11.015 PubMed DOI
Kim J. C., Lee S. H., Cheong Y. H., Yoo C. M., Lee S. I., Chun H. J., et al. . (2001). A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25, 247–259. doi: 10.1046/j.1365-313x.2001.00947.x PubMed DOI
Kim J. H., Lee H. J., Park C. M. (2017). HOS1 acts as a key modulator of hypocotyl photo morphogenesis. Plant Signal. Behav. 12, e1315497. doi: 10.1080/15592324.2017.1315497 PubMed DOI PMC
Kimura M., Yamamoto Y. Y., Seki M., Sakurai T., Sato M., Abe T., et al. . (2003). Identification of arabidopsis genes regulated by high light stress using cDNA microarray. Photochem. Photobiol. 77, 226–233. doi: 10.1562/0031-8655(2003)077<0226:ioagrb>2.0.co;2 PubMed DOI
Kochańczyk T., Drozd A., Krężel A. (2015). Relationship between the architecture of zinc coordination and zinc binding affinity in proteins–insights into zinc regulation. Metallomics 7 (2), 244–257. doi: 10.1039/C4MT00094C PubMed DOI
Kochańczyk T., Nowakowski M., Wojewska D., Kocyła A., Ejchart A., Koźmiński W., et al. . (2016). Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci. Rep. 6 (1), 1–12. doi: 10.1039/c4mt00094c PubMed DOI PMC
Kodaira K., Qin F., Tran L. P., Maruyama K., Kidokoro S., Fujita Y., et al. . (2011). Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol. 157, 742–756. doi: 10.1104/pp.111.182683 PubMed DOI PMC
Ko J. H., Yang S. H., Han K. H. (2006). Upregulation of an arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant Journal: For Cell Mol. Biol. 47 (3), 343–355. doi: 10.1111/j.1365-313X.2006.02782.x PubMed DOI
Kovtun Y., Chiu W. L., Tena G., Sheen J. (2000). Functional analysis of oxidative stress-activatedmitogenactivated protein kinase cascade in plants. PANS 97, 2940–2945. doi: 10.1073/pnas.97.6.2940 PubMed DOI PMC
Ku Y. S., Sintaha M., Cheung M. Y., Lam H. M. (2018). Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci. 19, 3206. doi: 10.3390/ijms19103206 PubMed DOI PMC
Laity J. H., Lee B. M., Wright P. E. (2001). Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11, 39–46. doi: 10.1016/S0959-440X(00)00167-6 PubMed DOI
Larcher W. (2003). Physiological plant ecology: Ecophysiology and stress physiology of functional groups (Berlin/Heidelberg, Germany: Springer; ), 345–437.
Lawrence S. D., Blackburn M. B., Shao J., Novak N. G. (2022). The response to cabbage looper infestation in arabidopsis is altered by lowering levels of Zat18 a q-type C2H2 zinc finger protein. J. Plant Interaction. 17 (1), 198–205. doi: 10.1080/17429145.2021.2024285 DOI
Lee S. J., Jung H. J., Kang H., Kim S. Y. (2012). Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol. 53, 673–686. doi: 10.1093/pcp/pcs023 PubMed DOI
Lima J. M., Nath M., Dokku P., Raman K., Kulkarni K., Vishwakarma C., et al. . (2015). Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plant 7, plv023. doi: 10.1093/aobpla/plv023 PubMed DOI PMC
Lim C. W., Baek W., Lee S. C. (2017). The pepper RING-type E3 ligase CaAIRF1 regulates ABA and drought signaling via CaADIP1 protein phosphatase degradation. Plant Physiol. 173, 2323–2339. doi: 10.1104/pp.16.01817 PubMed DOI PMC
Lim C. W., Baek W., Lee S. C. (2018). Roles of pepper bZIP protein Ca DILZ 1 and its interacting partner RING-type E3 ligase Ca DSR 1 in modulation of drought tolerance. Plant J. 96, 452–467. doi: 10.1111/tpj.14046 PubMed DOI
Lim S. D., Cho H. Y., Park Y. C., Ham D. J., Lee J. K., Jang C. S. (2013). The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermo tolerance. J. Exp. Bot. 64, 2899–2914. doi: 10.1093/jxb/ert143 PubMed DOI PMC
Lin Y. F., Aarts M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol. Life Sci. 69, 3187–3206. doi: 10.1007/s00018-012-1089-z PubMed DOI PMC
Lin C. Y., Lin L. Y. (2018). The conserved basic residues and the charged amino acid residues at the alpha-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins. PloS One 13, e0191971. doi: 10.1371/journal.pone.0191971 PubMed DOI PMC
Lin P., Pomeranz M., Jikumaru Y., Kang S. G., Hah C., Fujioka S., et al. . (2011). The arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth, stress and gene expression responses. Plant J. 65, 253–268. doi: 10.1111/j.1365-313X.2010.04419.x PubMed DOI
Lin L., Wu J., Jiang M., Wang Y. (2021). Plant mitogen-activated protein kinase cascades in environmental stresses. Int. J. Mol. Sci. 22, 1543. doi: 10.3390/ijms22041543 PubMed DOI PMC
Lipiec J., Doussan C., Nosalewicz A., Kondracka K. (2013). Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys. 27, 463–477. doi: 10.2478/intag-2013-0017 DOI
Lippuner V., Cyert M., Gasser C. (1996). Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase s alt tolerance of wild-type yeast. J. Biol. Chem. 271 (22), 12859–12866. doi: 10.1074/jbc.271.22.12859 PubMed DOI
Liu Y., Khan A. R., Gan Y. (2022). C2H2 zinc finger proteins response to abiotic stress in plants. Int. J. Mol. Sci. 23, 2730. doi: 10.3390/ijms23052730 PubMed DOI PMC
Liu X. M., Kim K. E., Kim K. C., Nguyen X. C., Han H. J., Jung M. S., et al. . (2010). Cadmium activates arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71 (5–6), 614–618. doi: 10.1016/j.phytochem.2010.01.005 PubMed DOI
Liu S., Kracher B., Ziegler J., Birkenbihl R. P., Somssich I. E. (2015). Negative regulation of ABA signaling by WRKY33 is critical for arabidopsis immunity towards botrytis cinerea 2100. Life 4, e07295. doi: 10.7554/eLife.07295.033 PubMed DOI PMC
Liu Y., Xu C., Zhu Y., Zhang L., Chen T., Zhou F., et al. . (2018). The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. J. Integr. Plant Biol. 60, 173–188. doi: 10.1111/jipb.12614 PubMed DOI
Li D., Xu X., Hu X., Liu Q., Wang Z., Zhang H., et al. . (2015). Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa . Front. Plant Sci. 6, 1149. doi: 10.3389/fpls.2015.01149 PubMed DOI PMC
Li S., Zhao B., Yuan D., Duan M., Qian Q., Tang L., et al. . (2013). Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proceed. Natl. Acad. Sci. United States Amer. 110 (8), 3167–3172. doi: 10.1073/pnas.1300359110 PubMed DOI PMC
Logemann E., Birkenbihl R. P., Rawat V., Schneeberger K., Schmelzer E., Somssich I. E. (2013). Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe-associated molecular pattern-induced expression. New Phytol. 198, 1165–1177. doi: 10.1111/nph.12233 PubMed DOI
Lopes K. L., Rodrigues R. A., Silva M. C., Braga W. G., Silva-Filho M. C. (2018). The zinc-finger thylakoid-membrane protein FIP is involved with abiotic stress response in arabidopsis thaliana. Front. Plant Sci. 9, 504. doi: 10.3389/fpls.2018.00504 PubMed DOI PMC
Luo X., Bai X., Zhu D., Li Y., Ji W., Cai H., et al. . (2012). GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta 235 (6), 1141–1155. doi: 10.1007/s00425-011-1563-0 PubMed DOI
Lv Q., Zhang L., Zan T., Li L., Li X. (2020). Wheat RING E3 ubiquitin ligase TaDIS1 degrade TaSTP via the 26S proteasome pathway. Plant Sci. 296, 110494. doi: 10.1016/j.plantsci.2020.110494 PubMed DOI
Lyu T., Cao J. (2018). Cys(2)/His(2) zinc-finger proteins in transcriptional regulation of flower development. Int. J. Mol. Sci. 19, 2589. doi: 10.3390/ijms19092589 PubMed DOI PMC
Mainuddin M., Bell R. W., Gaydon D. S., Kirby J. M., Glover M., Akanda M. A. R., et al. . (2019). An overview of the Ganges coastal Zone: Climate, hydrology, land use and vulnerability. J. Ind. Soc Coast. Agric. Res. 37 (2), 1–11.
Mainuddin M., Maniruzzaman M., Gaydon D. S., Sarkar S., Rahman M. A., Sarangi S. K., et al. . (2020). A water and salt balance model for the polders and islands in the Ganges delta. J. Hydrol 587, 125008. doi: 10.1016/j.jhydrol.2020.125008 DOI
Maret W., Albrecht Messerschmidt W. B., Cygler M. (2004). Handbook of metalloproteins (Boca Raton, USA: CRC Press; ).
Maret W., Li Y. (2009). Coordination dynamics of zinc in proteins. Chem. Rev. 109 (10), 4682–4707. doi: 10.1021/cr800556u PubMed DOI
Martin R. C., Glover-Cutter K., Baldwin J. C., Dombrowski J. E. (2012). Identification and characterization of a salt stress-inducible zinc finger protein from festuca arundinacea. BMC Res. Notes 5, 66. doi: 10.1186/1756-0500-5-66 PubMed DOI PMC
Mateos Fernández R., Petek M., Gerasymenko I., Juteršek M., Baebler Š., Kallam K., et al. . (2022). Insect pest management in the age of synthetic biology. Plant Biotechnol. J. 20 (1), 25–36. doi: 10.1111/pbi.13685 PubMed DOI PMC
Mazumder M. K., Moulick D., Choudhury S. (2022). Iron (Fe3+)-mediated redox responses and amelioration of oxidative stress in cadmium (Cd2+) stressed mung bean seedlings: A biochemical and computational analysis. J. Plant Biochem. Biotechnol. 31 (1), 49–60. doi: 10.1007/s13562-021-00654-4 DOI
Miller J., McLachlan A. D., Klug A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from xenopus oocytes. EMBO J. 4 (6), 1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x PubMed DOI PMC
Mishra S., Srivastava S., Tripathi R. D., Govindarajan R., Kuriakose S. V., Prasad M. N. V. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in bacopa monnieri l. Plant Physiol. Biochem. 44 (1), 25–37. doi: 10.1016/j.plaphy.2006.01.007 PubMed DOI
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trend. Plant Sci. 9, 490–498. doi: 10.1016/j.tplants.2004.08.009 PubMed DOI
Mostofa M. G., Seraj Z. I., Fujita M. (2015). Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa l.) seedlings. Plant Signaling Behav. 10 (3), e991570. doi: 10.4161/15592324.2014.991570 PubMed DOI PMC
Moulick D., Chowardhara B., Panda S. K. (2019). “Agroeco-toxicological aspect of arsenic (As) and cadmium (Cd) on field crops and its mitigation: current status and future prospect,” in Plant-metal interactions (Cham: Springer; ), 217–246. doi: 10.1007/978-3-030-20732-8_11 DOI
Moulick D., Ghosh D., Santra S. C. (2016. a). An assessment of some physicochemical properties and cooking characteristics of milled rice and associated health risk in two rice varieties of arsenic contaminated areas of West Bengal, India. Int. J. Res. Agric. Food Sci. 6, 44–55.
Moulick D., Ghosh D., Santra S. C. (2016. b). Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol. Biochem. 109, 571–578. doi: 10.1016/j.plaphy.2016.11.004 PubMed DOI
Moulick D., Ghosh D., Skalicky M., Gharde Y., Mazumder M. K., Choudhury S., et al. . (2022). Interrelationship among rice grain arsenic, micronutrients content and grain quality attributes: An investigation from genotype× environment perspective. Front. Environ. Sci. 25 (27). doi: 10.3389/fenvs.2022.857629 DOI
Moulick D., Samanta S., Sarkar S., Mukherjee A., Pattnaik B. K., Saha S., et al. . (2021). Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Sci. Total Environ. 800, 149477. doi: 10.1016/j.scitotenv PubMed DOI
Moulick D., Santra S. C., Ghosh D. (2017). Seed priming with Se alleviate as induced phytotoxicity during germination and seedling growth by restricting as translocation in rice (Oryza sativa l cv IET-4094). Ecotoxicol Environ. Safety. 145, 449–456. doi: 10.1016/j.ecoenv.2017.07.060 PubMed DOI
Moulick D., Santra S. C., Ghosh D. (2018. a). Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ. Safety. 152, 67–77. doi: 10.1016/j.ecoenv.2018.01.037 PubMed DOI
Moulick D., Santra S. C., Ghosh D. (2018. b). Rice seed priming with se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J. Hazardous Material. 355, 187–196. doi: 10.1016/j.jhazmat.2018.05.017 PubMed DOI
Moulick D., Santra S. C., Ghosh D. (2018. c). Seed priming with Se mitigates as-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing as translocation. Environ. Sci. Poll. Res. 25 (27), 26978–26991. doi: 10.1007/s11356-018-2711-x PubMed DOI
Moulick D., Santra S. C., Ghosh D. (2018. d). “Consequences of paddy cultivation in arsenic-contaminated paddy fields of lower Indo-Gangetic plain on arsenic accumulation pattern and selected grain quality traits: A preliminary assessment”, in Mech. of Arsenic Toxic. and Tolerance in Plants. Ed. Hasanuzzaman M. (Singapore: Springer; ), 49–78. doi: 10.1007/978-981-13-1292-2_3 DOI
Mueller N. D., Gerber J. S., Johnston M., Ray D. K., Ramankutty N., Foley J. A. (2012). Closing yield gaps through nutrient and water management. Nat. 490, 254–257. doi: 10.1038/nature11420 PubMed DOI
Mukherjee A., Hazra S. (2022). “Impact of elevated CO2 and O3 on field crops and adaptive strategies through agro-technology,” in Response of field crops to abiotic stress (Boca Raton, USA: CRC Press; ), 177–190.
Mukhopadhyay A., Vij S. ,. A., Tyagi A. K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceed. Natl. Acad. Sci. United States Amer 101 (16), 6309–6314. doi: 10.1073/pnas.0401572101 PubMed DOI PMC
Nawkar G. M., Kang C. H., Maibam P., Park J. H., Jung Y. J., Chae H. B., et al. . (2017). HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in arabidopsis. Proc. Nat. Acad. Sci. 21, 14(8):2084–2089. doi: 10.1073/pnas.1609844114 PubMed DOI PMC
Nedelkoska T. V., Doran P. M. (2000). Hyper accumulation of cadmium by hairy roots of thlaspi caerulescens. Biotechnol. Bioeng. 67, 607–615. doi: 10.1002/(SICI)1097-0290(20000305)67:5<607::AID-BIT11>3.0.CO;2-3 PubMed DOI
Nguyen T. P., Ho T. B. (2012). Detecting disease genes based on semi-supervised learning and protein–protein interaction networks. Artif. Intell. Med. 54 (1), 63–71. PubMed
Noman A., Aqeel M., Khalid N., Islam W., Sanaullah T., Anwar M., et al. . (2019). Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microbial. Pathogen. 132, 141–149. doi: 10.1016/j.micpath.2019.04.042 PubMed DOI
Nouman W., Anwar F., Gull T., Newton A., Rosa E., Domínguez-Perles R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera lam. Ind. Crop Prod. 83, 166–176. doi: 10.1016/j.indcrop.2015.12.032 DOI
Nouman W., Basra S. M. A., Yasmeen A., Gull T., Hussain S. B., Zubair M., et al. . (2014). Seed priming improves the emergence potential, growth and antioxidant system of moringa oleifera under saline conditions. Plant Growth Regul. 73, 267–278. doi: 10.1007/s10725-014-9887-y DOI
Ogawa I., Nakanishi H., Mori S., Nishizawa N. K. (2009). Time course analysis of gene regulation under cadmium stress in rice. Plant Soil. 325, 97. doi: 10.1007/s11104-009-0116-9 DOI
Oh T. R., Yu S. G., Yang H. W., Kim J. H., Kim W. T. (2020). AtKPNB1, AtKPNB1, an arabidopsis importin-b protein, is downstream of the RING E3 ubiquitin ligase AtAIRP1 in the ABA-mediated drought stress response. Plant. 252, 93. doi: 10.1007/s00425-020-03500-4 PubMed DOI
O’Malley R. C., Huang S. C., Lewsey M. G., Bartlett A., Nery J. R., Galli M., et al. . (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 165, 1280–1292. doi: 10.1016/j.cell.2016.04.038 PubMed DOI PMC
Opdenakker K., Remans T., Vangronsveld J., Cuypers A. (2012). Mitogen activated protein (MAP) kinases in plant metal stress: Regulation and responses in comparison to other biotic and abiotic stresses. Int. J.Mol. Sci. 13, 7828–7853. doi: 10.3390/ijms13067828 PubMed DOI PMC
Opipari A. W., Boguski M. S., Dixit V. M. (1990). The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem. 265 (25), 14705–14708. doi: 10.1016/S0021-9258(18)77165-2 PubMed DOI
Osakabe Y., Osakabe K., Shinozaki K., Tran L. S. P. (2014). Response of plants to water stress. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00086 PubMed DOI PMC
Osorio C. E. (2019). The role of orange gene in carotenoid accumulation: Manipulating chromoplasts toward a colored future. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01235 PubMed DOI PMC
Parida A. K., Das A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxic. Environ. Saf. 60, 324–349. doi: 10.1016/j.ecoenv.2004.06.010 PubMed DOI
Park Y. C., Chapagain S., Jang C. S. (2018). The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). Planta 247 (4), 875–886. doi: 10.1007/s00425-017-2834-1 PubMed DOI
Park Y. C., Lim S. D., Moon J. C., Jangand Jang C. S. (2019). A rice really interesting new gene h 2-type e 3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26 s proteasome-mediated degradation of salt-related proteins. Plant Cell Environ. 42 (11), 3061–3076. doi: 10.1111/pce.13619 PubMed DOI
Parraga G., Horvath S. J., Eisen A., Taylor W. E., Hood L., Young E. T., et al. . (1988). Zinc-dependent structure of a single-finger domain of yeast ADR1 . Science 241 (4872), 1489–1492. doi: 10.1126/science.3047872 PubMed DOI
Pi B., He X., Ruan Y., Jang J. C., Huang Y. (2018). Genome-wide analysis and stress-responsive expression of CCCH zinc finger family genes in Brassica rapa . BMC Plant Biol. 18 (1), 1–15. doi: 10.1186/s12870-018-1608-7 PubMed DOI PMC
Poorter H., Van Berkel Y., Baxter R., Den Hertog J., Dijkstra P., Gifford R. M., et al. . (1997). The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20 (4), 472–482. doi: 10.1046/j.1365-3040.1997.d01-84.x DOI
Pradhan S., Kant C., Verma S., Bhatia S. (2017). Genome-wide analysis of the CCCH zinc finger family identifies tissue specific andstress responsive candidates in chickpea (Cicer arietinum l.). PloS One 12, e0180469. doi: 10.1371/journal.pone.0180469 PubMed DOI PMC
Qin X., Huang S., Liu Y., Bian M., Shi W., Zuo Z., et al. . (2017). Overexpression of a RING finger ubiquitin ligase gene AtATRF1 enhances aluminium tolerance in arabidopsis thaliana. J. Plant Biol. 60, 66–74. doi: 10.1007/s12374-016-0903-9 DOI
Qu J., Kang S. G., Wang W., Musier-Forsyth K., Jang J. C. (2014). The arabidopsis thaliana tandem zinc finger 1 (AtTZF1) protein in RNA binding and decay. Plant J. 78, 452–467. doi: 10.1111/tpj.12485 PubMed DOI PMC
Raja V., Majeed U., Kang H., Andrabi K. I., John R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157. doi: 10.1016/j.envexpbot.2017.02.010 DOI
Reliene R., Schiestl R. H. (2006). Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. Carcinogenesis 27 (2), 240–244. doi: 10.1093/carcin/bgi222 PubMed DOI
Rhodes D., Klug A. (1986). An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA. Cell 46 (1), 123–132. doi: 10.1016/0092-8674(86)90866-4 PubMed DOI
Riaz M., Arif M. S., Ashraf M. A., Mahmood R., Yasmeen T., Shakoor M. B., et al. . (2019). A comprehensive review on rice responses and tolerance to salt stress. Adv.Rice Res. Abiotic Stress. Tolerance (Amsterdam: Elsevier; ), 133–158. doi: 10.1016/b978-0-12-814332-2.00007-1 DOI
Rizhsky L., Davletova S., Liang H., Mittler R. (2004). The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in arabidopsis. J. Biol. Chem. 279 (12), 11736–11743. doi: 10.1074/JBC.M313350200 PubMed DOI
Rodriguezcazorla E., Ortunomiquel S., Candela H., Baileysteinitz L. J., Yanofsky M. F., Martinezlaborda A., et al. . (2018). Ovule identity mediated by pre-mRNA processing in arabidopsis. PloS Genet. 14, e1007182. doi: 10.1371/journal.pgen.1007182 PubMed DOI PMC
Rodriguez M. C., Petersen M., Mundyand Mundy J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649. doi: 10.1146/annurev-arplant-042809-112252 PubMed DOI
Romero I., Alegria-Carrasco E., de Pradena A. G., Vazquez-Hernandez M., Escribano M. I., Merodio C., et al. . (2019). WRKY transcription factors in the response of table grapes (cv. Autumn royal) to high CO2 levels and low temperature. Postharvest Biol. Technol. 150, 42–51. doi: 10.1016/j.postharvbio.2018.12.011 DOI
Rosales R., Romero I., Fernandez-Caballero C., Escribano M. I., Merodio C., Sanchez- Ballesta M. T. (2016). Low temperature and short-term high-CO2 treatment in postharvest storage of table grapes at two maturity stages: effects on transcriptome profiling. Front. Plant Sci. 7, e1020. doi: 10.3389/fpls.2016.01020 PubMed DOI PMC
Rossel J. B., Wilson I. W., Pogson B. J. (2002). Global changes in gene expression in response to high light in arabidopsis. Plant Physiol. 130, 1109–1120. doi: 10.1104/pp.005595 PubMed DOI PMC
Roychoudhury A., Paul S., Basu S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 32, 985–1006. doi: 10.1007/s00299-013-1414-5 PubMed DOI
Roy D., Vishwanath P. D., Sreekanth D., Mahawar H., Ghosh D. (2022). “Salinity and osmotic stress in field crops: Effects and way out,” in Response of field crops to abiotic stress: Current status and future prospects. Eds. Choudhury S., Moulick D. (Boca Raton, USA: CRC Press; ), 123. doi: 10.1201/9781003258063-11 DOI
Rushton P. J., Somssich I. E., Ringler P., Shen Q. J. (2010). WRKY transcription factors. Trend. Plant Sci. 15, 247–258. doi: 10.1016/j.tplants.2010.02.006 PubMed DOI
Saad R. B., Hsouna A. B., Saibi W., Hamed K. B., Brini F., Ghneim-Herrera T. (2018). A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J. Plant Physiol. 231, 234–243. doi: 10.1016/j.jplph.2018.09.019 PubMed DOI
Sagar L., Praharaj S., Singh S., Attri M., Pramanick B., Maitra S., et al. . (2022). Drought and heat stress tolerance in field crops: Consequences and adaptation strategies. response of field crops to abiotic stress: Current status and future prospects. In Response of field crops to abiotic stress: Current status and future prospects. Eds. Choudhury S, Moulick D. (Boca Raton, USA: CRC Press; ), 91–102.
Saha B., Chowardhara B., Chowra U., Panda C. K. (2022). Aluminum toxicity and ionic homeostasis in plants. response of field crops to abiotic stress: Current status and future prospects. In Response of field crops to abiotic stress: Current status and future prospects. Eds. Choudhury S, Moulick D. (Boca Raton, USA: CRC Press; ), 79–90.
Saha B., Chowardhara B., Kar S., Devi S. S., Awasthi J. P., Moulick D., et al. . (2019). “Advances in heavy metal-induced stress alleviation with respect to exogenous amendments in crop plants,” in Priming and pretreatment of seeds and seedlings (Singapore: Springer; ), 313–332. doi: 10.1007/978-981-13-8625-1_15 DOI
Sahoo S., Borgohain P., Saha B., Moulick D., Tanti B., Panda S. K. (2019). “Seed priming and seedling pre-treatment induced tolerance to drought and salt stress: recent advances,” in Priming and pretreatment of seeds and seedlings (Singapore: Springer; ), pp.253–pp.263. doi: 10.1007/978-981-13-8625-1_12 DOI
Sah S. K., Reddy K. R., Li J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00571 PubMed DOI PMC
Sakamoto H., Maruyama K., Sakuma Y., Meshi T., Iwabuchi M., Shinozaki K., et al. . (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136, 2734–2746. doi: 10.1104/pp.104.046599 PubMed DOI PMC
Sarkar S., Gaydon D. S., Brahmachari K., Poulton P. L., Chaki A. K., Ray K., et al. . (2022). Testing APSIM in a complex saline coastal cropping environment. Environ. Model. Software 147, 105239. doi: 10.1016/j.envsoft.2021.105239 DOI
Schmitz R. J., Hong L., Michaels S., Amasino R. M. (2005). FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDALIKE 1 to promote the winter-annual habit of arabidopsis thaliana. Develop. 132, 5471–5478. doi: 10.1242/dev.02170 PubMed DOI
Seok H., Nguyen L. V., Park H., Tarte V. N., Ha J., Lee S., et al. . (2018). Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem. Biophys. Res. Commun. 498, 954–959. doi: 10.1016/j.bbrc.2018.03.088 PubMed DOI
Seok H. Y., Woo D. H., Park H. Y., Lee S. Y., Tran H. T., Lee E. H., et al. . (2016). AtC3H17, a non-tandem CCCH zinc finger protein, functions as a nuclear transcriptional activator and has pleiotropic effects on vegetative development, flowering and seed development in arabidopsis. Plant Cell Physiol. 57, 603–615. doi: 10.1093/pcp/pcw013 PubMed DOI
Seong S. Y., Shim J. S., Bang S. W., Kim J. K. (2020). Overexpression of OsC3H10, a CCCH-zinc finger, improves drought tolerance inRice by regulating stress-related genes. Plant. 9, 1298. doi: 10.3390/plants9101298 PubMed DOI PMC
Seo M., Peeters A. J., Koiwai H., Oritani T., Marion-Poll A., Zeevaart J. A., et al. . (2000). The arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceed. Natl. Acad. Sci. 97 (23), 12908–12913. doi: 10.1073/pnas.220426197 PubMed DOI PMC
Shah A. A., Riaz L., Siddiqui M. H., Nazar R., Ahmed S., Yasin N. A., et al. . (2022). Spermine-mediated polyamine metabolism enhances arsenic-stress tolerance in phaseolus vulgaris by expression of zinc-finger proteins related genes and modulation of mineral nutrient homeostasis and antioxidative system. Environ. pollut. 300, 118941. doi: 10.1016/j.envpol.2022.118941 PubMed DOI
Shaikhali J., de Dios Barajas-Lopéz J., Ötvös K., Kremnev D., Garcia A. S., Srivastava V., et al. . (2012). The CRYPTOCHROME1-dependent response to excess light is mediated through the transcriptional activators zinc finger protein expressed in inflorescence meristem LIKE1 and ZML2 in arabidopsis. Plant Cell. 24 (7), 3009–3025. doi: 10.1105/tpc.112.100099 PubMed DOI PMC
Shalmani A., Muhammad I., Sharif R., Zhao C., Ullah U., Zhang D., et al. . (2019). Zinc finger-homeodomain genes: Evolution, functional differentiation, and expression profiling under flowering-related treatments and abiotic stresses in plants. Evol. Bioinform. 15, 1176934319867930. doi: 10.1177/1176934319867930 PubMed DOI PMC
Shimberg G. D., Michalek J. L., Oluyadi A. A., Rodrigues A. V., Zucconi B. E., Neu H. M., et al. . (2016). Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe–2S cluster. Proceed. Nation Acad. Sci. 113 (17), 4700–4705. doi: 10.1073/pnas.1517620113 PubMed DOI PMC
Shi X., Wu Y., Dai T., Gu Y., Wang L., Qin X., et al. . (2018). JcZFP8, a C2H2 zinc finger protein gene from Jatrophacurcas, influences plant development in transgenic tobacco. Electronic. J. Biotechnol. 34, 76–82. doi: 10.1016/j.ejbt.2018.05.008 DOI
Singh A., Kumar A., Yadav S., Singh I. K. (2019). Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene. 18, 100173. doi: 10.1016/j.plgene.2019.100173 DOI
Sinha A. K., Jaggi M., Raghuram B., Tutejaand Tuteja N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6, 196–203. doi: 10.4161/psb.6.2.14701 PubMed DOI PMC
Smekalova V., Doskocilova A., Komis G., Samaj J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32, 2–11. doi: 10.1016/j.biotechadv.2013.07.009 PubMed DOI
Steinhorst L., Kudla J. (2014). Signaling in cells and organisms – calcium holds the line. Curr. Opin. Plant Biol. 22, 14–21. doi: 10.1016/j.pbi.2014.08.003 PubMed DOI
Stohs S. J., Bagchi D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321–336. doi: 10.1016/0891-5849(94)00159-H PubMed DOI
Stone S. L. (2019). Role of the ubiquitin proteasome system in plant response to abiotic stress. Int. Rev. Cell Mol. Biol. 343, 65–110. doi: 10.1016/bs.ircmb.2018.05.012 PubMed DOI
Ströher E., Wang X., Roloff N., Klein P., Husemann A., Dietz K. (2009). Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in arabidopsis thaliana. Mol. Plant 2 (2), 357–367. doi: 10.1093/mp/ssn084 PubMed DOI
Suh J. Y., Kim S. J., Oh T. R., Cho S. K., Yang S. W., Kim W. T. (2016). Arabidopsis tóxicos en levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress. Biochem. Biophys. Res. Commun. 469, 8–14. doi: 10.1016/j.bbrc.2015.11.061 PubMed DOI
Sun T., Zhou F., Huang X. Q., Chen W. C., Kong M. J., Zhou C. F., et al. . (2019). ORANGE represses chloroplast biogenesis in etiolated arabidopsis cotyledons via interaction with TCP14. Plant Cell. 31, 2996–3014. doi: 10.1105/tpc.18.00290 PubMed DOI PMC
Suzuki N., Koizumi N., Sano H. (2001). Screening of cadmium-responsive genes in arabidopsis thaliana: Screening of cadmium-responsive genes in arabidopsis thaliana. Plant Cell Environ. 24 (11), 1177–1188. doi: 10.1046/j.1365-3040.2001.00773.x DOI
Swatek K. N., Usher J. L., Kueck A. F., Gladkova C., Mevissen T. E., Pruneda J. N., et al. . (2019). Insights into ubiquitin chain architecture using ub-clipping. Nat. 572, 533–537. doi: 10.1038/s41586-019-1482-y PubMed DOI PMC
Takahashi F., Kuromori T., Sato H., Shinozaki K. (2018). Regulatory gene networks in drought stress responses and resistance in plants. Adv. Exp. Med. Biol. 1081, 189–214. doi: 10.1007/978-981-13-1244-1_11 PubMed DOI
Tattini M., Landi M., Brunetti C., Giordano C., Remorini D., Gould K. S., et al. . (2014). Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: Multiple consequences of light attenuation. Physiol. Plant 152 (3), 585–598. doi: 10.1111/ppl.12201 PubMed DOI
Thorpe G. W., Reodica M., Davies M. J., Heeren G., Jarolim S., Pillay B., et al. . (2013). Superoxide radicals have a protective role during H2O2 stress. Mol. Biol. Cell. 24, 2876–2884. doi: 10.1091/mbc.e13-01-0052 PubMed DOI PMC
Tian M., Lou L., Liu L., Yu F., Zhao Q., Zhang H., et al. . (2015). The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in arabidopsis thaliana. Plant J. 82, 81–92. doi: 10.1111/tpj.12797 PubMed DOI
Tonnang H. E., Sokame B. M., Abdel-Rahman E. M., Dubois T. (2022). Measuring and modelling crop yield losses due to invasive insect pests under climate change. curr. opin. Insect Sci. 50, 100873. doi: 10.1016/j.cois.2022.100873 PubMed DOI
Tognetti V. B., Van Aken O., Morreel K., Vandenbroucke K., van de Cotte B., De Clercq I., et al. . (2010). Perturbation of indole-3-butyric acid homeostasis by the UDPglucosyltransferase UGT74E2 modulates arabidopsis architecture and water stress tolerance. Plant Cell 22, 2660–2679. doi: 10.1105/tpc.109.071316 PubMed DOI PMC
Tripathi R. D., Tripathi P., Dwivedi S., Dubey S., Chatterjee S., Chakrabarty D., et al. . (2012). Arsenomics: Omics of arsenic metabolism in plants. Front. Physiol. 3. doi: 10.3389/fphys.2012.00275 PubMed DOI PMC
Tsai T. M., Huang H. J. (2006). Effects of iron excess on cell viability and mitogen-activated protein kinase activation in rice roots. Physiol. Plant 127, 583–592. doi: 10.1111/j.1399-3054.2006.00696.x DOI
Ullah A., Nadeem F., Nawaz A., Siddique K. H., Farooq M. (2022). Heat stress effects on the reproductive physiology and yield of wheat. J. Agron. Crop Sci. 208 (1), 1–17. doi: 10.1111/jac.12572 DOI
Upadhyay M. K., Majumdar A., Srivastava A. K., Bose S., Suprasanna P., Srivastava S. (2022). Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa l.) upon thiourea supplementation. Chemosphere 292, 133482. doi: 10.1016/j.chemosphere.2021.133482 PubMed DOI
Vaičiukynė M., Žiauka J., Žūkienė R., Vertelkaitė L., Kuusienė S. (2019). Abscisic acid promotes root system development in birch tissue culture: A comparison to aspen culture and conventional rooting-related growth regulators. Physiol. Plant 165 (1), 114–122. doi: 10.1111/ppl.12860 PubMed DOI
Vallee B. L., Neurath H. (1954). Carboxypeptidase, a zinc metalloprotein. J.Amer.Chem. Soc 76 (19), 5006–5007. doi: 10.1021/ja01648a088 DOI
Verma N., Giri S. K., Singh G., Gill R., Kumar A. (2022). Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene. 29, 100351. doi: 10.1016/j.plgene.2022.100351 DOI
Wang F., Tong W., Zhu H., Kong W., Peng R., Liu Q., et al. . (2016). A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic arabidopsis. Planta 243 (3), 783–797. doi: 10.1007/s00425-015-2443-9 PubMed DOI
Wang K., Ding Y., Cai C., Chen Z., Zhu C. (2019). The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol. Plant 165, 690–700. doi: 10.1111/ppl.12728 PubMed DOI
Wang B., Fang R., Chen F., Han J., Liu Y., Chen L., et al. . (2020). A novel CCCH-type zinc-finger protein SAW1 activates OsGA20ox3to regulate gibberellin homeostasis and anther development in rice. J. Integr. Plant Biol. 62, 1594–1606. doi: 10.1111/jipb.12924 PubMed DOI
Wang Y., Liao Y., Quan C., Li Y., Yang S., Ma C., et al. . (2022. a). C2H2-type zinc finger OsZFP15 accelerates seed germination and confers salinity and drought tolerance of rice seedling through ABA catabolism. Environ. Expe. Bot. 199, 104873. doi: 10.1016/j.envexpbot.2022.104873 DOI
Wang W., Liu B., Xu M., Jamil M., Wang G. (2015). ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in oryza sativa. Biochem. Biophy. Res. Commun. 464 (1), 33–37. doi: 10.1016/j.bbrc.2015.05.087 PubMed DOI
Wang L., Xu Y., Zhang C., Ma Q., Joo S., Kim S., et al. . (2008). OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PloS One 3, e3521. doi: 10.1371/journal.pone.0003521 PubMed DOI PMC
Wang D. R., Yang K., Wang X., You C. X. (2022. b). A C2H2-type zinc finger transcription factor, MdZAT17, acts as a positive regulator in response to salt stress. J. Plant Physiol. 275, 153737. doi: 10.1016/j.jplph.2022.153737 PubMed DOI
Wawrzynski A., Kopera E., Wawrzynska A., Kaminska J., Bal W., Sirko A. (2006). Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J. Exp. Bot. 57, 2173–2182. doi: 10.1093/jxb/erj176 PubMed DOI
Wei C. Q., Chien C. W., Ai L. F., Zhao J., Zhang Z., Li K. H., et al. . (2016). The arabidopsis b-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photo morphogenesis. J. Genet. Genomics 43, 555–563. doi: 10.1016/j.jgg.2016.05.007 PubMed DOI PMC
Wu X. C., Cao X. Y., Chen M., Zhang X. K., Liu Y. N., Xu Z. S., et al. . (2010). Isolation and expression pattern assay of a C3HC4-type RING zinc finger protein gene GmRZFP1 in Glycine max (L.). J. Plant Genet. Res. 11, 343–348.
Xie M., Sun J., Gong D., Kong Y. (2019). The roles of arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes 10, 653. doi: 10.3390/genes10090653 PubMed DOI PMC
Xiong L., Gong Z., Rock C. D., Subramanian S., Guo Y., Xu W., et al. . (2001). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in arabidopsis. Dev. Cell. 1 (6), 771–781. doi: 10.1016/S1534-5807(01)00087-9 PubMed DOI
Xiong L., Lee H., Ishitani M., Zhu J. K. (2002). Regulation of osmotic stress-responsive gene expression by thelos6/aba1 locus inarabidopsis. J. Biol. Chem. 277 (10), 8588–8596. doi: 10.1074/jbc.M109275200 PubMed DOI
Xiong L., Zhu J. K. (2003). Regulation of abscisic acid biosynthesis. Plant Physiol. 133 (1), 29–36. doi: 10.1104/pp.103.025395 PubMed DOI PMC
Xu Z., Dong M., Peng X., Ku W., Zhao Y., Yang G. (2019). New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicol. Environ. Safety. 171, 301–312. doi: 10.1016/j.ecoenv.2018.12.084 PubMed DOI
Xu D. Q., Huang J., Guo S. Q., Yang X., Bao Y. M., Tang H. J., et al. . (2008). Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa l.). FEBS Lett. 582 (7), 1037–1043. doi: 10.1016/j.febslet.2008.02.052 PubMed DOI
Xu L., Liu T., Xiong X., Liu W., Yu Y., Cao J. (2020). AtC3H18L is a stop-codon read-through gene and encodes a novel non-tandem CCCH zinc-finger protein that can form cytoplasmic foci similar to mRNP granules. Biochem. Biophys. Res. Commun. 528, 140–145. doi: 10.1016/j.bbrc.2020.05.081 PubMed DOI
Xu X., Li W., Yang S., Zhu X., Sun H., Li F., et al. . (2022). Identification, evolution, expression and protein interaction analysis of genes encoding b-box zinc-finger proteins in maize. J. Integr. Agric. 8, 91. doi: 10.1016/j.jia.2022.08.091 DOI
Yaghoubian I., Ghassemi S., Nazari M., Raei Y., Smith D. L. (2021). Response of physiological traits, antioxidant enzymes and nutrient uptake of soybean to azotobacter chroococcum and zinc sulfate under salinity. South Afr. J. Bot. 143, 42–51. doi: 10.1016/j.sajb.2021.07.037 DOI
Yang Y., Ma C., Xu Y., Wei Q., Imtiaz M., Lan H., et al. . (2014). A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 26 (5), 2038–2054. PubMed PMC
Yang Z., Chuand Chu C. (2011). “Towards understanding plant response to heavy metal stress,” in Abiotic stress in plants - mechanisms and adaptations (InTech.), 59–78. doi: 10.5772/24204 DOI
Yang K., Li C. Y., An J. P., Wang D. R., Wang X., Wang C. K., et al. . (2021). The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. Plant Physiol. Biochem. 167, 390–399. doi: 10.1016/j.plaphy.2021.08.014 PubMed DOI
Yan Z., Shi H., Liu Y., Jing M., Han Y. (2020). KHZ1 and KHZ2, novel members of the autonomous pathway, repress the splicing efficiency of FLC pre-mRNA in arabidopsis. J. Exp. Bot. 71 (4), 1375–1386. doi: 10.1093/jxb/erz499 PubMed DOI PMC
Yin K., Lv M., Wang Q., Wu Y., Liao C., Zhang W., et al. . (2016). Simultaneous bioremediation and biodetectionbio-detection of mercury ion through surface display of carboxylesterase E2 from pseudomonas aeruginosa PA1. Water Res. 103, 383–390. doi: 10.1016/j.watres.2016.07.053 PubMed DOI
Yin J., Wang L., Zhao J., Li Y., Huang R., Jiang X., et al. . (2020). Genome-wide characterization of the C2H2 zinc-finger genes in Cucumis sativus and functional analyses of four CsZFPs in response to stresses. BMC Plant Biol. 20 (1), 1–22. doi: 10.1186/s12870-020-02575-1 PubMed DOI PMC
Yu G.-H., Jiang L.-L., Ma X.-F., Xu Z.-S., Liu M.-M., Shan S.-G., et al. . (2014). A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic arabidopsis. PloS One 9 (10), e109399. doi: 10.1371/journal.pone.0109399 PubMed DOI PMC
Yuan J., Chen D., Ren Y., Zhang X., Zhao J. (2008). Characteristic and expression analysis of ACCEPTED MANUSCRIPT a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol. 146, 1637–1650. doi: 10.1104/pp.107.110304 PubMed DOI PMC
Yuan S., Li X., Li R., Wang L., Zhang C., Chen L., et al. . (2018). Genome-wide identification and classification of soybean C2H2 zinc finger proteins and their expression analysis in legume-rhizobium symbiosis. Front. Microbiol. 9, 126. doi: 10.3389/fmicb.2018.00126 PubMed DOI PMC
Yuce K., Ozkan A. I. (2020). “Cys2His2 zinc finger proteins boost survival ability of plants against stress conditions,” in Plant stress physiology (London: Intech Open; ). doi: 10.5772/intechopen.92590 DOI
Yu L. X., Shen X., Setter T. (2015). L. molecular and functional characterization of two drought-induced zinc finger proteins, ZmZnF1 and ZmZnF2 from maize kernels. Environ. Expe. Bot. 111, 13–20. doi: 10.1016/j.envexpbot.2014.10.004 DOI
Zang D., Li H., Xu H., Zhang W., Zhang Y., Shi X., et al. . (2016). An arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01272 PubMed DOI PMC
Zeng D.-E., Hou P., Xiao F., Liu Y. (2015). Overexpression of arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza sativa l.). J. Plant Biochem. Biotechnol. 24 (1), 56–64. doi: 10.1007/s13562-013-0236-4 DOI
Zhang C., Hou Y., Hao Q., Chen H., Chen L., Yuan S., et al. . (2015). Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PloS One 10, e0125174. doi: 10.1371/journal.pone.0125174 PubMed DOI PMC
Zhang Y., Lan H., Shao Q., Wang R., Chen H., Tang H., et al. . (2016). An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). J. Exp. Bot. 67 (1, January), 315–326. doi: 10.1093/jxb/erv464 PubMed DOI
Zhang X., Shang F., Huai J., Xu G., Tang W., Jing Y., et al. . (2017). A PIF1/PIF3-HY5-BBX23 transcription factor cascade affects photo morphogenesis. Plant Physiol. 174 (4), 2487–2500. doi: 10.1104/pp.17.00418 PubMed DOI PMC
Zhang T., Wang X., Lu Y., Cai X., Ye Z., Zhang J. (2014). Genome-wide analysis of the cyclin gene family in tomato. Int. J. Mol. Sci. 15 (1), 120–140. doi: 10.3390/ijms15010120 PubMed DOI PMC
Zhang D., Xu Z., Cao S., Chen K., Li S., Liu X., et al. . (2018). An uncanonical CCCH-tandem zinc-finger protein represses secondary wall synthesis and controls mechanical strength in rice. Mol. Plant 11, 163–174. doi: 10.1016/j.molp.2017.11.004 PubMed DOI
Zhang W., Yin K., Li B., Chen L. (2013). A glutathione s-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+. J. Hazard Mater. 261, 646–652. doi: 10.1016/j.jhazmat.2013.08.023 PubMed DOI
Zhang H., Sun Z., Feng S., Zhang J., Zhang F., Wang W., et al. . (2022). The C2H2-type zinc finger protein PhZFP1 regulates cold stress tolerance by modulating galactinol synthesis in petunia hybrida. J. Exp. Bot. 73 (18), 6434–6448. doi: 10.1093/jxb/erac274 PubMed DOI
Zou X., Seemann J. R., Neuman D., Shen Q. J. (2004). A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J. Biol. Chem. 279 (53), 55770–55779. doi: 10.1074/jbc.M408536200 PubMed DOI
Zou X., Shen Q. J., Neuman D. (2007). An ABA inducible WRKY gene integrates responses of creosote bush (Larrea tridentata) to elevated CO2 and abiotic stresses. Plant Sci. 172, 997–1004. doi: 10.1016/j.plantsci.2007.02.003 DOI