• This record comes from PubMed

A Computational Study of the Role of Secondary Metabolites for Mitigation of Acid Soil Stress in Cereals Using Dehydroascorbate and Mono-Dehydroascorbate Reductases

. 2022 Feb 25 ; 11 (3) : . [epub] 20220225

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RSP-2021/186 The study was funded by Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar-788 011, India. The study was also partially funded by the Researchers Supporting Project number (RSP-2021/186), K

The present study investigates the potential ameliorative role of seven secondary metabolites, viz., ascorbate (AsA), reduced glutathione (GSH), jasmonic acid (JA), salicylic acid (SA), serotonin (5-HT), indole-3-acetic acid (IAA) and gibberellic acid (GA3), for mitigation of aluminium (Al3+) and manganese (Mn2+) stress associated with acidic soils in rice, maize and wheat. The dehydroascorbate reductase (DHAR) and mono-dehydroascorbate reductase (MDHAR) of the cereals were used as model targets, and the analysis was performed using computational tools. Molecular docking approach was employed to evaluate the interaction of these ions (Al3+ and Mn2+) and the metabolites at the active sites of the two target enzymes. The results indicate that the ions potentially interact with the active sites of these enzymes and conceivably influence the AsA-GSH cycle. The metabolites showed strong interactions at the active sites of the enzymes. When the electrostatic surfaces of the metabolites and the ions were generated, it revealed that the surfaces overlap in the case of DHAR of rice and wheat, and MDHAR of rice. Thus, it was hypothesized that the metabolites may prevent the interaction of ions with the enzymes. This is an interesting approach to decipher the mechanism of action of secondary metabolites against the metal or metalloid - induced stress responses in cereals by aiming at specific targets. The findings of the present study are reasonably significant and may be the beginning of an interesting and useful approach towards comprehending the role of secondary metabolites for stress amelioration and mitigation in cereals grown under acidic soil conditions.

See more in PubMed

Foy C.D. Physiological effects of hydrogen, Al and manganese toxicities in acid soil. In: Pearson R.W., Adams F., editors. Soil Acidity and Liming. American Society of Agronomy; Madison, WI, USA: 1984. pp. 57–97.

Vaughan D., Ord B.G. Influence of phenolics acids on the sodium, calcium and chloride contents of Pisum sativum under axenic conditions. Soil Biol. Biochem. 1991;23:1191–1193. doi: 10.1016/0038-0717(91)90033-G. DOI

Hafner H., Ndunguru B.J., Bationo A., Marschner H. Effect of nitrogen, phosphorus and molybdenum application on growth and symbiotic N2-fixation of groundnut in an acid sandy soil in Niger. Fertz. Res. 1992;31:69–77. doi: 10.1007/BF01064229. DOI

Baziramakenga R., Leroux G.D., Simard R.R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 1995;21:1271–1285. doi: 10.1007/BF02027561. PubMed DOI

Barceló J., Poschenrieder C., Vázquez M.D., Gunsé B. Aluminum phytotoxicity: A challenge for plant scientists. Fertz. Res. 1996;43:217–223. doi: 10.1007/BF00747705. DOI

Kidd P.S., Proctor J. Why plant grows poorly on very acid soil: Are ecologists missing the obvious? J. Exp. Bot. 2001;52:791–799. doi: 10.1093/jexbot/52.357.791. PubMed DOI

Xia J., Yamaji N., Ma J.F. Plasma membrane-localized transporter for aluminium in rice. Proc. Natl. Acad. Sci. USA. 2010;107:18381–18385. doi: 10.1073/pnas.1004949107. PubMed DOI PMC

Kochian L.V., Piñeros M.A., Hoekenga O.A. The physiology, genetics and molecular biology of plant aluminium resistance and toxicity. Plant Soil. 2005;274:175–195. doi: 10.1007/s11104-004-1158-7. DOI

Delhaize E., Craig S., Beatson C.D., Bennet R.J., Jagadish V.C., Randall P.J. Aluminium tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminium in root apices) Plant Physiol. 1993;103:685–693. doi: 10.1104/pp.103.3.685. PubMed DOI PMC

Ryan P.R., Kochian L.V. Interaction between aluminium toxicity and calcium uptake at root apex in near—Isogenic lines of wheat (Triticum aestivum L.) differing in aluminium tolerance. Plant Physiol. 1993;102:975–982. doi: 10.1104/pp.102.3.975. PubMed DOI PMC

Sivaguru M., Horst W.J. The distal part of the transition zone is the most aluminium sensitive apical root zone of maize. Plant Physiol. 1998;116:155–163. doi: 10.1104/pp.116.1.155. DOI

Kochian L.V. Cellular mechanism of aluminium toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1995;46:237–260. doi: 10.1146/annurev.pp.46.060195.001321. DOI

Ma J.F. Syndrome of aluminium toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol. 2007;264:225–252. PubMed

Ono K., Yamamoto Y., Hachiya A., Matsumoto H. Synergistic inhibition of growth by aluminium and iron of tobacco (Nicotiana tabacum L.) cells in suspension culture. Plant Cell Physiol. 1995;36:115–125.

Yamamoto Y., Hachiya A., Matsumoto H. Oxidative damage to membranes by a combination of aluminium and iron in suspension-cultured tobacco cells. Plant Cell Physiol. 1997;38:1333–1339. doi: 10.1093/oxfordjournals.pcp.a029126. DOI

Yamamoto Y., Kobayashi Y., Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 2001;12:199–208. doi: 10.1104/pp.125.1.199. PubMed DOI PMC

Yamaguchi Y., Yamamoto Y., Matsumoto H. Cell death process initiated by combination of aluminium and iron in suspension cultured tobacco cells. Soil Sci. Plant Nutr. 1999;45:647–657. doi: 10.1080/00380768.1999.10415828. DOI

Kawano T., Kadono T., Furuichi T., Muto S., Lapeyrie F. Aluminium induced distortion in calcium signaling involving oxidative burst and channel regulation in tobacco BT-2 cells. Biochem. Biophys. Res. Commun. 2003;308:35–42. doi: 10.1016/S0006-291X(03)01286-5. PubMed DOI

Exley C. The pro-oxidant activity of aluminium. Free Radic. Biol. Med. 2004;236:380–387. doi: 10.1016/j.freeradbiomed.2003.11.017. PubMed DOI

Pereira J.F., Zhou G., Delhaize E., Richardson T., Zhou M., Ryan P.R. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann. Bot. 2010;106:205–214. doi: 10.1093/aob/mcq058. PubMed DOI PMC

Matsumoto H., Motoda H. Aluminium toxicity recovery process in root apices. Possible association with oxidative stress. Plant Sci. 2012;185–186:1–8. doi: 10.1016/j.plantsci.2011.07.019. PubMed DOI

Choudhury S., Sharma P. Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.) Plant Physiol. Biochem. 2014;85:63–70. doi: 10.1016/j.plaphy.2014.10.012. PubMed DOI

Yamamoto Y., Kobayashi Y., Devi S.R., Rikiishi S., Matsumoto H. Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 2002;128:63–72. doi: 10.1104/pp.010417. PubMed DOI PMC

Moulick D., Samanta S., Sarkar S., Mukherjee A., Pattnaik B.K., Saha S., Awasthi J.P., Bhowmick S., Ghosh D., Samal A.C., et al. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Sci. Total Environ. 2021;800:149477. doi: 10.1016/j.scitotenv.2021.149477. PubMed DOI

Moulick D., Chowardhara B., Panda S.K. Plant-Metal Interactions. Springer; Cham, Switzerland: 2019. Agroecotoxicological aspect of arsenic (As) and cadmium (Cd) on Field crops and its mitigation: Current status and future prospect; pp. 217–246.

Hossain A., Pramanick B., Bhutia K.L., Ahmad Z., Moulick D., Maitra S., Ahmad A., Aftab T. Frontiers in Plant-Soil Interaction. Academic Press; Cambridge, MA, USA: 2021. Emerging roles of osmoprotectant glycine betaine against salt-induced oxidative stress in plants: A major outlook of maize (Zea mays L.) pp. 567–587.

Hossain A., Ahmad Z., Moulick D., Maitra S., Bhadra P., Ahmad A., Garai S., Mondal M., Roy A., Sabagh A.E., et al. Jasmonates and Salicylates Signaling in Plants. Springer; Cham, Switzerland: 2021. Jasmonates and Salicylates: Mechanisms, Transport and Signalling During Abiotic Stress in Plants; pp. 1–29.

Mazumder M.K., Moulick D., Choudhury S. Iron (Fe 3+)-mediated redox responses and amelioration of oxidative stress in cadmium (Cd 2+) stressed mung bean seedlings: A biochemical and computational analysis. J. Plant Biochem. Biotechnol. 2021;31:49–60. doi: 10.1007/s13562-021-00654-4. DOI

Mazumder M.K., Sharma P., Moulick D., Tata S.K., Choudhury S. Salicylic acid ameliorates zinc and chromium-induced stress responses in wheat seedlings: A biochemical and computational analysis. Cereal Res. Commun. 2021:1–12. doi: 10.1007/s42976-021-00201-w. PubMed DOI

Moulick D., Ghosh D., Santra S.C. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol. Biochem. 2016;109:571–578. doi: 10.1016/j.plaphy.2016.11.004. PubMed DOI

Moulick D., Santra S.C., Ghosh D. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L cv IET-4094) Ecotoxicol. Environ. Saf. 2017;145:449–456. doi: 10.1016/j.ecoenv.2017.07.060. PubMed DOI

Moulick D., Santra S.C., Ghosh D. Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environ. Sci. Pollut. Res. 2018;25:26978–26991. doi: 10.1007/s11356-018-2711-x. PubMed DOI

Chowardhara B., Borgohain P., Saha B., Awasthi J.P., Moulick D., Panda S.K. Phytotoxicity of Cd and Zn on three popular Indian mustard varieties during germination and early seedling growth. Biocatal. Agric. Biotechnol. 2019;21:101349. doi: 10.1016/j.bcab.2019.101349. DOI

Saha B., Chowardhara B., Kar S., Devi S.S., Awasthi J.P., Moulick D., Tanti B., Panda S.K. Priming and Pretreatment of Seeds and Seedlings. Springer; Singapore: 2019. Advances in heavy metal-induced stress alleviation with respect to exogenous amendments in crop plants; pp. 313–332.

Moulick D., Samanta S., Saha B., Mazumder M.K., Dogra S., Panigrahi K.C., Banerjee S., Ghosh D., Santra S.C. The Plant Family Fabaceae. Springer; Singapore: 2020. Salinity Stress Responses in Three Popular Field Crops Belonging to Fabaceae Family: Current Status and Future Prospect; pp. 519–541.

Meriga B., Reddy B.K., Rao K.R., Raddy L.A., Kavi Kishor P.B. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa) J. Plant Physiol. 2004;161:63–68. doi: 10.1078/0176-1617-01156. PubMed DOI

Dipierro N., Mondelli D., Paciolla C., Brunetti G., Dipierro S. Changes in ascorbate system in the response of pumpkin (Cucarbita pepo L.) roots to aluminium stress. J. Plant Physiol. 2005;162:529–536. doi: 10.1016/j.jplph.2004.06.008. PubMed DOI

Schuch M.W., Cellini A., Masia A., Marino G. Aluminium induced effects on growth, morphogenesis and oxidative stress reactions in in vitro cultures of quince. Sci. Hortic. 2010;125:151–158. doi: 10.1016/j.scienta.2010.03.007. DOI

Wang L.J., Li S.H. Salicylic acid induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant system in young grape plants. Plant Sci. 2006;170:685–694. doi: 10.1016/j.plantsci.2005.09.005. DOI

Horst W.J. The physiology manganese toxicity. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soil and Plants. Kluwer Academic Publishers; Amsterdam, The Netherlands: 1998. pp. 175–188.

Doncheva S., Poschenrieder C., Stoyanova Z., Georgieva K., Velichkova M., Bareceló J. Silicon amelioration of manganese toxicity in Mn sensitive and Mn tolerant maize varieties. Environ. Exp. Bot. 2009;65:189–197. doi: 10.1016/j.envexpbot.2008.11.006. DOI

Sharma A. Manganese in cell metabolism of higher plants. Bot. Rev. 1991;57:117–149.

Gonzalez A., Steffen K.L., Lynch J.P. Light and excess manganese. Plant Physiol. 1998;118:493–504. doi: 10.1104/pp.118.2.493. PubMed DOI PMC

Huang H., Zhao Y., Xu Z., Zhang W., Jiang K. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for Phytoremediation. Ecotoxicol. Environ. Saf. 2019;181:18–25. doi: 10.1016/j.ecoenv.2019.05.063. PubMed DOI

Braun H.P. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol. 2003;133:1935–1946. PubMed PMC

Delhaize E., Gruber B.D., Pittman J.K., White R.G., Leung H., Miao Y., Jiang L., Ryan P.R., Richardson A.E. A role for AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J. 2007;51:198–210. doi: 10.1111/j.1365-313X.2007.03138.x. PubMed DOI

Huang H., Zhao Y., Xu Z., Ding Y., Zhang W., Wu L. Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS ONE. 2018;13:e0203285. doi: 10.1371/journal.pone.0203285. PubMed DOI PMC

Noctor G., Foyer C.H. Ascorbate and glutathione: Keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249. PubMed DOI

Jimenez A., Hernandez J.A., del Rio L.A., Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 1997;114:275–284. doi: 10.1104/pp.114.1.275. PubMed DOI PMC

Meyer A.J., Brach T., Marty L., Kreye S., Rouhier N., Jacquot J.P., Hell R. Redox sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 2007;52:973–986. doi: 10.1111/j.1365-313X.2007.03280.x. PubMed DOI

Bari R., Jones J.D.G. Role of plant hormones in plant defense responses. Plant Mol Biol. 2009;69:473–488. doi: 10.1007/s11103-008-9435-0. PubMed DOI

Zhang J., Li D., Wei J., Ma W., Kong X., Rengel Z., Xiao L., Xia G. Melatonin alleviates aluminium induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environ. Exp. Bot. 2018;161:157–165. doi: 10.1016/j.envexpbot.2018.08.014. DOI

Zhu C.Q., Zhang J.H., Sun L.M., Zhu L.F., Abliz B., Hu W.J., Zhong C., Bai Z.G., Sajid H., Cao X.C., et al. Hydrogen sulfide alleviates aluminium toxicity via decreasing apoplast and symplast Al contents in rice. Front. Plant Sci. 2018;9:294. doi: 10.3389/fpls.2018.00294. PubMed DOI PMC

Choudhury S., Panda S.K. Role of salicylic acid in regulating cadmium (Cd) induced oxidative stress in Oryza sativa L. roots. Bulg. J. Plant Physiol. 2004;30:95–110.

Cao Y., Zhang Z.W., Xue L.W., Du J.B., Shang J., Xu F., Yuan S., Lin H.-H. Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z. Nat. C J. Biosci. 2009;64:231–238. doi: 10.1515/znc-2009-3-414. PubMed DOI

Nazar R., Umar S., Khan N.A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal. Behav. 2015;10:e1003751. doi: 10.1080/15592324.2014.1003751. PubMed DOI PMC

Ma X., Zheng J., Zhang X., Hu Q., Qian R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Carophyllaceae) by activating photosynthesis, protecting morphological structure and enhancing the antioxidant system. Front. Plant Sci. 2017;8:600. doi: 10.3389/fpls.2017.00600. PubMed DOI PMC

Chen J., Zhu C., Li L.P., Sun Z.Y. Effects of exogenous salicylic acid on growth and H2O2—Metabolizing enzymes in rice seedlings under lead stress. J. Environ. Sci. 2007;19:44–49. doi: 10.1016/S1001-0742(07)60007-2. PubMed DOI

Choudhury S., Moulick D., Mazumder M.K. Secondary metabolites protect against metal and metalloid stress in rice: An in silico investigation using dehydroascorbate reductase. Acta Physiol. Plant. 2020;43:3. doi: 10.1007/s11738-020-03173-2. DOI

Zengin F. Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014;84:749–755. doi: 10.1007/s40011-013-0285-4. DOI

Yoon J.Y., Hamayun M., Lee S.K., Lee I.J. Methyl jasmonate alleviated salinity stress in soybean. J. Crop Sci. Biotechnol. 2009;12:63–68. doi: 10.1007/s12892-009-0060-5. DOI

Clarke S.M., Cristescu S.M., Miersch O., Harren F.J., Wastenack C., Mur L.A. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 2009;182:175–187. doi: 10.1111/j.1469-8137.2008.02735.x. PubMed DOI

Sharma A., Zheng B. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins. Biomolecules. 2019;9:397. doi: 10.3390/biom9090397. PubMed DOI PMC

Hare P.D., Cress W.A., Van S.J. Dissecting the role of osmolyte accumulation during stress. Plant Cell Environ. 1998;21:535–553. doi: 10.1046/j.1365-3040.1998.00309.x. DOI

Asada K. The water—Water cycle in the chloroplast: Scavenging active oxygen species and dissipation of excess photons. Ann. Rev. Plant Physiol. Mol. Biol. 1999;50:601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI

Hernandez J.A., Jimenez A., Mullineaux P.M., Sevilla F. Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 2000;23:853–862. doi: 10.1046/j.1365-3040.2000.00602.x. DOI

Shao H.B., Jiang S.Y., Li F.M., Chu L.Y., Zhao C.X., Shao M.A., Zhao X., Li F. Some advances in plant stress physiology and their implications in the systems biology era. Biointerfaces. 2007;54:33–36. doi: 10.1016/j.colsurfb.2006.05.011. PubMed DOI

Sreenivasulu N., Grimma B., Wobusa U., Wescheka W. Differential responses of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria itilica) Physiol. Plant. 2000;109:435–442. doi: 10.1034/j.1399-3054.2000.100410.x. DOI

Mukherjee S. Novel perspective of molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol. Biochem. 2018;132:33–45. doi: 10.1016/j.plaphy.2018.08.031. PubMed DOI

Ke Q., Ye J., Wang B., Ren J., Yin L., Deng X., Wang S. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front. Plant Sci. 2018;9:914. doi: 10.3389/fpls.2018.00914. PubMed DOI PMC

Bienert S., Waterhouse A., de Beer T.A., Tauriello G., Studer G., Bordoli L., Schwede T. The SWISS-MODEL Repository—New features and functionality. Nucleic Acids Res. 2017;45:D313–D319. doi: 10.1093/nar/gkw1132. PubMed DOI PMC

Mazumder M.K., Borah A., Choudhury S. Inhibitory potential of plant secondary metabolites on anti-Parkinsonian drug targets: Relevance to pathophysiology, and motor and non-motor behavioural abnormalities. Med. Hypotheses. 2020;137:109544. doi: 10.1016/j.mehy.2019.109544. PubMed DOI

Mazumder M.K., Choudhury S., Borah A. An in silico investigation on the inhibitory potential of the constituents of Pomegranate juice on antioxidant defense mechanism: Relevance to neurodegenerative diseases. IBRO Rep. 2019;6:153–159. doi: 10.1016/j.ibror.2019.05.003. PubMed DOI PMC

Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Ahmad P., Abass Ahanger M., Nasser Alyemeni M., Wijaya L., Alam P., Ashraf M. Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J. Plant Interact. 2018;13:64–72. doi: 10.1080/17429145.2017.1420830. DOI

Ahmad P., Alyemeni M.N., Ahanger M.A., Egamberdieva D., Wijaya L., Alam P. Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russ. J. Plant Physiol. 2018;65:104–114. doi: 10.1134/S1021443718010132. DOI

Ahmad P., Alyemeni M.N., Vijaya L., Alam P., Ahanger M.A., Alamri S.A. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.) Arch. Agron. Soil Sci. 2017;63:1889–1899. doi: 10.1080/03650340.2017.1313406. DOI

Ahmad P., Nabi G., Ashraf M. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S. Afr. J. Bot. 2011;77:36–44.

Ahmad P., Sarwat M., Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 2008;51:167–173. doi: 10.1007/BF03030694. DOI

Mukherjee S., David A., Yadav S., Baluška F., Bhatla S.C. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol. Plant. 2014;152:714–728. doi: 10.1111/ppl.12218. PubMed DOI

Viehweger K. How plants cope with heavy metals. Bot. Stud. 2014;55:35. doi: 10.1186/1999-3110-55-35. PubMed DOI PMC

Byeon Y., Choi G.H., Lee H.Y., Back K. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. J. Exp. Bot. 2015;66:6917–6925. doi: 10.1093/jxb/erv396. PubMed DOI PMC

Bali S., Kaur P., Sharma A., Ohri P., Bhardwaj R., Alyemeni M.N., Wijaya L., Ahmad P. Jasmonic acid-induced tolerance to root-knot nematodes in tomato plants through altered photosynthetic and antioxidative defense mechanisms. Protoplasma. 2017;255:471–484. doi: 10.1007/s00709-017-1160-6. PubMed DOI

Bali S., Kaur P., Kohli S.K., Ohri P., Thukral A.K., Bhardwaj R., Wijaya L., Alyemeni M.N., Ahmad P. Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci. Total Environ. 2018;645:1344–1360. doi: 10.1016/j.scitotenv.2018.07.164. PubMed DOI

Kohli S.K., Handa N., Sharma A., Gautam V., Arora S., Bhardwaj R., Alyemeni M.N., Wijaya L., Ahmad P. Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma. 2018;255:11–24. doi: 10.1007/s00709-017-1124-x. PubMed DOI

Kohli S.K., Handa N., Sharma A., Gautam V., Arora S., Bhardwaj R., Alyemeni M.N., Ahmad P. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ. Sci. Pollut. Res. 2018;25:15159–15173. doi: 10.1007/s11356-018-1742-7. PubMed DOI

Mir M.A., John R., Alyemeni M.N., Alam P., Ahmad P. Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Sci. Rep. 2018;8:2831. doi: 10.1038/s41598-018-21097-3. PubMed DOI PMC

Mir M.A., Sirhindi G., Alyemeni M.N., Alam P., Ahmad P. Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J. Plant Growth Regul. 2018;37:1195–1209. doi: 10.1007/s00344-018-9814-y. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...