Skeletal diseases caused by mutations in PTH1R show aberrant differentiation of skeletal progenitors due to dysregulation of DEPTOR
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
P01 HD070394
NICHD NIH HHS - United States
P30 DK041301
NIDDK NIH HHS - United States
R01 AR066124
NIAMS NIH HHS - United States
PubMed
36726589
PubMed Central
PMC9885499
DOI
10.3389/fcell.2022.963389
PII: 963389
Knihovny.cz E-resources
- Keywords
- DEPTOR, PTH signaling, TAZ, Wnt, osteogenesis, skeletal differentiation,
- Publication type
- Journal Article MeSH
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine Madrid Spain
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
Institute of Animal Physiology and Genetics of the CAS Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
Laboratory of Bioengineering and Tissue Regeneration Malaga Spain
See more in PubMed
Ambrosi T. H., Scialdone A., Graja A., Gohlke S., Jank A. M., Bocian C., et al. (2017). Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771e6–784. 10.1016/j.stem.2017.02.009 PubMed DOI PMC
Amizuka N., Karaplis A. C., Henderson J. E., WarsHawsky H., Lipman M. L., Matsuki Y., et al. (1996). Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev. Biol. 175, 166–176. 10.1006/dbio.1996.0104 PubMed DOI
Barta T., Peskova L., Hampl A. (2016). miRNAsong: A web-based tool for generation and testing of miRNA sponge constructs in silico . Sci. Rep. 6, 36625–36628. 10.1038/srep36625 PubMed DOI PMC
Bosakova M., Abraham S. P., Nita A., Hruba E., Buchtova M., Taylor S. P., et al. (2020). Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol. Med. 12, e11739. 10.15252/emmm.201911739 PubMed DOI PMC
Bosakova M. K., Nita A., Gregor T., Varecha M., Gudernova I., Fafilek B., et al. (2019). Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc. Natl. Acad. Sci. U. S. A. 116, 4316–4325. 10.1073/pnas.1800338116 PubMed DOI PMC
Caron A., Briscoe D. M., Richard D., Laplante M. (2018). DEPTOR at the nexus of cancer, metabolism, and immunity. Physiol. Rev. 98, 1765–1803. 10.1152/physrev.00064.2017 PubMed DOI PMC
Catena V., Bruno T., De Nicola F., Goeman F., Pallocca M., Iezzi S., et al. (2016). Deptor transcriptionally regulates endoplasmic reticulum homeostasis in multiple myeloma cells. Oncotarget 7, 70546–70558. 10.18632/oncotarget.12060 PubMed DOI PMC
Chan C. K. F., Gulati G. S., Sinha R., Tompkins J. V., Lopez M., Carter A. C., et al. (2018). Identification of the human skeletal stem cell. Cell 175, 43e21–56. 10.1016/j.cell.2018.07.029 PubMed DOI PMC
Chan C. K. F., Seo E. Y., Chen J. Y., Lo D., McArdle A., Sinha R., et al. (2015). Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298. 10.1016/j.cell.2014.12.002 PubMed DOI PMC
Chan G. K., Deckelbaum R. A., Bolivar I., Goltzman D., Karaplis A. C. (2001). PTHrP inhibits adipocyte differentiation by down-regulating PPARγ activity via a MAPK-dependent pathway. Endocrinology 142, 4900–4909. 10.1210/endo.142.11.8515 PubMed DOI
Chen C., Okayama H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752. 10.1128/mcb.7.8.2745 PubMed DOI PMC
Chen J., Holguin N., Shi Y., Silva M. J., Long F. (2015). mTORC2 signaling promotes skeletal growth and bone formation in mice. J. Bone Mineral Res. 30, 369–378. 10.1002/jbmr.2348 PubMed DOI PMC
Chen J., Long F. (2014). mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development 141, 2848–2854. 10.1242/dev.108811 PubMed DOI PMC
Chen S., Hamm H. E. (2006). DEP domains: More than just membrane anchors. Dev. Cell 11, 436–438. 10.1016/j.devcel.2006.09.011 PubMed DOI
Chen S., Jia L., Zhang S., Zheng Y., Zhou Y. (2018). DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Res. Ther. 9, 185–214. 10.1186/s13287-018-0935-9 PubMed DOI PMC
Cohen M. M. (2002). Some chondrodysplasias with short limbs: Molecular perspectives. Am. J. Med. Genet. 112, 304–313. 10.1002/ajmg.10780 PubMed DOI
Consonni S. V., Maurice M. M., Bos J. L. (2014). DEP domains: Structurally similar but functionally different. Nat. Rev. Mol. Cell Biol. 15, 357–362. 10.1038/nrm3791 PubMed DOI
Cook D., Genever P. (2013). Regulation of mesenchymal stem cell differentiation, 213–229. 10.1007/978-94-007-6621-1_12 PubMed DOI
Csukasi F., Duran I., Barad M., Barta T., Gudernova I., Trantirek L., et al. (2018). The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling. Sci. Transl. Med. 10, 9356. 10.1126/scitranslmed.aat9356 PubMed DOI PMC
Dai Q., Xie F., Han Y., Ma X., Zhou S., Jiang L., et al. (2016). Inactivation of regulatory-associated protein of mTOR (Raptor)/Mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice. J. Biol. Chem. 292, 196–204. 10.1074/jbc.M116.764761 PubMed DOI PMC
Devlin M. J., Rosen C. J. (2015). The bone–fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes & Endocrinol. 3, 141–147. 10.1016/S2213-8587(14)70007-5 PubMed DOI PMC
Fan Y., Hanai J. I., Le P. T., Bi R., Maridas D., DeMambro V., et al. (2017). Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661–672. 10.1016/j.cmet.2017.01.001 PubMed DOI PMC
Fang F., Sun S., Wang L., Guan J. L., Giovannini M., Zhu Y., et al. (2015). Neural crest-specific TSC1 deletion in mice leads to sclerotic craniofacial bone lesion. J. bone mineral Res. official J. Am. Soc. Bone Mineral Res. 30, 1195–1205. 10.1002/jbmr.2447 PubMed DOI PMC
Heng B. C., Zhang X., Aubel D., Bai Y., Li X., Wei Y., et al. (2020). Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front. Cell Dev. Biol. 8, 735. 10.3389/fcell.2020.00735 PubMed DOI PMC
Hong J. H., Hwang E. S., McManus M. T., Amsterdam A., Tian Y., Kalmukova R., et al. (2005). TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078. 10.1126/science.1110955 PubMed DOI
Hossain Z., Ali S. M., Ko H. L., Xu J., Ng C. P., Guo K., et al. (2007). Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. PNAS 104, 1631–1636. 10.1073/pnas.0605266104 PubMed DOI PMC
Huang B., Wang Y., Wang W., Chen J., Lai P., Liu Z., et al. (2015). mTORC1 prevents preosteoblast differentiation through the notch signaling pathway. PLOS Genet. 11, e1005426. 10.1371/journal.pgen.1005426 PubMed DOI PMC
Jiang M., Fu X., Yang H., Long F., Chen J. (2017). mTORC1 signaling promotes limb bud cell growth and chondrogenesis. J. Cell. Biochem. 118, 748–753. 10.1002/jcb.25728 PubMed DOI PMC
Jobert A. S., Zhang P., CouvineAu A., Bonaventure J., Roume J., Le MerrerM., et al. (1998). Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J. Clin. Investigation 102, 34–40. 10.1172/JCI2918 PubMed DOI PMC
Kegelman C. D., Coulombe J. C., Jordan K. M., Horan D. J., Qin L., Robling A. G., et al. (2020). YAP and TAZ mediate osteocyte perilacunar/canalicular remodeling. J. Bone Mineral Res. 35, 196–210. 10.1002/jbmr.3876 PubMed DOI PMC
Kegelman C. D., Mason D. E., Dawahare J. H., Horan D. J., Vigil G. D., Howard S. S., et al. (2018). Skeletal cell YAP and TAZ combinatorially promote bone development. FASEB J. 32, 2706–2721. 10.1096/fj.201700872R PubMed DOI PMC
Kofler M., Speight P., Little D., Di Ciano-Oliveira C., Szaszi K., Kapus A. (2018). Mediated nuclear import and export of TAZ and the underlying molecular requirements. Nat. Commun. 9, 4966–5015. 10.1038/s41467-018-07450-0 PubMed DOI PMC
Kozhemyakina E., Lassar A. B., Zelzer E. (2015). A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142, 817–831. 10.1242/dev.105536 PubMed DOI PMC
Kozlowski K., Campbell J. B., Azouz M. E., Sprague P. (1999). Metaphyseal chondrodysplasia, type Jansen. Australas. Radiol. 43, 544–547. 10.1046/j.1440-1673.1999.00729.x PubMed DOI
Laplante M., Horvat S., Festuccia W. T., Birsoy K., Prevorsek Z., Efeyan A., et al. (2012). DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab. 16, 202–212. 10.1016/j.cmet.2012.07.008 PubMed DOI PMC
Li K., Yang P., Zhang Y., Zhang Y., Cao H., Liu P., et al. (2021). DEPTOR prevents osteoarthritis development via interplay with TRC8 to reduce endoplasmic reticulum stress in chondrocytes. J. Bone Mineral Res. 36, 400–411. 10.1002/jbmr.4176 PubMed DOI
Loshkajian A., Stanescu V., Delezoide A. L., StampFF., Maroteaux P. (1997). Familial Blomstrand chondrodysplasia with advanced skeletal maturation: Further delineation. Am. J. Med. Genet. 71, 283–288. 10.1002/(sici)1096-8628(19970822)71:3<283:aid-ajmg7>3.0.co;2-v PubMed DOI
Naldini L., Blomer U., Gage F. H., Trono D., Verma I. M. (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U. S. A. 93, 11382–11388. 10.1073/pnas.93.21.11382 PubMed DOI PMC
Oh C. D., Kim S. J., Ju J. W., Song W. K., Kim J. H., Yoo Y. J., et al. (2001). Immunosuppressant rapamycin inhibits protein kinase C α and p38 mitogen-activated protein kinase leading to the inhibition of chondrogenesis. Eur. J. Pharmacol. 427, 175–185. 10.1016/s0014-2999(01)01241-9 PubMed DOI
Ouyang Z., Kang D., Li K., Liang G., Liu Z., Mai Q., et al. (2022). DEPTOR exacerbates bone–fat imbalance in osteoporosis by transcriptionally modulating BMSC differentiation. Biomed. Pharmacother. 151, 113164. 10.1016/j.biopha.2022.113164 PubMed DOI
Pereira M., Ko J. H., Logan J., Protheroe H., Kim K. B., Tan A. L. M., et al. (2020). A trans-eQTL network regulates osteoclast multinucleation and bone mass. eLife 9, e55549. 10.7554/eLife.55549 PubMed DOI PMC
Peskova L., Cerna K., Oppelt J., Mraz M., Barta T. (2019). Oct4-mediated reprogramming induces embryonic-like microRNA expression signatures in human fibroblasts. Sci. Rep. 9, 15759. 10.1038/s41598-019-52294-3 PubMed DOI PMC
Peterson T. R., Laplante M., Thoreen C. C., Sancak Y., Kang S. A., Kuehl W. M., et al. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886. 10.1016/j.cell.2009.03.046 PubMed DOI PMC
Phornphutkul C., Wu K. Y., Auyeung V., Chen Q., Gruppuso P. A. (2008). mTOR signaling contributes to chondrocyte differentiation. Dev. Dyn. 237, 702–712. 10.1002/dvdy.21464 PubMed DOI PMC
Sakoda T., Kasahara N., Hamamori Y., Kedes L. (1999). A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J. Mol. Cell. Cardiol. 31, 2037–2047. 10.1006/jmcc.1999.1035 PubMed DOI
Schipani E., Kruse K., Jüppner H. (1995). A constitutively active mutant PTH-PTHrP receptor in jansen-type metaphyseal chondrodysplasia. Science 268, 98–100. 10.1126/science.7701349 PubMed DOI
Schipani E., Lanske B., Hunzelman J., Luz A., Kovacs C. S., Lee K., et al. (1997). Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc. Natl. Acad. Sci. U. S. A. 94, 13689–13694. 10.1073/pnas.94.25.13689 PubMed DOI PMC
Varelas X., Miller B. W., Sopko R., Song S., Gregorieff A., Fellouse F. A., et al. (2010). The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18, 579–591. 10.1016/j.devcel.2010.03.007 PubMed DOI
Veldhuis-Vlug A. G., Rosen C. J. (2017). Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism - Clin. Exp. 67, 106–114. 10.1016/j.metabol.2016.11.013 PubMed DOI PMC
Xiong J., Almeida M., O’Brien C. A. (2018). The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation. Bone 112, 1–9. 10.1016/j.bone.2018.04.001 PubMed DOI PMC
Yan B., Zhang Z., Jin D., Cai C., Jia C., Liu W., et al. (2016). mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat. Commun. 7, 11151–11215. 10.1038/ncomms11151 PubMed DOI PMC
Yu B., Huo L., Liu Y., Deng P., Szymanski J., Li J., et al. (2018). PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23, 615e5–623. 10.1016/j.stem.2018.09.001 PubMed DOI PMC
Yu B., Zhao X., Yang C., Crane J., Xian L., Lu W., et al. (2012). Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J. Bone Mineral Res. 27, 2001–2014. 10.1002/jbmr.1663 PubMed DOI PMC
Yu F. X., Zhao B., Panupinthu N., Jewell J. L., Lian I., Wang L. H., et al. (2012). Regulation of the hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791. 10.1016/j.cell.2012.06.037 PubMed DOI PMC
Zhang Y., Xu S., Li K., Tan K., Liang K., Wang J., et al. (2017). mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice. J. Bone Mineral Res. 32, 1829–1840. 10.1002/jbmr.3172 PubMed DOI