G-quadruplex ligands as potent regulators of lysosomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36740766
PubMed Central
PMC10283436
DOI
10.1080/15548627.2023.2170071
Knihovny.cz E-zdroje
- Klíčová slova
- Autophagy, TFEB, guanine-quadruplex, lysosome membrane permeabilization, transcriptional regulation,
- MeSH
- autofagie * MeSH
- DNA metabolismus MeSH
- G-kvadruplexy * MeSH
- guanin MeSH
- lidé MeSH
- ligandy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- guanin MeSH
- ligandy MeSH
Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.
CNRS UMR9187 INSERM U1196 Université Paris Saclay Orsay France
Department of Medicine 3 Klinikum Rechts der Isar Technical University of Munich Munich Germany
Metabolomics and Cell Biology Platforms Institut Gustave Roussy Villejuif France
Zobrazit více v PubMed
Phan AT. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010;277:1107–1117. PubMed
Biffi G, Tannahill D, McCafferty J, et al. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–186. PubMed PMC
Salgado GF, Cazenave C, Kerkour A, et al. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci. 2015;6:3314–3320. PubMed PMC
Ribeyre C, Lopes J, Boulé J-B, et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475. PubMed PMC
Varshney D, Spiegel J, Zyner K, et al. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21:459–474. PubMed PMC
Armas P, Calcaterra NB. G-quadruplex in animal development: contribution to gene expression and genomic heterogeneity. Mech Dev. 2018;154:64–72. PubMed
Tabor N, Ngwa C, Mitteaux J, et al. Differential responses of neurons, astrocytes, and microglia to G-quadruplex stabilization. Aging (Albany NY). 2021;13:15917–15941. PubMed PMC
Lago S, Nadai M, Cernilogar FM, et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021;12:3885. PubMed PMC
Carvalho J, Mergny J-L, Salgado GF, et al. Friend or Foe: the role of the g-quartet in anticancer strategies. Trends Mol Med. 2020;26:848–861. PubMed
Perrone R, Nadai M, Frasson I, et al. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J Med Chem. 2013;56:6521–6530. PubMed PMC
Amrane S, Kerkour A, Bedrat A, et al. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J Am Chem Soc. 2014;136:5249–5252. PubMed
Abiri A, Lavigne M, Rezaei M, Nikzad S, Zare P, Mergny J-L, Rahimi H-R. Unlocking . G-Quadruplexes as antiviral targets. Pharmacol Rev. 2021;73:897–923. PubMed
Puig Lombardi E, Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020;48:1–15. PubMed PMC
Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. PubMed PMC
Brázda V, Bartas M, Bowater RP. Evolution of diverse strategies for promoter regulation. Trends Genet. 2021;37:730–744. PubMed
Bohálová N, Mergny J-L BV. Novel G-quadruplex prone sequences emerge in the complete assembly of the human X chromosome. Biochimie. 2021;191:87–90. PubMed
Piazza A, Adrian M, Samazan F, et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 2015;34:1718–1734. PubMed PMC
Biffi G, Tannahill D, Miller J, et al. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One. 2014;9:e102711. PubMed PMC
Guo JU, DP B. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 2016;353:aaf5371. PubMed PMC
Wang W, Zhou J, Shi J, et al. T-cell leukemia virus type 1 Tax-deregulated autophagy pathway and c-FLIP expression contribute to resistance against death receptor-mediated apoptosis. J Virol. 2014;88:2786–2798. PubMed PMC
Yett A, Lin LY, Beseiso D, et al. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J Porphyr Phthalocyanines. 2019;23:1195–1215. PubMed PMC
Brassart B, Gomez D, De Cian A, et al. A new steroid derivative stabilizes g-quadruplexes and induces telomere uncapping in human tumor cells. Mol Pharmacol. 2007;72:631–640. PubMed
Zuffo M, Guédin A, Leriche E-D, et al. More is not always better: finding the right trade-off between affinity and selectivity of a G-quadruplex ligand. Nucleic Acids Res. 2018;46:e115. PubMed PMC
Luo Y, Granzhan A, Verga D, et al. A fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers. 2021;112:e23415. PubMed
Hamon F, Largy E, Guédin-Beaurepaire A, et al. An acyclic oligoheteroaryle that discriminates strongly between diverse G-quadruplex topologies. Angew Chem Int Ed Engl. 2011;50:8745–8749. PubMed
Sun D, Thompson B, Cathers BE, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem. 1997;40:2113–2116. PubMed
De Cian A, Cristofari G, Reichenbach P, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A. 2007;104:17347–17352. PubMed PMC
Granotier C, Pennarun G, Riou L, et al. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res. 2005;33:4182–4190. PubMed PMC
Drygin D, Siddiqui-Jain A, O’Brien S, et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 2009;69:7653–7661. PubMed
Drygin D, Lin A, Bliesath J, et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 2011;71:1418–1430. PubMed
Ferreira R, Schneekloth JS, Panov KI, et al. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells. 2020;9:E266. PubMed PMC
Zimmer J, Tacconi EMC, Folio C, et al. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Mol Cell. 2016;61:449–460. PubMed PMC
De Magis A, Manzo SG, Russo M, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences, USA. 2019; 116:816–825. PubMed PMC
Miglietta G, Russo M, Duardo RC, et al. G-quadruplex binders as cytostatic modulators of innate immune genes in cancer cells. Nucleic Acids Res. 2021;49:6673–6686. PubMed PMC
Brázda V, Kolomazník J, Lýsek J, et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. PubMed PMC
Saftig P, Puertollano R. How lysosomes sense, integrate, and cope with stress. Trends Biochem Sci. 2021;46:97–112. PubMed PMC
Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 2019;21:133–142. PubMed
Inpanathan S, Botelho RJ. The lysosome signaling platform: adapting with the times. Front Cell Dev Biol. 2019;7:113. PubMed PMC
Ben-Sahra I, Manning BD . mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 2017;45:72–82. PubMed PMC
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203. PubMed PMC
Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20:460–473. PubMed PMC
Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36:1811–1836. PubMed PMC
Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42. PubMed PMC
Kroemer G, Mariño G, Levine B. Autophagy and the Integrated Stress Response. Mol Cell. 2010;40:280–293. PubMed PMC
White E, Lattime EC, Guo JY. Autophagy Regulates Stress Responses, Metabolism, and Anticancer Immunity. Trends Cancer. 2021;7:778–789. PubMed PMC
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–822. PubMed
Faruk MO, Ichimura Y, Komatsu M. Selective autophagy. Cancer Sci. 2021;112:3972–3978. PubMed PMC
Johansen T, Selective Autophagy: LT. ATG8 family proteins, LIR motifs and cargo receptors. J Mol Biol. 2020;432:80–103. PubMed
Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129:2475–2481. PubMed PMC
Raben N, Puertollano R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Biol. 2016;32:255–278. PubMed PMC
Slade L, Pulinilkunnil T. The MiTF/TFE family of transcription factors: master regulators of organelle signaling, metabolism, and stress adaptation. Mol Cancer Res. 2017;15:1637–1643. PubMed
La Spina M, Contreras PS, Rissone A, et al. MiT/TFE family of transcription factors: an evolutionary perspective. Front Cell Dev Biol. 2020;8:609683. PubMed PMC
Kuiper RP, Schepens M, Thijssen J, et al. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res. 2004;32:2315–2322. PubMed PMC
Pérez-Roca L, Prada-Dacasa P, Segú-Vergés C, et al. Glucocerebrosidase regulators SCARB2 and TFEB are up-regulated in Lewy body disease brain. Neurosci Lett. 2019;706:164–168. PubMed
Settembre C, Fraldi A, Medina DL, et al. Signals for the lysosome: a control center for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–296. PubMed PMC
Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8:903–914. PubMed PMC
Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–1108. PubMed PMC
Settembre C, Medina DLTFEB. and the CLEAR network. Methods Cell Biol. 2015;126:45–62. PubMed
Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014;24:24–41. PubMed PMC
Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–1912. PubMed
Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–931. PubMed
Stahl-Meyer J, Stahl-Meyer K, Jäättelä M. Control of mitosis, inflammation, and cell motility by limited leakage of lysosomes. Curr Opin Cell Biol. 2021;71:29–37. PubMed
Papadopoulos C, Kravic B, Meyer H. Repair or Lysophagy: dealing with Damaged Lysosomes. J Mol Biol. 2020;432:231–239. PubMed
Kang -C-C, Huang W-C, Kouh C-W, et al. Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity. Integr Biol (Camb). 2013;5:1217–1228. PubMed PMC
Tse T-Y, Chang C-C, Lin J-J, Chang T-C. A Fluorescent Anti-Cancer . Agent, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, stains G-Quadruplexes in cells and inhibits tumor growth. Curr Top Med Chem. 2015;15:1964–1970. PubMed
Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat. 2016;24:23–33. PubMed
Yu Q, Liu Y, Xu L, et al. polypyridyl complexes: cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets. Eur J Med Chem. 2014;82:82–95. PubMed
Beauvarlet J, Nath Das R, Alvarez-Valadez K, et al. Triarylpyridine compounds and chloroquine act in concert to trigger lysosomal membrane permeabilization and cell death in cancer cells. Cancers (Basel). 2020;12:E1621. PubMed PMC
Falabella M, Fernandez RJ, Johnson FB, et al. Potential roles for G-Quadruplexes in Mitochondria. Curr Med Chem. 2019;26:2918–2932. PubMed PMC
Falabella M, Kolesar JE, Wallace C, et al. G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep. 2019;9:5605. PubMed PMC
Butler TJ, Estep KN, Sommers JA, et al. Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Hum Mol Genet. 2020;29:1292–1309. PubMed PMC
Dahal S, Siddiqua H, Katapadi VK, et al. Characterization of G4 DNA formation in mitochondrial DNA and their potential role in mitochondrial genome instability. FEBS J. 2022;289:163–182. PubMed
Li C-P, Huang J-H, Chang A-C, et al. G-quadruplex ligand 3,3’-diethyloxadicarbocyanine iodide induces mitochondrion-mediated apoptosis but not decrease of telomerase activity in nasopharyngeal carcinoma NPC-TW01 cells. Pharm Res. 2004;21:93–100. PubMed
Huang W-C, Tseng T-Y, Chen Y-T, et al. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res. 2015;43:10102–10113. PubMed PMC
Guo X, Yang D, Sun R, et al. A cyanine dye supramolecular FRET switch driven by G-quadruplex to monitor mitophagy. Dyes Pigm. 2021;192:109429.
She M-T, Yang J-W, Zheng B-X, et al. Design mitochondria-specific fluorescent turn-on probes targeting G-quadruplexes for live cell imaging and mitophagy monitoring study. Chem Eng J. 2022;446:136947.
Tseng T-Y, Wang Z-F, Chien C-H, et al. In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands. Nucleic Acids Res. 2013;41:10605–10618. PubMed PMC
Tseng T-Y, Wang C-L, Huang W-C, et al. Folding and unfolding of exogenous G-Rich Oligonucleotides in live cells by fluorescence lifetime imaging microscopy of o-BMVC fluorescent probe. Molecules. 2021;27:140. PubMed PMC
Chang T, Qi C, Meng J, et al. General cell-binding activity of intramolecular G-quadruplexes with parallel structure. PLoS One. 2013;8:e62348. PubMed PMC
Yoon S, Rossi JJ. Aptamers: uptake mechanisms and intracellular applications. Adv Drug Deliv Rev. 2018;134:22–35. PubMed PMC
Sardiello M, Palmieri M. di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, et al. Sci. 2009;325:473–477. PubMed
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al . TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–1433. PubMed PMC
Beauvarlet J, Bensadoun P, Darbo E, et al. Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 2019;47:2739–2756. PubMed PMC
Miglietta G, Marinello J, Russo M, et al. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer. 2022;21:180. PubMed PMC
Moruno-Manchon JF, Lejault P, Wang Y, et al. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. Elife. 2020;9:e52283. PubMed PMC
Brozzi A, Urbanelli L, Germain PL, et al. hLGDB: a database of human lysosomal genes and their regulation. Database (Oxford). 2013;2013:bat024. PubMed PMC
Palmieri M, Impey S, Kang H. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20:3852–3866. PubMed
Zhou W-J, Deng R, Zhang X-Y, et al. G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol Cancer Ther. 2009;8:3203–3213. PubMed
Zhou W-J, Deng R, Feng G-K, et al. [A G-quadruplex ligand SYUIQ-5 induces autophagy by inhibiting the Akt-FOXO3a pathway in nasopharyngeal cancer cells]. Ai Zheng. 2009;28:1049–1053. PubMed
Orlotti NI, Cimino-Reale G, Borghini E, et al. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy. 2012;8:1185–1196. PubMed
Beauvarlet J, Mergny J-LDjavaheri-Mergny, M. Activation of the Ataxia Telangiectasia Mutated/Autophagy pathway by a G-quadruplex ligand links senescence with apoptosis. Mol Cell Oncol. 2019;6:1604047. PubMed PMC
Ma X, Awadasseid A, Zhou K, et al. A 1,10-phenanthroline derivative selectively targeting telomeric G-quadruplex induces cytoprotective autophagy, causing apoptosis of gastric cancer cells. Life Sci. 2021;287:120095. PubMed
Li L, Li Y, Zhao J, et al. CX-5461 induces autophagy and inhibits tumor growth via mammalian target of rapamycin-related signaling pathways in osteosarcoma. Onco Targets Ther. 2016;9:5985–5997. PubMed PMC
Bossaert M, Pipier A, Riou J-F, et al. Transcription-associated topoisomerase 2a (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife. 2021;10:e65184. PubMed PMC
Xu H, Hurley LH. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg Med Chem Lett. 2022;77:129016. PubMed
Ismael M, Webb R, Ajaz M, et al. The Targeting of RNA polymerase I transcription using CX-5461 in combination with radiation enhances tumour cell killing effects in human solid cancers. Cancers (Basel). 2019;11:E1429. PubMed PMC
Chen H, Duo Y, Hu B, et al. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway. Oncotarget. 2016;7:78747–78763. PubMed PMC
Dannheisig DP, Schimansky A, Donow C, et al. Nucleolar stress functions upstream to stimulate expression of autophagy regulators. Cancers (Basel). 2021;13:6220. PubMed PMC
Sanchez-Martin V, Schneider DA, Ortiz-Gonzalez M, et al. Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment. Cell Chem Biol. 2021;28(1590–1601.e4) PubMed
Wang X, Zhang M, Xiong X-Q, et al. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. Life Sci. 2022;302:120651. PubMed
Lejault P, Moruno-Manchon JF, Vemu SM, et al. Regulation of autophagy by DNA G-quadruplexes. Autophagy. 2020;16:2252–2259. PubMed PMC
Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8:1124–1132. PubMed
Rubinstein AD, Eisenstein M, Ber Y, et al. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 2011;44:698–709. PubMed
Onorati A, Dyczynski M, Ojha R, et al. Targeting autophagy in cancer. Cancer. 2018;124:3307–3318. PubMed PMC
Dumas L, Herviou P, Dassi E, et al. G-Quadruplexes in RNA biology: recent advances and future directions. Trends Biochem Sci. 2021;46:270–283. PubMed
Burge S, Parkinson GN, Hazel P, et al. DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. PubMed PMC