Near-Infrared Spectroscopy as a Tool for Simultaneous Determination of Diesel Fuel Improvers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36743007
PubMed Central
PMC9893758
DOI
10.1021/acsomega.2c06845
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Diesel and biodiesel blends requires additives to improve fuel quality properties and engine performance. Diesel improvers are added before, during and/or after the fuel is blended. However, no accurate rapid and non-destructive analytical method is used during the fuel production that could determine the exact concentration of various types of improvers in diesel fuel. Thus, the aim of this study was to determine the concentration of several improvers in diesel matrices at the same time. Three types of diesel improvers, i.e., a cold-flow improver (CFI), a conductivity-lubricity improver (CLI), and a cetane number improver (CNI), were simultaneously determined by near-infrared (NIR) spectroscopy combined with multivariate statistical analysis and the partial least squares algorithm. The prediction models yielded high correlation coefficients (R 2) >0.99 and satisfactory values of the root mean square error of calibration as follows: CLI 4.2 (mg·kg-1), CFI 4.6 (mg·kg-1), and CNI 5.3 (mg·kg-1). The residual standard deviation of the repeatability was calculated to be around 8%. These results highlight the potential of NIR spectroscopy for use as a fast, low-cost, and efficient tool to determine the concentrations of diesel improvers. Moreover, this technique is suitable for application during refinery production, especially for the purpose of online monitoring to prevent overdoses of additives and save financial expenses.
Zobrazit více v PubMed
Fayyazbakhsh A.; Pirouzfar V. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renew. Sustainable Energy Rev. 2017, 74, 891–901. 10.1016/j.rser.2017.03.046. DOI
Naga Venkata Siddartha G.; Siva Ramakrishna C.; Kumar Kujur P.; Anupam Rao Y.; Dalela N.; Singh Yadav A.; Sharma A. Effect of fuel additives on internal combustion engine performance and emissions. Mater. Today: Proc. 2022, 63, A9–A14. 10.1016/j.matpr.2022.06.307. DOI
Nagappan M.; Devaraj A.; Babu J. M.; Vibhav Saxena N.; Prakash O.; Kumar P.; Sharma A. Impact of additives on Combustion, performance and exhaust emission of biodiesel fueled direct injection diesel engine. Mater. Today: Proc. 2022, 62, 2326.10.1016/j.matpr.2022.04.114. DOI
Toscano G.; Leoni E.; Gasperini T.; Picchi G. Performance of a portable NIR spectrometer for the determination of moisture content of industrial wood chips fuel. Fuel 2022, 320, 12394810.1016/j.fuel.2022.123948. DOI
Santos F. D.; Santos L. P.; Cunha P. H. P.; Borghi F. T.; Romão W.; de Castro E. V. R.; de Oliveira E. C.; Filgueiras P. R. Discrimination of oils and fuels using a portable NIR spectrometer. Fuel 2021, 283, 11885410.1016/j.fuel.2020.118854. DOI
Liu S.; Wang S.; Hu C.; Zhan S.; Kong D.; Wang J. Rapid and accurate determination of diesel multiple properties through NIR data analysis assisted by machine learning. Spectrochim. Acta, Part A 2022, 277, 12126110.1016/j.saa.2022.121261. PubMed DOI
Bukkarapu K. R.; Krishnasamy A. Predicting engine fuel properties of biodiesel and biodiesel-diesel blends using spectroscopy based approach. Fuel Process. Technol. 2022, 230, 10722710.1016/j.fuproc.2022.107227. DOI
Hradecká I.; Velvarská R.; Jaklová K. D.; Vráblík A. Rapid determination of diesel fuel properties by near-infrared spectroscopy. Infrared Phys. Technol. 2021, 119, 10393310.1016/j.infrared.2021.103933. DOI
Buendia Garcia J.; Lacoue-Negre M.; Gornay J.; Mas Garcia S.; Bendoula R.; Roger J. M. Diesel cetane number estimation from NIR spectra of hydrocracking total effluent. Fuel 2022, 324, 12464710.1016/j.fuel.2022.124647. DOI
Liu S.; Wang S.; Hu C.; Qin X.; Wang J.; Kong D. Development of a new NIR-machine learning approach for simultaneous detection of diesel various properties. Measurement 2022, 187, 11029310.1016/j.measurement.2021.110293. DOI
Palou A.; Miró A.; Blanco M.; Larraz R.; Gómez J. F.; Martínez T.; González J. M.; Alcalà M. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy. Spectrochim. Acta, Part A 2017, 180, 119–126. 10.1016/j.saa.2017.03.008. PubMed DOI
Tasić I.; Tomić M. D.; Aleksić A. L.; Đurišić-Mladenović N.; Martinović F. L.; Mićić R. D. Improvement of low-temperature characteristics of biodiesel by additivation. Hem. Ind. 2019, 73, 103–114. 10.2298/HEMIND190117009T. DOI
Yang T.; Wu J.; Yuan M.; Li X.; Yin S.; Su B.; Yan J.; Lin H.-L.; Xue Y.; Han S. Influence of polar groups on the depressive effects of polymethacrylate polymers as cold flow improvers for diesel fuel. Fuel 2021, 290, 12003510.1016/j.fuel.2020.120035. DOI
Brown G. I.; Tack R. D.; Chandler J. E.. An Additive Solution to the Problem of Wax Settling in Diesel Fuels (No. CONF-8810120-); Society of Automotive Engineers: Warrendale, PA, 1988.
Prathima A.; Karthikeyan S.; Radhi Devi K.; Usha K.; Shanthi M. Environmental effect of lubricity additives through dielectric molecular parameters. Mater. Today Proc. 2020, 33, 3658–3663. 10.1016/j.matpr.2020.05.762. DOI
Kuszewski H.; Jaworski A.; Ustrzycki A. Lubricity of ethanol–diesel blends – Study with the HFRR method. Fuel 2017, 208, 491–498. 10.1016/j.fuel.2017.07.046. DOI
Hsieh P. Y.; Bruno T. J. A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Process. Technol. 2015, 129, 52–60. 10.1016/j.fuproc.2014.08.012. DOI
Sánchez-Delgado R. A.1.27 - Hydrodesulfurization and Hydrodenitrogenation. In Comprehensive Organometallic Chemistry III, Mingos D. M. P., Crabtree R. H. Eds.; Elsevier, 2007; pp. 759–800.
ASTM D613-01 . Standard Test Method For Cetane Number Of Diesel Fuel Oil; West Conshohocken, PA, 2001
Atmanli A. Effects of a cetane improver on fuel properties and engine characteristics of a diesel engine fueled with the blends of diesel, hazelnut oil and higher carbon alcohol. Fuel 2016, 172, 209–217. 10.1016/j.fuel.2016.01.013. DOI
Canoira L.; Alcántara R.; Torcal S.; Tsiouvaras N.; Lois E.; Korres D. M. Nitration of biodiesel of waste oil: Nitrated biodiesel as a cetane number enhancer. Fuel 2007, 86, 965–971. 10.1016/j.fuel.2006.10.022. DOI
Hanlon J. V.; Hinkamp J. B.. Desensitized cetane improvers. United States US4473378A, 1984.
Seemuth P. D.Cetane improver composition. United States US4536190A, 1985.
Li R.; Wang Z.; Ni P.; Zhao Y.; Li M.; Li L. Effects of cetane number improvers on the performance of diesel engine fuelled with methanol/biodiesel blend. Fuel 2014, 128, 180–187. 10.1016/j.fuel.2014.03.011. DOI
de Faria B. D. F. H.; Santana Barbosa P.; Valente Roque J.; de Cássia Oliveira Carneiro A.; Rousset P.; Candelier K.; Francisco Teófilo R. Evaluation of weight loss and high heating value from biomasses during fungal degradation by NIR spectroscopy. Fuel 2022, 320, 12384110.1016/j.fuel.2022.123841. DOI
Fearn T. Assessing calibrations: sep, rpd, rer and r 2. NIR News 2002, 13, 12–13. 10.1255/nirn.689. DOI
Williams P. C.; Sobering D.; Davies A.; Williams P.. Near infrared spectroscopy: the future waves. In Proceedings of the 7th International Conference on Near Infrared Spectroscopy, 1996; p. 742.
Salzer R. Practical Guide to Interpretive Near-Infrared Spectroscopy. By Jerry Workman, Jr. and Lois Weyer. Angew. Chem. Int. Ed. 2008, 47, 4628–4629. 10.1002/anie.200885575. DOI
Wong T.-T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. 10.1016/j.patcog.2015.03.009. DOI
Nicolaï B. M.; Beullens K.; Bobelyn E.; Peirs A.; Saeys W.; Theron K. I.; Lammertyn J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. 10.1016/j.postharvbio.2007.06.024. DOI
Williams P. C.; Sobering D.. How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In Near infrared spectroscopy: The future waves; NIR Publications: Chichester, 1996; pp. 185–188.
Hayes D. M.; Hayes M.; Leahy J. Use of near infrared spectroscopy for the rapid low-cost analysis of waste papers and cardboards. Faraday Discuss. 2017, 202, 465–482. 10.1039/C7FD00081B. PubMed DOI
Velvarská R.; Vráblík A.; Hidalgo-Herrador J. M.; Černý R. Near-infrared spectroscopy to determine cold-flow improver concentrations in diesel fuel. Infrared Phys. Technol. 2020, 110, 10344510.1016/j.infrared.2020.103445. DOI
Vrtiška D.; Šimáček P. Prediction of 2-EHN content in diesel/biodiesel blends using FTIR and chemometrics. Talanta 2018, 178, 987–991. 10.1016/j.talanta.2017.09.003. PubMed DOI