Photocatalytic degradation of gaseous pollutants on nanostructured TiO2 films of various thickness and surface area
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
21-27243S
Grantová Agentura České Republiky
PubMed
36745319
DOI
10.1007/s43630-022-00359-0
PII: 10.1007/s43630-022-00359-0
Knihovny.cz E-resources
- Keywords
- Gaseous pollutants, ISO 22197-2, Nanoparticulate films, P25, P90, Photocatalysis, TiO2,
- Publication type
- Journal Article MeSH
This work deals with the preparation of TiO2 nanoparticulate layers of various mass (0.05 mg/cm2 to 2 mg/cm2) from three commercial nanopowder materials, P90, P25 and CG 300, their characterisation (profilometry, BET and SEM) and evaluation of their photocatalytic activity in the gaseous phase in a flow-through photoreactor according to the ISO standard (ISO 22197-2). Hexane was chosen as a single model pollutant and a mixture of four compounds, namely acetaldehyde, acetone, heptane and toluene was used for the evaluation of the efficiency of simultaneous removal of several pollutants. A linear dependence between the layer mass and the layer thickness for all materials was found. Up to a layer mass 0.5 mg/cm2, the immobilisation P90 and P25 powder did not result in a decrease in BET surface area, whereas with an increase in layer mass to 1 mg/cm2, a decrease of the BET surface was observed, being more significant in the case of P90. The photocatalytic conversion of hexane was comparable for all immobilised powders up to a layer mass of 0.5 mg/cm2. For higher layer mass, the photocatalytic conversion of hexane on P25 and P90 differ; the latter achieved about 30% higher conversion. In the case of the simultaneous degradation of four compounds, acetaldehyde was degraded best, followed by acetone and toluene; the least degraded compound was heptane. The measurement of released CO2 revealed that 90% of degraded hexane was mineralised to CO2 and water while for a mixture of 4 VOCs, the level of mineralisation was 83%.
Center of Materials and Nanotechnologies University of Pardubice Pardubice Czech Republic
Central European Institute of Technology Brno University of Technology Brno Czech Republic
See more in PubMed
Paz, Y. (2010). Application of TiO DOI
Redlich, C. A., Sparer, J., & Cullen, M. R. (1997). Sick-building syndrome. The Lancet, 349, 1013–1016. DOI
Zhong, L., & Haghighat, F. (2015). Photocatalytic air cleaners and materials technologies—Abilities and limitations. Building and Environment, 91, 191–203. DOI
Ângelo, J., Andrade, L., & Mendes, A. (2014). Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Applied Catalysis A: General, 484, 17–25. DOI
Salthammer, T., & Fuhrmann, F. (2007). Photocatalytic surface reactions on indoor wall paint. Environmental Science & Technology, 41, 6573–6578. DOI
Mills, A., & Elouali, S. (2015). The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity. Journal of Photochemistry and Photobiology A: Chemistry, 305, 29–36. DOI
Baudys, M., Andrews, R., Han, R., O’Rourke, C., Hodgen, S., Krysa, J., & Mills, A. (2021). Photocatalytic paints for NOx removal: Influence of various weathering conditions. Journal of Environmental Chemical Engineering, 9, 106172. DOI
Mills, A., Hill, C., & Robertson, P. K. J. (2012). Overview of the current ISO tests for photocatalytic materials. Journal of Photochemistry and Photobiology A: Chemistry, 237, 7–23. DOI
Han, R., Andrews, R., O’Rourke, C., Hodgen, S., & Mills, A. (2021). Photocatalytic air purification: Effect of HNO DOI
Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., & Fujishima, A. (2008). Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO DOI
Moulis, F., & Krýsa, J. (2013). Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO DOI
Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216, 179–182. DOI
Zita, J., Krýsa, J., & Mills, A. (2009). Correlation of oxidative and reductive dye bleaching on TiO DOI
Zouzelka, R., Remzova, M., Brabec, L., & Rathousky, J. (2018). Photocatalytic performance of porous TiO DOI
Krýsa, J., Keppert, M., Waldner, G., & Jirkovský, J. (2005). Immobilized particulate TiO DOI
Zlámal, M., Krýsa, J., & Jirkovský, J. (2009). Photocatalytic degradation of acid orange 7 on TiO2 films prepared from various powder catalysts. Catalysis Letters, 133, 160. DOI
Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016). Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect. Molecules, 21, 56. PubMed DOI PMC
Wang, S., Ang, H. M., & Tade, M. O. (2007). Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International, 33, 694–705. PubMed DOI
Zhang, Y., Yang, R., & Zhao, R. (2003). A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment, 37, 3395–3399. DOI
Yang, L., Liu, Z., Shi, J., Hu, H., & Shangguan, W. (2007). Design consideration of photocatalytic oxidation reactors using TiO DOI
Khalilzadeh, A., & Fatemi, S. (2016). Spouted bed reactor for VOC removal by modified nano-TiO DOI
Zhong, L., Haghighat, F., Lee, C.-S., & Lakdawala, N. (2013). Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation. Journal of Hazardous Materials, 261, 130–138. PubMed DOI
Shayegan, Z., Lee, C.-S., & Haghighat, F. (2018). TiO DOI
Guo, T., Bai, Z., Wu, C., & Zhu, T. (2008). Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO DOI
Zhu, X., Chang, D.-L., Li, X.-S., Sun, Z.-G., Deng, X.-Q., & Zhu, A.-M. (2015). Inherent rate constants and humidity impact factors of anatase TiO DOI
Maggos, T., Bartzis, J. G., Liakou, M., & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO PubMed DOI
Moussiopoulos, N., Barmpas, P., Ossanlis, I., & Bartzis, J. (2008). Comparison of numerical and experimental results for the evaluation of the depollution effectiveness of photocatalytic coverings in street canyons. Environmental Modeling and Assessment, 13, 357–368. DOI
Boningari, T., Inturi, S. N. R., Suidan, M., & Smirniotis, P. G. (2018). Novel one-step synthesis of sulfur doped-TiO DOI
Hu, H., Xiao, W.-J., Yuan, J., Shi, J.-W., Chen, M.-X., & Shang Guan, W.-F. (2007). Preparations of TiO DOI
Sopyan, I. (2007). Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO DOI
Wang, C., Rao, Z., Mahmood, A., Wang, X., Wang, Y., Xie, X., & Sun, J. (2021). Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO PubMed DOI
Bianchi, C. L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., & Capucci, V. (2014). Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 146, 123–130. DOI
Jung, S.-C., Kim, S.-J., Imaishi, N., & Cho, Y.-I. (2005). Effect of TiO DOI
Krýsa, J., Keppert, M., Jirkovský, J. R., Štengl, V., & Šubrt, J. (2004). The effect of thermal treatment on the properties of TiO DOI
Sopha, H., Baudys, M., Hromadko, L., Lhotka, M., Pavlinak, D., Krysa, J., & Macak, J. M. (2022). Scaling up anodic TiO DOI
Stucchi, M., Galli, F., Bianchi, C. L., Pirola, C., Boffito, D. C., Biasioli, F., & Capucci, V. (2018). Simultaneous photodegradation of VOC mixture by TiO PubMed DOI
Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-organized TiO PubMed DOI
Zita, J., Krýsa, J., Černigoj, U., Lavrenčič-Štangar, U., Jirkovský, J., & Rathouský, J. (2011). Photocatalytic properties of different TiO DOI
ISO 22197–2 Fine Ceramics, Advanced Technical Ceramics—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 2: Removal of Acetaldehyde ISO, Geneva (2011).
Herrmann, J.-M. (2005). Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. RL Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Topics in catalysis, 34, 49–65. DOI
Krýsa, J., Baudys, M., & Mills, A. (2015). Quantum yield measurements for the photocatalytic oxidation of acid orange 7 (AO7) and reduction of 2,6-dichlorindophenol (DCIP) on transparent TiO DOI
Krýsa, J., Baudys, M., Zlámal, M., Krýsová, H., Morozová, M., & Klusoň, P. (2014). Photocatalytic and photoelectrochemical properties of sol–gel TiO DOI
Kartheuser, B., Costarramone, N., Pigot, T., & Lacombe, S. (2012). NORMACAT project: Normalized closed chamber tests for evaluation of photocatalytic VOC treatment in indoor air and formaldehyde determination. Environmental Science and Pollution Research, 19, 3763–3771. PubMed DOI
Clough, S. R. (2014). Heptane. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 845–847). Academic Press. DOI
Saucedo-Lucero, J. O., & Arriaga, S. (2013). Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chemical Engineering Journal, 218, 358–367. DOI