Photocatalytic degradation of gaseous pollutants on nanostructured TiO2 films of various thickness and surface area

. 2023 Apr ; 22 (4) : 883-892. [epub] 20230206

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36745319

Grantová podpora
21-27243S Grantová Agentura České Republiky

Odkazy

PubMed 36745319
DOI 10.1007/s43630-022-00359-0
PII: 10.1007/s43630-022-00359-0
Knihovny.cz E-zdroje

This work deals with the preparation of TiO2 nanoparticulate layers of various mass (0.05 mg/cm2 to 2 mg/cm2) from three commercial nanopowder materials, P90, P25 and CG 300, their characterisation (profilometry, BET and SEM) and evaluation of their photocatalytic activity in the gaseous phase in a flow-through photoreactor according to the ISO standard (ISO 22197-2). Hexane was chosen as a single model pollutant and a mixture of four compounds, namely acetaldehyde, acetone, heptane and toluene was used for the evaluation of the efficiency of simultaneous removal of several pollutants. A linear dependence between the layer mass and the layer thickness for all materials was found. Up to a layer mass 0.5 mg/cm2, the immobilisation P90 and P25 powder did not result in a decrease in BET surface area, whereas with an increase in layer mass to 1 mg/cm2, a decrease of the BET surface was observed, being more significant in the case of P90. The photocatalytic conversion of hexane was comparable for all immobilised powders up to a layer mass of 0.5 mg/cm2. For higher layer mass, the photocatalytic conversion of hexane on P25 and P90 differ; the latter achieved about 30% higher conversion. In the case of the simultaneous degradation of four compounds, acetaldehyde was degraded best, followed by acetone and toluene; the least degraded compound was heptane. The measurement of released CO2 revealed that 90% of degraded hexane was mineralised to CO2 and water while for a mixture of 4 VOCs, the level of mineralisation was 83%.

Zobrazit více v PubMed

Paz, Y. (2010). Application of TiO DOI

Redlich, C. A., Sparer, J., & Cullen, M. R. (1997). Sick-building syndrome. The Lancet, 349, 1013–1016. DOI

Zhong, L., & Haghighat, F. (2015). Photocatalytic air cleaners and materials technologies—Abilities and limitations. Building and Environment, 91, 191–203. DOI

Ângelo, J., Andrade, L., & Mendes, A. (2014). Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Applied Catalysis A: General, 484, 17–25. DOI

Salthammer, T., & Fuhrmann, F. (2007). Photocatalytic surface reactions on indoor wall paint. Environmental Science & Technology, 41, 6573–6578. DOI

Mills, A., & Elouali, S. (2015). The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity. Journal of Photochemistry and Photobiology A: Chemistry, 305, 29–36. DOI

Baudys, M., Andrews, R., Han, R., O’Rourke, C., Hodgen, S., Krysa, J., & Mills, A. (2021). Photocatalytic paints for NOx removal: Influence of various weathering conditions. Journal of Environmental Chemical Engineering, 9, 106172. DOI

Mills, A., Hill, C., & Robertson, P. K. J. (2012). Overview of the current ISO tests for photocatalytic materials. Journal of Photochemistry and Photobiology A: Chemistry, 237, 7–23. DOI

Han, R., Andrews, R., O’Rourke, C., Hodgen, S., & Mills, A. (2021). Photocatalytic air purification: Effect of HNO DOI

Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., & Fujishima, A. (2008). Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO DOI

Moulis, F., & Krýsa, J. (2013). Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO DOI

Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216, 179–182. DOI

Zita, J., Krýsa, J., & Mills, A. (2009). Correlation of oxidative and reductive dye bleaching on TiO DOI

Zouzelka, R., Remzova, M., Brabec, L., & Rathousky, J. (2018). Photocatalytic performance of porous TiO DOI

Krýsa, J., Keppert, M., Waldner, G., & Jirkovský, J. (2005). Immobilized particulate TiO DOI

Zlámal, M., Krýsa, J., & Jirkovský, J. (2009). Photocatalytic degradation of acid orange 7 on TiO2 films prepared from various powder catalysts. Catalysis Letters, 133, 160. DOI

Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016). Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect. Molecules, 21, 56. PubMed DOI PMC

Wang, S., Ang, H. M., & Tade, M. O. (2007). Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International, 33, 694–705. PubMed DOI

Zhang, Y., Yang, R., & Zhao, R. (2003). A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment, 37, 3395–3399. DOI

Yang, L., Liu, Z., Shi, J., Hu, H., & Shangguan, W. (2007). Design consideration of photocatalytic oxidation reactors using TiO DOI

Khalilzadeh, A., & Fatemi, S. (2016). Spouted bed reactor for VOC removal by modified nano-TiO DOI

Zhong, L., Haghighat, F., Lee, C.-S., & Lakdawala, N. (2013). Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation. Journal of Hazardous Materials, 261, 130–138. PubMed DOI

Shayegan, Z., Lee, C.-S., & Haghighat, F. (2018). TiO DOI

Guo, T., Bai, Z., Wu, C., & Zhu, T. (2008). Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO DOI

Zhu, X., Chang, D.-L., Li, X.-S., Sun, Z.-G., Deng, X.-Q., & Zhu, A.-M. (2015). Inherent rate constants and humidity impact factors of anatase TiO DOI

Maggos, T., Bartzis, J. G., Liakou, M., & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO PubMed DOI

Moussiopoulos, N., Barmpas, P., Ossanlis, I., & Bartzis, J. (2008). Comparison of numerical and experimental results for the evaluation of the depollution effectiveness of photocatalytic coverings in street canyons. Environmental Modeling and Assessment, 13, 357–368. DOI

Boningari, T., Inturi, S. N. R., Suidan, M., & Smirniotis, P. G. (2018). Novel one-step synthesis of sulfur doped-TiO DOI

Hu, H., Xiao, W.-J., Yuan, J., Shi, J.-W., Chen, M.-X., & Shang Guan, W.-F. (2007). Preparations of TiO DOI

Sopyan, I. (2007). Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO DOI

Wang, C., Rao, Z., Mahmood, A., Wang, X., Wang, Y., Xie, X., & Sun, J. (2021). Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO PubMed DOI

Bianchi, C. L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., & Capucci, V. (2014). Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 146, 123–130. DOI

Jung, S.-C., Kim, S.-J., Imaishi, N., & Cho, Y.-I. (2005). Effect of TiO DOI

Krýsa, J., Keppert, M., Jirkovský, J. R., Štengl, V., & Šubrt, J. (2004). The effect of thermal treatment on the properties of TiO DOI

Sopha, H., Baudys, M., Hromadko, L., Lhotka, M., Pavlinak, D., Krysa, J., & Macak, J. M. (2022). Scaling up anodic TiO DOI

Stucchi, M., Galli, F., Bianchi, C. L., Pirola, C., Boffito, D. C., Biasioli, F., & Capucci, V. (2018). Simultaneous photodegradation of VOC mixture by TiO PubMed DOI

Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-organized TiO PubMed DOI

Zita, J., Krýsa, J., Černigoj, U., Lavrenčič-Štangar, U., Jirkovský, J., & Rathouský, J. (2011). Photocatalytic properties of different TiO DOI

ISO 22197–2 Fine Ceramics, Advanced Technical Ceramics—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 2: Removal of Acetaldehyde ISO, Geneva (2011).

Herrmann, J.-M. (2005). Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. RL Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Topics in catalysis, 34, 49–65. DOI

Krýsa, J., Baudys, M., & Mills, A. (2015). Quantum yield measurements for the photocatalytic oxidation of acid orange 7 (AO7) and reduction of 2,6-dichlorindophenol (DCIP) on transparent TiO DOI

Krýsa, J., Baudys, M., Zlámal, M., Krýsová, H., Morozová, M., & Klusoň, P. (2014). Photocatalytic and photoelectrochemical properties of sol–gel TiO DOI

Kartheuser, B., Costarramone, N., Pigot, T., & Lacombe, S. (2012). NORMACAT project: Normalized closed chamber tests for evaluation of photocatalytic VOC treatment in indoor air and formaldehyde determination. Environmental Science and Pollution Research, 19, 3763–3771. PubMed DOI

Clough, S. R. (2014). Heptane. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 845–847). Academic Press. DOI

Saucedo-Lucero, J. O., & Arriaga, S. (2013). Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chemical Engineering Journal, 218, 358–367. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...