A single amino acid deletion in the ER Ca2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 32947
Austrian Science Fund FWF - Austria
- MeSH
- abnormální erytrocyty MeSH
- aminokyseliny metabolismus MeSH
- dyslexie MeSH
- endoplazmatické retikulum metabolismus MeSH
- ichtyóza MeSH
- kanály aktivované uvolněním vápníku * genetika MeSH
- membránové proteiny * metabolismus MeSH
- migréna MeSH
- mióza MeSH
- mutace MeSH
- myši MeSH
- protein ORAI1 metabolismus MeSH
- protein STIM1 genetika MeSH
- slezina abnormality MeSH
- svalová únava MeSH
- trombocytopatie MeSH
- vápník metabolismus MeSH
- vápníkové kanály metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- kanály aktivované uvolněním vápníku * MeSH
- membránové proteiny * MeSH
- protein ORAI1 MeSH
- protein STIM1 MeSH
- Stim1 protein, mouse MeSH Prohlížeč
- vápník MeSH
- vápníkové kanály MeSH
Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
CERM University of Florence 50019 Sesto Fiorentino Italy
Department of Biomaterials Institute of Clinical Dentistry University of Oslo 0455 Oslo Norway
Department of Chemistry Ugo Schiff University of Florence 50019 Sesto Fiorentino Italy
Department of Medical Genetics Oslo University Hospital and University of Oslo 0450 Oslo Norway
Faculty of Veterinary Medicine Norwegian University of Life Sciences 1430 Ås Norway
Institut für Analytische Chemie University of Vienna Währinger Straße 38 1090 Wien Austria
Institute of Biochemistry Johannes Kepler University Linz Altenbergerstrasse 69 4040 Linz Austria
Institute of Biophysics Johannes Kepler University Linz Gruberstrasse 40 4020 Linz Austria
Citace poskytuje Crossref.org