• This record comes from PubMed

Design, Synthesis and Antimicrobial Evaluation of New N-(1-Hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides as Potential Inhibitors of Mycobacterial Leucyl-tRNA Synthetase

. 2023 Feb 02 ; 24 (3) : . [epub] 20230202

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NU21-05-00482 Ministry of Health of the Czech Republic
SVV 260 547 Charles University

Tuberculosis remains a serious killer among infectious diseases due to its incidence, mortality, and occurrence of resistant mycobacterial strains. The challenge to discover new antimycobacterial agents forced us to prepare a series of N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides 1-19 via the acylation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol with various activated (hetero)arylcarboxylic acids. These novel compounds have been tested in vitro against a panel of clinically important fungi and bacteria, including mycobacteria. Some of the compounds inhibited the growth of mycobacteria in the range of micromolar concentrations and retained this activity also against multidrug-resistant clinical isolates. Half the maximal inhibitory concentrations against the HepG2 cell line indicated an acceptable toxicological profile. No growth inhibition of other bacteria and fungi demonstrated selectivity of the compounds against mycobacteria. The structure-activity relationships have been derived and supported with a molecular docking study, which confirmed a selectivity toward the potential target leucyl-tRNA synthetase without an impact on the human enzyme. The presented compounds can become important materials in antimycobacterial research.

See more in PubMed

WHO . Global Tuberculosis Report 2022. WHO; Geneve, Switzerland: 2022. p. 68.

Coker R.J. Review: Multidrug-resistant tuberculosis: Public health challenges. Trop. Med. Int. Health. 2004;9:25–40. doi: 10.1046/j.1365-3156.2003.01156.x. PubMed DOI

Esposito S., D’Ambrosio L., Tadolini M., Schaaf H.S., Luna J.C., Centis B.R., Dara M., Matteelli A., Blasi F., Migliori G.B. ERS/WHO Tuberculosis Consilium assistance with extensively drug-resistant tuberculosis management in a child: Case study of compassionate delamanid use. Eur. Respir. J. 2014;44:811–815. doi: 10.1183/09031936.00060414. PubMed DOI

Adamczyk-Wozniak A., Borys K.M., Sporzynski A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem. Rev. 2015;115:5224–5247. doi: 10.1021/cr500642d. PubMed DOI

Adamczyk-Wozniak A., Cyranski M.K., Zubrowska A., Sporzynski A. Benzoxaboroles-Old compounds with new applications. J. Organomet. Chem. 2009;694:3533–3541. doi: 10.1016/j.jorganchem.2009.07.022. DOI

Snyder H.R., Reedy A.J., Lennarz W.J. Synthesis of aromatic boronic acids. aldehydo boronic acids and a boronic acid analog of tyrosine1. J. Am. Chem. Soc. 1958;80:835–838. doi: 10.1021/ja01537a021. DOI

Lennarz W.J., Snyder H.R. Arylboronic Acids.4. Reactions of Boronophthalide. J. Am. Chem. Soc. 1960;82:2172–2175. doi: 10.1021/ja01494a021. DOI

Baker S.J., Ding C.Z., Akama T., Zhang Y.K., Hernandez V., Xia Y. Therapeutic potential of boron-containing compounds. Future Med. Chem. 2009;1:1275–1288. doi: 10.4155/fmc.09.71. PubMed DOI

Fernandes G.F.S., Denny W.A., Dos Santos J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 2019;179:791–804. doi: 10.1016/j.ejmech.2019.06.092. PubMed DOI

Dhawan B., Akhter G., Hamid H., Kesharwani P., Alam M.S. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J. Mol. Struct. 2022;1252:21. doi: 10.1016/j.molstruc.2021.132057. DOI

Coghi P.S., Zhu Y.H., Xie H.M., Hosmane N.S., Zhang Y.J. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules. 2021;26:26. doi: 10.3390/molecules26113309. PubMed DOI PMC

Rock F.L., Mao W.M., Yaremchuk A., Tukalo M., Crepin T., Zhou H.C., Zhang Y.K., Hernandez V., Akama T., Baker S.J., et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316:1759–1761. doi: 10.1126/science.1142189. PubMed DOI

Palencia A., Li X.F., Bu W., Choi W., Ding C.Z., Easom E.E., Feng L., Hernandez V., Houston P., Liu L., et al. Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase. Antimicrob. Agents Chemother. 2016;60:6271–6280. doi: 10.1128/AAC.01339-16. PubMed DOI PMC

Li X.F., Hernandez V., Rock F.L., Choi W., Mak Y.S.L., Mohan M., Mao W.M., Zhou Y., Easom E.E., Plattner J.J., et al. Discovery of a Potent and Specific M-tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2hydroxyethoxy)benzo c 1,2 oxaborol-1(3 H)-ol (GSK656) J. Med. Chem. 2017;60:8011–8026. doi: 10.1021/acs.jmedchem.7b00631. PubMed DOI

Edwards B.D., Field S.K. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs. 2022;82:1695–1715. doi: 10.1007/s40265-022-01817-w. PubMed DOI PMC

Hu Q.H., Liu R.J., Fang Z.P., Zhang J., Ding Y.Y., Tan M., Wang M., Pan W., Zhou H.C., Wang E.D. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci. Rep. 2013;3:2475. doi: 10.1038/srep02475. PubMed DOI PMC

Seiradake E., Mao W., Hernandez V., Baker S.J., Plattner J.J., Alley M.R.K., Cusack S. Crystal Structures of the Human and Fungal Cytosolic Leucyl-tRNA Synthetase Editing Domains: A Structural Basis for the Rational Design of Antifungal Benzoxaboroles. J. Mol. Biol. 2009;390:196–207. doi: 10.1016/j.jmb.2009.04.073. PubMed DOI

Korkegian A., O’Malley T., Xia Y., Zhou Y.S., Carter D.S., Sunde B., Flint L., Thompson D., Ioerger T.R., Sacchettini J., et al. The 7-phenyl benzoxaborole series is active against Mycobacterium tuberculosis. Tuberculosis. 2018;108:96–98. doi: 10.1016/j.tube.2017.11.003. PubMed DOI PMC

Alam M.A., Arora K., Gurrapu S., Jonnalagadda S.K., Nelson G.L., Kiprof P., Jonnalagadda S.C., Mereddy V.R. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents. Tetrahedron. 2016;72:3795–3801. doi: 10.1016/j.tet.2016.03.038. PubMed DOI PMC

Patel N., O’Malley T., Zhang Y.K., Xia Y., Sunde B., Flint L., Korkegian A., Ioerger T.R., Sacchettini J., Alley M.R.K., et al. A Novel 6-Benzyl Ether Benzoxaborole Is Active against Mycobacterium tuberculosis In Vitro. Antimicrob. Agents Chemother. 2017;61:3. doi: 10.1128/AAC.01205-17. PubMed DOI PMC

Gumbo M., Beteck R.M., Mandizvo T., Seldon R., Warner D.F., Hoppe H.C., Isaacs M., Laming D., Tam C.C., Cheng L.W., et al. Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity. Molecules. 2018;23:13. doi: 10.3390/molecules23082038. PubMed DOI PMC

Adamczyk-Wozniak A., Komarovska-Porokhnyavets O., Misterkiewicz B., Novikov V.P., Sporzynski A. Biological activity of selected boronic acids and their derivatives. Appl. Organomet. Chem. 2012;26:390–393. doi: 10.1002/aoc.2880. DOI

Si Y.Y., Basak S., Li Y., Merino J., Iuliano J.N., Walker S.G., Tonge P.J. Antibacterial Activity and Mode of Action of a Sulfonamide-Based Class of Oxaborole Leucyl-tRNA-Synthetase Inhibitors. ACS Infect. Dis. 2019;5:1231–1238. doi: 10.1021/acsinfecdis.9b00071. PubMed DOI PMC

Ganapathy U.S., del Rio R.G., Cacho-Izquierdo M., Ortega F., Lelievre J., Barros-Aguirre D., Lindman M., Dartois V., Gengenbacher M., Dick T. A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrob. Agents Chemother. 2021;65:13. doi: 10.1128/AAC.02420-20. PubMed DOI PMC

Ganapathy U.S., Gengenbacher M., Dick T. Epetraborole Is Active against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2021;65:5. doi: 10.1128/AAC.01156-21. PubMed DOI PMC

Kim T., Hanh B.T.B., Heo B., Quang N., Park Y., Shin J., Jeon S., Park J.W., Samby K., Jang J. A Screening of the MMV Pandemic Response Box Reveals Epetraborole as A New Potent Inhibitor against Mycobacterium abscessus. Int. J. Mol. Sci. 2021;22:5936. doi: 10.3390/ijms22115936. PubMed DOI PMC

Zhang P.P., Ma S.T. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MedChemComm. 2019;10:1329–1341. doi: 10.1039/C9MD00139E. PubMed DOI PMC

Lincecum T.L., Tukalo M., Yaremchuk A., Mursinna R.S., Williams A.M., Sproat B.S., Van Den Eynde W., Link A., Van Calenbergh S., Grotli M., et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell. 2003;11:951–963. doi: 10.1016/S1097-2765(03)00098-4. PubMed DOI

Palencia A., Crepin T., Vu M.T., Lincecum T.L., Martinis S.A., Cusack S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat. Struct. Mol. Biol. 2012;19:677–684. doi: 10.1038/nsmb.2317. PubMed DOI PMC

Liu R.J., Long T., Li H., Zhao J.H., Li J., Wang M.Z., Palencia A., Lin J.Z., Cusack S., Wang E.D. Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond. Nucleic Acids Res. 2020;48:4946–4959. doi: 10.1093/nar/gkaa189. PubMed DOI PMC

Cummings W.M., Cox C.H., Snyder H.R. Arylboronic acids. Medium-size ring-containing boronic ester groups. J. Org. Chem. 1969;34:1669–1674. doi: 10.1021/jo01258a029. DOI

Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC

Sundarsingh T.J.A., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health. 2020;13:1255–1264. doi: 10.1016/j.jiph.2020.06.023. PubMed DOI

Gupta R.S., Lo B., Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018;9:67. doi: 10.3389/fmicb.2018.00067. PubMed DOI PMC

Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: Implications for drug discovery. BMC Genom. 2017;18:530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC

Chaturvedi V., Dwivedi N., Tripathi R.P., Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J. Gen. Appl. Microbiol. 2007;53:333–337. doi: 10.2323/jgam.53.333. PubMed DOI

Heinrichs M.T., May R.J., Heider F., Reimers T., Sy S.K.B., Peloquin C.A., Derendorf H. Mycobacterium tuberculosis Strains H37ra and H37rv have Equivalent Minimum Inhibitory Concentrations to Most Antituberculosis Drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI

Ambrozkiewicz W., Kucerova-Chlupacova M., Jand’ourek O., Konecna K., Paterova P., Barta P., Vinsova J., Dolezal M., Zitko J. 5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation. Molecules. 2020;25:21. doi: 10.3390/molecules25071561. PubMed DOI PMC

Nawrot D., Suchankova E., Jandourek O., Konecna K., Barta P., Dolezal M., Zitko J. N-pyridinylbenzamides: An isosteric approach towards new antimycobacterial compounds. Chem. Biol. Drug Des. 2021;97:686–700. doi: 10.1111/cbdd.13804. PubMed DOI

Konecna K., Diepoltova A., Holmanova P., Jand’ourek O., Vejsova M., Voxova B., Barta P., Maixnerova J., Trejtnar F., Kucerova-Chlupacova M. Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones. Front. Microbiol. 2022;13:14. doi: 10.3389/fmicb.2022.912467. PubMed DOI PMC

Baker S.J., Zhang Y.K., Akama T., Lau A., Zhou H., Hernandez V., Mao W.M., Alley M.R.K., Sanders V., Plattner J.J. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. J. Med. Chem. 2006;49:4447–4450. doi: 10.1021/jm0603724. PubMed DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). Eucast Discussion Document E. Dis 5.1: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:9–15. doi: 10.1046/j.1469-0691.2003.00790.x. DOI

Arendrup M.C., Meletiadis J., Mouton J.W., Lagrou K., Hama P., Guinea J., Afst-Eucast Eucast Definitive Document E. Def 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. 2017. [(accessed on 20 December 2022)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf.

Arendrup M.C., Meletiadis J., Mouton J.W., Lagrou K., Hamal P., Guinea J., Afst-Eucast Eucast Definitive Document E.Def 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. 2017. [(accessed on 20 December 2022)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9_3_1_Mould_testing__definitive.pdf.

Ramappa V., Aithal G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013;3:37–49. doi: 10.1016/j.jceh.2012.12.001. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Replacement of nitro function by free boronic acid in non-steroidal anti-androgens

. 2024 Sep 10 ; 15 (12) : 4018-38. [epub] 20240910

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...