Design, Synthesis and Antimicrobial Evaluation of New N-(1-Hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides as Potential Inhibitors of Mycobacterial Leucyl-tRNA Synthetase
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU21-05-00482
Ministry of Health of the Czech Republic
SVV 260 547
Charles University
PubMed
36769275
PubMed Central
PMC9917560
DOI
10.3390/ijms24032951
PII: ijms24032951
Knihovny.cz E-resources
- Keywords
- antimicrobial, antimycobacterial, benzoxaborole, cytotoxicity, molecular docking, multidrug-resistant tuberculosis, tuberculosis,
- MeSH
- Amides chemistry pharmacology MeSH
- Amino Acyl-tRNA Synthetases * MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Anti-Infective Agents * pharmacology MeSH
- Antitubercular Agents pharmacology MeSH
- Fungi MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis * MeSH
- Molecular Docking Simulation MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amides MeSH
- Amino Acyl-tRNA Synthetases * MeSH
- Anti-Bacterial Agents MeSH
- Anti-Infective Agents * MeSH
- Antitubercular Agents MeSH
Tuberculosis remains a serious killer among infectious diseases due to its incidence, mortality, and occurrence of resistant mycobacterial strains. The challenge to discover new antimycobacterial agents forced us to prepare a series of N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides 1-19 via the acylation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol with various activated (hetero)arylcarboxylic acids. These novel compounds have been tested in vitro against a panel of clinically important fungi and bacteria, including mycobacteria. Some of the compounds inhibited the growth of mycobacteria in the range of micromolar concentrations and retained this activity also against multidrug-resistant clinical isolates. Half the maximal inhibitory concentrations against the HepG2 cell line indicated an acceptable toxicological profile. No growth inhibition of other bacteria and fungi demonstrated selectivity of the compounds against mycobacteria. The structure-activity relationships have been derived and supported with a molecular docking study, which confirmed a selectivity toward the potential target leucyl-tRNA synthetase without an impact on the human enzyme. The presented compounds can become important materials in antimycobacterial research.
See more in PubMed
WHO . Global Tuberculosis Report 2022. WHO; Geneve, Switzerland: 2022. p. 68.
Coker R.J. Review: Multidrug-resistant tuberculosis: Public health challenges. Trop. Med. Int. Health. 2004;9:25–40. doi: 10.1046/j.1365-3156.2003.01156.x. PubMed DOI
Esposito S., D’Ambrosio L., Tadolini M., Schaaf H.S., Luna J.C., Centis B.R., Dara M., Matteelli A., Blasi F., Migliori G.B. ERS/WHO Tuberculosis Consilium assistance with extensively drug-resistant tuberculosis management in a child: Case study of compassionate delamanid use. Eur. Respir. J. 2014;44:811–815. doi: 10.1183/09031936.00060414. PubMed DOI
Adamczyk-Wozniak A., Borys K.M., Sporzynski A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem. Rev. 2015;115:5224–5247. doi: 10.1021/cr500642d. PubMed DOI
Adamczyk-Wozniak A., Cyranski M.K., Zubrowska A., Sporzynski A. Benzoxaboroles-Old compounds with new applications. J. Organomet. Chem. 2009;694:3533–3541. doi: 10.1016/j.jorganchem.2009.07.022. DOI
Snyder H.R., Reedy A.J., Lennarz W.J. Synthesis of aromatic boronic acids. aldehydo boronic acids and a boronic acid analog of tyrosine1. J. Am. Chem. Soc. 1958;80:835–838. doi: 10.1021/ja01537a021. DOI
Lennarz W.J., Snyder H.R. Arylboronic Acids.4. Reactions of Boronophthalide. J. Am. Chem. Soc. 1960;82:2172–2175. doi: 10.1021/ja01494a021. DOI
Baker S.J., Ding C.Z., Akama T., Zhang Y.K., Hernandez V., Xia Y. Therapeutic potential of boron-containing compounds. Future Med. Chem. 2009;1:1275–1288. doi: 10.4155/fmc.09.71. PubMed DOI
Fernandes G.F.S., Denny W.A., Dos Santos J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 2019;179:791–804. doi: 10.1016/j.ejmech.2019.06.092. PubMed DOI
Dhawan B., Akhter G., Hamid H., Kesharwani P., Alam M.S. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J. Mol. Struct. 2022;1252:21. doi: 10.1016/j.molstruc.2021.132057. DOI
Coghi P.S., Zhu Y.H., Xie H.M., Hosmane N.S., Zhang Y.J. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules. 2021;26:26. doi: 10.3390/molecules26113309. PubMed DOI PMC
Rock F.L., Mao W.M., Yaremchuk A., Tukalo M., Crepin T., Zhou H.C., Zhang Y.K., Hernandez V., Akama T., Baker S.J., et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316:1759–1761. doi: 10.1126/science.1142189. PubMed DOI
Palencia A., Li X.F., Bu W., Choi W., Ding C.Z., Easom E.E., Feng L., Hernandez V., Houston P., Liu L., et al. Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase. Antimicrob. Agents Chemother. 2016;60:6271–6280. doi: 10.1128/AAC.01339-16. PubMed DOI PMC
Li X.F., Hernandez V., Rock F.L., Choi W., Mak Y.S.L., Mohan M., Mao W.M., Zhou Y., Easom E.E., Plattner J.J., et al. Discovery of a Potent and Specific M-tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2hydroxyethoxy)benzo c 1,2 oxaborol-1(3 H)-ol (GSK656) J. Med. Chem. 2017;60:8011–8026. doi: 10.1021/acs.jmedchem.7b00631. PubMed DOI
Edwards B.D., Field S.K. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs. 2022;82:1695–1715. doi: 10.1007/s40265-022-01817-w. PubMed DOI PMC
Hu Q.H., Liu R.J., Fang Z.P., Zhang J., Ding Y.Y., Tan M., Wang M., Pan W., Zhou H.C., Wang E.D. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci. Rep. 2013;3:2475. doi: 10.1038/srep02475. PubMed DOI PMC
Seiradake E., Mao W., Hernandez V., Baker S.J., Plattner J.J., Alley M.R.K., Cusack S. Crystal Structures of the Human and Fungal Cytosolic Leucyl-tRNA Synthetase Editing Domains: A Structural Basis for the Rational Design of Antifungal Benzoxaboroles. J. Mol. Biol. 2009;390:196–207. doi: 10.1016/j.jmb.2009.04.073. PubMed DOI
Korkegian A., O’Malley T., Xia Y., Zhou Y.S., Carter D.S., Sunde B., Flint L., Thompson D., Ioerger T.R., Sacchettini J., et al. The 7-phenyl benzoxaborole series is active against Mycobacterium tuberculosis. Tuberculosis. 2018;108:96–98. doi: 10.1016/j.tube.2017.11.003. PubMed DOI PMC
Alam M.A., Arora K., Gurrapu S., Jonnalagadda S.K., Nelson G.L., Kiprof P., Jonnalagadda S.C., Mereddy V.R. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents. Tetrahedron. 2016;72:3795–3801. doi: 10.1016/j.tet.2016.03.038. PubMed DOI PMC
Patel N., O’Malley T., Zhang Y.K., Xia Y., Sunde B., Flint L., Korkegian A., Ioerger T.R., Sacchettini J., Alley M.R.K., et al. A Novel 6-Benzyl Ether Benzoxaborole Is Active against Mycobacterium tuberculosis In Vitro. Antimicrob. Agents Chemother. 2017;61:3. doi: 10.1128/AAC.01205-17. PubMed DOI PMC
Gumbo M., Beteck R.M., Mandizvo T., Seldon R., Warner D.F., Hoppe H.C., Isaacs M., Laming D., Tam C.C., Cheng L.W., et al. Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity. Molecules. 2018;23:13. doi: 10.3390/molecules23082038. PubMed DOI PMC
Adamczyk-Wozniak A., Komarovska-Porokhnyavets O., Misterkiewicz B., Novikov V.P., Sporzynski A. Biological activity of selected boronic acids and their derivatives. Appl. Organomet. Chem. 2012;26:390–393. doi: 10.1002/aoc.2880. DOI
Si Y.Y., Basak S., Li Y., Merino J., Iuliano J.N., Walker S.G., Tonge P.J. Antibacterial Activity and Mode of Action of a Sulfonamide-Based Class of Oxaborole Leucyl-tRNA-Synthetase Inhibitors. ACS Infect. Dis. 2019;5:1231–1238. doi: 10.1021/acsinfecdis.9b00071. PubMed DOI PMC
Ganapathy U.S., del Rio R.G., Cacho-Izquierdo M., Ortega F., Lelievre J., Barros-Aguirre D., Lindman M., Dartois V., Gengenbacher M., Dick T. A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrob. Agents Chemother. 2021;65:13. doi: 10.1128/AAC.02420-20. PubMed DOI PMC
Ganapathy U.S., Gengenbacher M., Dick T. Epetraborole Is Active against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2021;65:5. doi: 10.1128/AAC.01156-21. PubMed DOI PMC
Kim T., Hanh B.T.B., Heo B., Quang N., Park Y., Shin J., Jeon S., Park J.W., Samby K., Jang J. A Screening of the MMV Pandemic Response Box Reveals Epetraborole as A New Potent Inhibitor against Mycobacterium abscessus. Int. J. Mol. Sci. 2021;22:5936. doi: 10.3390/ijms22115936. PubMed DOI PMC
Zhang P.P., Ma S.T. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MedChemComm. 2019;10:1329–1341. doi: 10.1039/C9MD00139E. PubMed DOI PMC
Lincecum T.L., Tukalo M., Yaremchuk A., Mursinna R.S., Williams A.M., Sproat B.S., Van Den Eynde W., Link A., Van Calenbergh S., Grotli M., et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell. 2003;11:951–963. doi: 10.1016/S1097-2765(03)00098-4. PubMed DOI
Palencia A., Crepin T., Vu M.T., Lincecum T.L., Martinis S.A., Cusack S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat. Struct. Mol. Biol. 2012;19:677–684. doi: 10.1038/nsmb.2317. PubMed DOI PMC
Liu R.J., Long T., Li H., Zhao J.H., Li J., Wang M.Z., Palencia A., Lin J.Z., Cusack S., Wang E.D. Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond. Nucleic Acids Res. 2020;48:4946–4959. doi: 10.1093/nar/gkaa189. PubMed DOI PMC
Cummings W.M., Cox C.H., Snyder H.R. Arylboronic acids. Medium-size ring-containing boronic ester groups. J. Org. Chem. 1969;34:1669–1674. doi: 10.1021/jo01258a029. DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC
Sundarsingh T.J.A., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health. 2020;13:1255–1264. doi: 10.1016/j.jiph.2020.06.023. PubMed DOI
Gupta R.S., Lo B., Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018;9:67. doi: 10.3389/fmicb.2018.00067. PubMed DOI PMC
Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: Implications for drug discovery. BMC Genom. 2017;18:530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC
Chaturvedi V., Dwivedi N., Tripathi R.P., Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J. Gen. Appl. Microbiol. 2007;53:333–337. doi: 10.2323/jgam.53.333. PubMed DOI
Heinrichs M.T., May R.J., Heider F., Reimers T., Sy S.K.B., Peloquin C.A., Derendorf H. Mycobacterium tuberculosis Strains H37ra and H37rv have Equivalent Minimum Inhibitory Concentrations to Most Antituberculosis Drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI
Ambrozkiewicz W., Kucerova-Chlupacova M., Jand’ourek O., Konecna K., Paterova P., Barta P., Vinsova J., Dolezal M., Zitko J. 5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation. Molecules. 2020;25:21. doi: 10.3390/molecules25071561. PubMed DOI PMC
Nawrot D., Suchankova E., Jandourek O., Konecna K., Barta P., Dolezal M., Zitko J. N-pyridinylbenzamides: An isosteric approach towards new antimycobacterial compounds. Chem. Biol. Drug Des. 2021;97:686–700. doi: 10.1111/cbdd.13804. PubMed DOI
Konecna K., Diepoltova A., Holmanova P., Jand’ourek O., Vejsova M., Voxova B., Barta P., Maixnerova J., Trejtnar F., Kucerova-Chlupacova M. Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones. Front. Microbiol. 2022;13:14. doi: 10.3389/fmicb.2022.912467. PubMed DOI PMC
Baker S.J., Zhang Y.K., Akama T., Lau A., Zhou H., Hernandez V., Mao W.M., Alley M.R.K., Sanders V., Plattner J.J. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. J. Med. Chem. 2006;49:4447–4450. doi: 10.1021/jm0603724. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). Eucast Discussion Document E. Dis 5.1: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:9–15. doi: 10.1046/j.1469-0691.2003.00790.x. DOI
Arendrup M.C., Meletiadis J., Mouton J.W., Lagrou K., Hama P., Guinea J., Afst-Eucast Eucast Definitive Document E. Def 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. 2017. [(accessed on 20 December 2022)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf.
Arendrup M.C., Meletiadis J., Mouton J.W., Lagrou K., Hamal P., Guinea J., Afst-Eucast Eucast Definitive Document E.Def 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. 2017. [(accessed on 20 December 2022)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9_3_1_Mould_testing__definitive.pdf.
Ramappa V., Aithal G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013;3:37–49. doi: 10.1016/j.jceh.2012.12.001. PubMed DOI PMC
Replacement of nitro function by free boronic acid in non-steroidal anti-androgens