Shungite (Mineralized Carbon) as a Promising Electrode Material for Electroanalysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS-2022-002
University of Pardubice, Faculty of Chemical Technology
PubMed
36770220
PubMed Central
PMC9919474
DOI
10.3390/ma16031217
PII: ma16031217
Knihovny.cz E-resources
- Keywords
- electroanalytical applicability, electrochemical kinetics, ferrocyanide/ferricyanide redox couple, microscopic imaging, shungite,
- Publication type
- Journal Article MeSH
In this study, two different types of amorphous carbonaceous Precambrian rock, classified as noble elite shungite and black raw shungite, were tested as possible electrode materials of natural origin. Both types were machined into cylindrical shapes to form the corresponding solid electrodes and their physicochemical and electrochemical properties were compared with the standard glassy carbon electrode (GCE). The raw stones were first subjected to microscopic imaging by using scanning electron microscopy and energy-dispersive X-ray spectroscopy, both of which indicated significant differences in their morphology and in the content of impurities. An electrode prototype manufactured from noble elite shungite (EShE) with a carbon content of about 94% (w/w) has offered a very satisfactory electrochemical performance with a nearly identical heterogeneous electron-transfer rate constant of 7.8 × 10-3 cm s-1 for ferro/ferricyanide redox couple, a slightly narrower potential range (~2.1 V) and a relatively low double-layer capacitance (of ca. 50 μF), resulting in low background currents comparable to those at the GCE. In contrast, the second electrode based on black raw shungite (BShE) with a carbon content of ca. 63% (w/w) exhibited markedly worse electrochemical properties and more than four times higher double-layer capacitance, both of which were probably due to the presence of poorly conductive impurities. The whole study has been completed with three different examples of electroanalytical applications, revealing that the first type, EShE, is a more suitable material for the preparation of electrodes and may represent a cheap alternative to commercially marketed products.
See more in PubMed
Melezhik V.A., Filippov M.M., Romashkin A.E. A giant Palaeoproterozoic deposit of shungite in NW Russia: Genesis and practical applications. Ore Geol. Rev. 2004;24:135–154. doi: 10.1016/j.oregeorev.2003.08.003. DOI
Golubev Y.A., Antonets I.V., Shcheglov V.I. Static and dynamic conductivity of nanostructured carbonaceous shungite geomaterials. Mater. Chem. Phys. 2019;226:195–203. doi: 10.1016/j.matchemphys.2019.01.033. DOI
Kovalevski V.V., Buseck P.R., Cowley J.M. Comparison of carbon in shungite rocks to other natural carbons: An X-ray and TEM study. Carbon. 2001;39:243–256. doi: 10.1016/S0008-6223(00)00120-2. DOI
Reznikov V.A., Polekhovskii Y.S. Amorphous shungite carbon: A natural medium for the formation of fullerenes. Tech. Phys. Lett. 2000;26:689–693. doi: 10.1134/1.1307814. DOI
Ignatov I., Popova T.P., Petrova T., Ignatov A.I. Physicochemical parameters and in vitro antimicrobial effects of water filtrated with nano-structured carbonaceous shungite. J. Chem. Technol. Metall. 2022;57:937–945.
Chou N.H., Pierce N., Lei Y., Perea-López N., Fujisawa K., Subramanian S., Robinson J.A., Chen G., Omichi K., Rozhkov S.S., et al. Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. Carbon. 2018;130:105–111. doi: 10.1016/j.carbon.2017.12.109. DOI
Sajo E.J., Kim C.S., Kim S.K., Shim K.Y., Kang T.Y., Lee K.J. Antioxidant and anti-inflammatory effects of shungite against ultraviolet B irradiation-induced skin damage in hairless mice. Oxid. Med. Cell Longev. 2017;2017:7340143. doi: 10.1155/2017/7340143. PubMed DOI PMC
Jushkin N.P. Globular supramolecular structure shungite: Data scanning tunneling microscopy. Reports Acad. Sci. USSR. 1994;337:800–803.
Frąc M., Szudek W., Szołdra P., Pichór W. The applicability of shungite as an electrically conductive additive in cement composites. J. Build. Eng. 2022;45:103469. doi: 10.1016/j.jobe.2021.103469. DOI
Jurgelane I., Locs J. Shungite application for treatment of drinking water—Is it the right choice? J. Water Health. 2021;19:89–96. doi: 10.2166/wh.2020.139. DOI
Kazimova N., Ping K., Alam M., Danilson M., Merisalu M., Aruväli J., Paiste P., Käärik M., Mikli V., Leis J., et al. Shungite-derived graphene as a carbon support for bifunctional oxygen electrocatalysts. J. Catal. 2021;395:178–187. doi: 10.1016/j.jcat.2021.01.004. DOI
Ignatov I.I., Mosin O.V. The structure and composition of carbonaceous fullerene containing mineral shungite and microporous crystalline aluminosilicate mineral zeolite. Nanotech. Res. Pract. 2004;1:30–42. doi: 10.13187/ejnr.2014.1.30. DOI
Mosin O., Ignatov I.I. The structure and composition of natural carbonaceous fullerene containing mineral shungite. Int. J. Adv. Sci. Tech. Res. 2013;6:9–21.
Atchabarova A.A., Tokpayev R., Kabulov A.T., Nechipurenko S. New electrodes prepared from mineral and plant raw materials of Kazakhstan. Eurasian Chem. Technol. J. 2016;18:141–147. doi: 10.18321/ectj440. DOI
Xia L., Song H., Li X., Zhang X., Gao B., Zheng Y., Huo K., Chu P.K. Hierarchical 0D−2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting. Front. Chem. 2020;8:382. doi: 10.3389/fchem.2020.00382. PubMed DOI PMC
Morales D.M., Risch M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy. 2021;3:034013. doi: 10.1088/2515-7655/abee33. DOI
Bard A.J., Faulkner L.R. Electrochemical Methods and Applications. 2nd ed. John Wiley & Sons, Inc.; New York, NY, USA: 2000.
Moldenhauer J., Meier M., Paul D.W. Rapid and direct determination of diffusion coefficients using microelectrode arrays. J. Electrochem. Soc. 2016;163:H672. doi: 10.1149/2.0561608jes. DOI
Nicholson R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965;37:1351. doi: 10.1021/ac60230a016. DOI
Lavagnini I., Antiochia R., Magno F. An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis. 2004;16:505–506. doi: 10.1002/elan.200302851. DOI
Pumera M., Miyahara Y. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Nanoscale. 2009;1:260–265. doi: 10.1039/b9nr00071b. PubMed DOI
Hasanzadeh A., Khataee A., Zarei M., Zhang Y. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst. Sci. Rep. 2019;9:13780. doi: 10.1038/s41598-019-50155-7. PubMed DOI PMC
Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979;101:19–28. doi: 10.1016/S0022-0728(79)80075-3. DOI
Švancara I., Kalcher K., Walcarius A., Vytřas K. Electroanalysis with Carbon Paste Electrodes. CRC Press; Boca Raton, FL, USA: 2012.
Sýs M., Farag A.S., Švancara I. Extractive stripping voltammetry at carbon paste electrodes for determination of biologically active organic compounds. Monatsh. Chem. 2019;150:373–386. doi: 10.1007/s00706-018-2346-0. DOI
Wang J., Kirgöz Ü.A., Mo J.W., Lu J., Kawde A.N., Muck A. Glassy carbon paste electrodes. Electrochem. Commun. 2001;3:203–208. doi: 10.1016/S1388-2481(01)00142-4. DOI
Vinay M.M., Nayaka Y.A. Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for elec-trochemical investigation of paracetamol and dopamine. J. Sci. Adv. Mater. Devices. 2019;4:442–450. doi: 10.1016/j.jsamd.2019.07.006. DOI
Tarasevich Y.I., Bondarenko S.V., Polyakov V.E., Zhukova A.I., Ivanova Z.G., Lukyanov V.V., Malysh G.N. The study of the structural, sorption, and electrochemical properties of a natural composite shungite. Colloid. J. 2008;70:349–355. doi: 10.1134/S1061933X08030137. DOI
James H., Carmack G., Freiser H. Coated wire ion-selective electrodes. Anal. Chem. 1972;44:856–857. doi: 10.1021/ac60312a046. PubMed DOI
Vytřas K. Coated wire electrodes in the analysis of surfactants of various types: An overview. Electroanalysis. 1991;3:343–347. doi: 10.1002/elan.1140030416. DOI
Vytřas K. Determination of some pharmaceuticals using simple potentiometric sensors of coated-wire type. Mikrochim. Acta. 1984;84:139–148. doi: 10.1007/BF01204165. DOI
Anastasiadou Z.D., Sipaki I., Jannakoudakis P.D., Girousi S.T. Square-wave anodic stripping voltammetry (SWASV) for the determination of ecotoxic metals, using a bismuth-film electrode. Anal. Lett. 2011;44:761–777. doi: 10.1080/00032711003790023. DOI
Economou A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. Trends Anal. Chem. 2005;24:334–340. doi: 10.1016/j.trac.2004.11.006. DOI
Sýs M., Metelka R., Korecká L., Pokorná H., Švancara I. Comparison of various bismuth film electrodes in simultaneous electrochemical detection of heavy metals for application in quantum dot-linked immunoassays. Monatsh. Chem. 2017;148:505–510. doi: 10.1007/s00706-016-1901-9. DOI
Frangu A., Pravcová K., Šilarová P., Arbneshi T., Sýs M. Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine. Anal. Bioanal. Chem. 2019;411:2415–2424. doi: 10.1007/s00216-019-01687-4. PubMed DOI
Habibi B., Jahanbakhshi M., Pournaghi-Azar M.H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry. Electrochim. Acta. 2011;56:2888–2894. doi: 10.1016/j.electacta.2010.12.079. PubMed DOI
Chatraei F., Zare H.R. A comparative study of the electrochemical characteristics and simultaneous determination of dopamine, acetaminophen, and aspirin at a ruthenium oxide nanoparticles modified glassy carbon electrode versus a bare one. Anal. Methods. 2012;4:2940. doi: 10.1039/c2ay25402f. DOI
Silva L.A.J., Stefano J.S., Cardoso R.M., Prado N.S., Soares P.H.T., Nossol E., Munoz R.A.A., Angnes L., Richter E.M. Evaluation of graphite sheets for production of high-quality disposable sensors. J. Electroanal. Chem. 2019;833:560–567. doi: 10.1016/j.jelechem.2018.12.029. DOI
Carvalho J.H.S., Gogola J.L., Bergamini M.F., Marcolino-Junior L.H., Janegitz B.C. Disposable and low-cost lab-made screen-printed electrodes for voltammetric determination of L-dopa. Sens. Actuator Rep. 2021;3:100056. doi: 10.1016/j.snr.2021.100056. DOI
Švancara I., Mikysek T., Stočes M., Ludvík J. Graphite Powder and Related Material as the Principal Component of Carbon Paste Electrodes. In: Campbell Q.C., editor. Graphite: Properties, Occurence and Use. NOVA Science Publishers, Inc.; Hauppauge, NY, USA: 2013. pp. 163–188.
Mooste M., Tkesheliadze T., Kozlova J., Kikas A., Kisand V., Treshchalov A., Tamm A., Aruväli J., Zagal J.H., Kannan A.M., et al. Transition metal phthalocyanine-modified shungite-based cathode catalysts for alkaline membrane fuel cell. Int. J. Hydrog. Energy. 2021;46:4365–4377. doi: 10.1016/j.ijhydene.2020.10.231. DOI