Gaining Insight into Large Gene Families with the Aid of Bioinformatic Tools

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu přehledy, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36773233

Proteins participating in plant cell morphogenesis are often encoded by large gene families, in some cases comprising paralogs with variable (modular) domain organization, as in the case of the formin (FH2 protein) family of actin nucleators that can have also additional functions. Unravelling the phylogeny of such a complex gene family brings a number of specific challenges but may be crucial for predictions of protein function and for experimental design. Here we present an overview of our "cottage industry" semi-manual bioinformatic approach, based mostly, though not exclusively, on freely available software tools, which we used to obtain insight into the evolutionary history of plant FH2 proteins and some other components of the plant cell morphogenesis apparatus.

Zobrazit více v PubMed

Žárský V, Cvrčková F, Potocký M et al (2009) Exocytosis and cell polarity in plants – exocyst and recycling domains. New Phytol 183:255–272. https://doi.org/10.1111/j.1469-8137.2009.02880.x DOI

Eliáš M, Drdová E, Žiak D et al (2003) The exocyst complex in plants. Cell Biol Int 27:199–201. https://doi.org/10.1016/s1065-6995(02)00349-9 DOI

Cvrčková F, Grunt M, Bezvoda R et al (2012) Evolution of the land plant exocyst complexes. Front Plant Sci 3:159. https://doi.org/10.3389/fpls.2012.00159 DOI

Rawat A, Brejšková L, Hála M et al (2017) The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytol 216:438–454. https://doi.org/10.1111/nph.14548 DOI

Žárský V, Sekereš J, Kubátová Z et al (2020) Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J Exp Bot 71:49–62. https://doi.org/10.1093/jxb/erz423 DOI

Marković V, Cvrčková F, Potocký M et al (2020) EXO70A2 is critical for exocyst complex function in pollen development. Plant Physiol 184:1823–1839. https://doi.org/10.1104/pp.19.01340 DOI

Eliáš M, Potocký M, Cvrčková F et al (2002) Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3:2. https://doi.org/10.1186/1471-2164-3-2 DOI

Andreeva Z, Ho AYY, Barthet MM et al (2009) Phospholipase D family interactions with the cytoskeleton: isoform delta promotes plasma membrane anchoring of cortical microtubules. Funct Plant Biol 36:600–612. https://doi.org/10.1071/FP09024 DOI

Pleskot R, Pejchar P, Bezvoda R et al (2012) Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci 3:54. https://doi.org/10.3389/fpls.2012.00054 DOI

Cvrčková F (2000) Are plant formins integral membrane proteins? Genome Biol. 1:RESEARCH001. https://doi.org/10.1186/gb-2000-1-1-research001 DOI

Cvrčková F, Novotný M, Pícková D et al (2004) Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics 5:44. https://doi.org/10.1186/1471-2164-5-44 DOI

Grunt M, Žárský V, Cvrčková F (2008) Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evol Biol 8:115. https://doi.org/10.1186/1471-2148-8-115 DOI

Cvrčková F, Grunt M, Žárský V (2012) Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis Class II formin AtFH12. Biol Plant 56:431–440. https://doi.org/10.1007/s10535-012-0071-9 DOI

Kollárová E, Baquero Forero A, Stillerová L et al (2020) Arabidopsis class II formins AtFH13 and AtFH14 can form heterodimers but exhibit distinct patterns of cellular localization. Int J Mol Sci 21:348. https://doi.org/10.3390/ijms21010348 DOI

Kollárová E, Baquero Forero A, Cvrčková F (2021) The Arabidopsis thaliana class II formin FH13 modulates pollen tube growth. Front Plant Sci 12:599961. https://doi.org/10.3389/fpls.2021.599961 DOI

Soukup A, Tylová E (2019) Essential methods of plant sample preparation for light microscopy. Methods Mol Biol 1992:1–26. https://doi.org/10.1007/978-1-4939-9469-4_1 DOI

Schuler GD, Altschul SF, Lipman DJ (1991) A workbench for multiple alignment construction and analysis. Proteins 9:180–190. https://doi.org/10.1002/prot.340090304 DOI

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

Vorster PJ, Goetsch P, Wijeratne TU et al (2020) A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open 9:bio051508. https://doi.org/10.1242/bio.051508 DOI

Sofi MY, SafiA MKZ (2022) BioEdit in bioinformatics. In: Sofi MY, SafiA MKZ (eds) Bioinformatics for Everyone. Academic, London, pp 231–236. https://doi.org/10.1016/B978-0-323-91128-3.00022-7 DOI

Cvrčková F (2016) A plant biologists’ guide to phylogenetic analysis of biological macromolecule sequences. Biol Plant 60:619–627. https://doi.org/10.1007/s10535-016-0649-8 DOI

Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(1102):1104. https://doi.org/10.2144/00286ir01 DOI

Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404 DOI

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010 DOI

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340 DOI

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120 DOI

Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. https://doi.org/10.1093/nar/gkr944 DOI

Tello-Ruiz MK, Naithani S, Gupta P et al (2021) Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 49:D1452–D1463. https://doi.org/10.1093/nar/gkaa979 DOI

Fernandez-Pozo N, Haas FB, Gould SB et al (2022) An overview of bioinformatics, genomics and transcriptomics resources for bryophytes. J Exp Bot 73:4291. https://doi.org/10.1093/jxb/erac052 DOI

Fernandez-Pozo N, Menda N, Edwards JD et al (2015) The Sol Genomics Network (SGN)–from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041. https://doi.org/10.1093/nar/gku1195 DOI

Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421 DOI

Solovyev V, Kosarev P, Seledsov I et al (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Bio 7(Suppl 1):S10.1-12. https://doi.org/10.1186/gb-2006-7-s1-s10 DOI

Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94. https://doi.org/10.1006/jmbi.1997.0951 DOI

Hebsgaard SM, Korning PG, Tolstrup N et al (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452. https://doi.org/10.1093/nar/24.17.3439 DOI

Scalzitti N, Kress A, Orhand R et al (2021) Spliceator: multi-species splice site prediction using convolutional neural networks. BMC Bioinformatics 22:561. https://doi.org/10.1186/s12859-021-04471-3 DOI

Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458–D460. https://doi.org/10.1093/nar/gkaa937 DOI

de Castro E, Sigrist CJ, Gattiker A et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365. https://doi.org/10.1093/nar/gkl124 DOI

Teufel F, Almagro Armenteros JJ, Johansen AR et al (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40:1023–1025. https://doi.org/10.1038/s41587-021-01156-3 DOI

Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315 DOI

Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. https://doi.org/10.1006/jmbi.2000.4042 DOI

Lassmann T, Sonnhammer EL (2005) Kalign–an accurate and fast multiple sequence alignment algorithm. BMC Bioinformaticss 6:298. https://doi.org/10.1186/1471-2105-6-298 DOI

Lassmann T (2019) Kalign 3: multiple sequence alignment of large datasets. Bioinformatics 36:1928–1929. https://doi.org/10.1093/bioinformatics/btz795 DOI

Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. https://doi.org/10.1093/bioinformatics/btm076 DOI

Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235. https://doi.org/10.1093/molbev/mst012 DOI

Waese J, Fan J, Pasha A et al (2017) ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29:1806–1821. https://doi.org/10.1105/tpc.17.00073 DOI

Winter D, Vinegar B, Nahal H et al (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718. https://doi.org/10.1371/journal.pone.0000718 DOI

Klepikova AV, Kasianov AS, Gerasimov ES et al (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J 88:1058–1070. https://doi.org/10.1111/tpj.13312 DOI

Robinson AJ, Tamiru M, Salby R et al (2018) AgriSeqDB: an online RNA-Seq database for functional studies of agriculturally relevant plant species. BMC Plant Biol 18:200. https://doi.org/10.1186/s12870-018-1406-2 DOI

Barrett T, Troup DB, Wilhite SE (2011) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39:D1005–D1010. https://doi.org/10.1093/nar/gkq1184 DOI

Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747. https://doi.org/10.1155/2008/420747 DOI

O’Connor TR, Dyreson C, Wyrick JJ (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21:4411–4413. https://doi.org/10.1093/bioinformatics/bti714 DOI

Mergner J, Frejno M, List M et al (2020) Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579:409–414. https://doi.org/10.1038/s41586-020-2094-2 DOI

Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131 DOI

Stern A, Doron-Faigenboim A, Erez E (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35:W506–W511. https://doi.org/10.1093/nar/gkm382 DOI

Ma L, Qi W, Bai J (2022) Genome-wide identification and analysis of the ascorbate peroxidase (APX) gene family of winter rapeseed (Brassica rapa L.) under abiotic stress. Front Genet 12:753624. https://doi.org/10.3389/fgene.2021.753624 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...