• This record comes from PubMed

Rhinitis associated with asthma is distinct from rhinitis alone: The ARIA-MeDALL hypothesis

. 2023 May ; 78 (5) : 1169-1203. [epub] 20230410

Language English Country Denmark Media print-electronic

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

Grant support
MR/K002449/1 Medical Research Council - United Kingdom
MR/S002359/1 Medical Research Council - United Kingdom
MR/T031565/1 Medical Research Council - United Kingdom
MR/K002449/2 Medical Research Council - United Kingdom
MR/S025340/1 Medical Research Council - United Kingdom
MR/W028352/1 Medical Research Council - United Kingdom

Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of "one-airway-one-disease," coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the "Epithelial Barrier Hypothesis." This review determined that the "one-airway-one-disease" concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme "allergic" (asthma) phenotype combining asthma, rhinitis, and conjunctivitis. Rhinitis alone and rhinitis and asthma multimorbidity represent two distinct diseases with the following differences: (i) genomic and transcriptomic background (Toll-Like Receptors and IL-17 for rhinitis alone as a local disease; IL-33 and IL-5 for allergic and non-allergic multimorbidity as a systemic disease), (ii) allergen sensitization patterns (mono- or pauci-sensitization versus polysensitization), (iii) severity of symptoms, and (iv) treatment response. In conclusion, rhinitis alone (local disease) and rhinitis with asthma multimorbidity (systemic disease) should be considered as two distinct diseases, possibly modulated by the microbiome, and may be a model for understanding the epidemics of chronic and autoimmune diseases.

Agency of Health ASL Salerno Italy

ALL MED Medical Research Institute Wroclaw Poland

Allergist Montevideo Uruguay

Allergology and Immunology Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Berlin Germany

Allergy and Asthma Associates of Southern California A Medical Group Southern California Research Mission Viejo California USA

Allergy and Asthma Clinica SISUL FACAAI SPAAI Asuncion Paraguay

Allergy and Clinical Immunology National Heart and Lung Institute Imperial College London London UK

Allergy and Clinical Immunology Unit Centro Hospitalar e Universitário de Coimbra Coimbra Portugal

Allergy and Clinical Immunology Unit Mauriziano Hospital Torino Italy

Allergy and Immunology Centre Pantai Hospital Kuala Lumpur Kuala Lumpur Malaysia

Allergy and Immunology Laboratory Metropolitan University Simon Bolivar University Barranquilla Colombia

Allergy and Respiratory Diseases IRCCS Policlinico San Martino University of Genoa Genoa Italy

Allergy Asthma and Clinical Immunology Alfred Health and Department of Immunology Central Clinical School Monash University Melbourne Victoria Australia

Allergy Bambino Gesù Children's Hospital Istituto di Ricovero e Cura a Carattere Scientifico Rome Italy

Allergy Center CUF Descobertas Hospital Lisbon Portugal

Allergy Department 2nd Pediatric Clinic University of Athens Athens Greece

Allergy Division Chest Disease Department University Hospital of Strasbourg Strasbourg France

Allergy Section Department of Internal Medicine Hospital Vall d'Hebron Barcelona Spain

Allergy Service Fundacion Jimenez Diaz Autonoma University of Madrid CIBERES ISCIII Madrid Spain

Allergy Unit D Kalogeromitros 2nd Department of Dermatology and Venereology National and Kapodistrian University of Athens Attikon University Hospital Athens Greece

Allergy Unit Department of Dermatology University Hospital of Zurich Zürich Switzerland

Allergy Unit Málaga Regional University Hospital of Málaga Malaga University ARADyAL Malaga Spain

AM Data Mining Barcelona Spain

ARADyAL Research Network Barcelona Spain

Argentine Society of Allergy and Immunopathology Buenos Aires Argentina

ARIA Montpellier France

Asthma and Airway Disease Research Center University of Arizona Tucson Arizona USA

Asthma Reference Center School of Medicine of Santa Casa de Misericórdia of Vitória Espírito Santo Brazil

Berlin Institute of Health Berlin Germany

Biology of Reproduction department INSERM 1203 University hospital Montpellier France

Center for Rhinology and Allergology Wiesbaden Germany

Center of Allergy and Immunology David Tvildiani Medical University Tbilisi Georgia

Center of Allergy Immunology and Respiratory Diseases Santa Fe Argentina

Center of Excellence in Asthma and Allergy Médica Sur Clinical Foundation and Hospital México City Mexico

Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle Ouagadougou Burkina Faso

Centro Médico Teknon Barcelona Spain

Chiba Rosai Hospital Chiba Japan

Chiba University Hospital Chiba Japan

Christine Kühne Center for Allergy Research and Education Davos Switzerland

CIBER Epidemiología y Salud Pública Barcelona Spain

Clinic of Children's Diseases Institute of Clinical Medicine Faculty of Medicine Vilnius University Vilnius Lithuania

Clinic of Occupational Diseases University Hospital Sveti Ivan Rilski Sofia Bulgaria

Clinical and Experimental Respiratory Immunoallergy IDIBAPS CIBERES University of Barcelona Barcelona Spain

Clinical and Experimental Sciences Faculty of Medicine University of Southampton Southampton UK

Clinique des Bronches Allergie et Sommeil Hôpital Nord Marseille France

Coimbra Institute for Clinical and Biomedical Research Faculty of Medicine University of Coimbra Coimbra Portugal

College of Allopathic Medicine Nova Southeastern University Fort Lauderdale Florida USA

Croatian Pulmonary Society Zagreb Croatia

David Hide Asthma and Allergy Research Centre Isle of Wight UK

David Tatishvili Medical Center; David Tvildiani Medical University AIETI Medical School Tbilisi Georgia

Department of Allergology Medical University of Gdańsk Gdansk Poland

Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea

Department of Allergy and Immunology Hospital Quironsalud Bizkaia Bilbao Spain

Department of Allergy Carol Davila University of Medicine and Pharmacy Bucharest Bucharest Romania

Department of Allergy Hospital La Paz Institute for Health Research Madrid Spain

Department of Biochemistry and Molecular Biology School of Chemistry Complutense University of Madrid Madrid Spain

Department of Biomedical Sciences Humanitas University Pieve Emanuele Milan Italy

Department of Cardiovascular and Respiratory Sciences Universita Cattolica del Sacro Cuore Rome Italy

Department of Chest Medicine Centre Hospitalier Universitaire UCL Namur Belgium

Department of Clinical Immunology and Allergy Oncology Institute of St Elisabeth Bratislava Slovakia

Department of Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden

Department of Clinical Immunology Wrocław Medical University Wroclaw Poland

Department of Clinical Medicine Pulmonary Diseases and Clinical Allergology University of Turku Turku Finland

Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden

Department of Comparative Medicine Messerli Research Institute of the University of Veterinary Medicine Medical University and University of Vienna Vienna Austria

Department of Dermatology and Allergy Biederstein School of Medicine Technical University of Munich Munich Germany

Department of Dermatology and Allergy Centre Odense University Hospital Odense Denmark

Department of Dermatology Medical University of Graz Graz Austria

Department of Dermatology University of Helsinki and Hospital for Skin and Allergic Diseases Helsinki Finland

Department of ENT Badr al Samaa Hospital Salalah Sultanate of Oman

Department of Family Medicine Medical University of Lodz Lodz Poland

Department of General ORL H and NS Medical University of Graz ENT University Hospital Graz Graz Austria

Department of Geriatrics Montpellier University Hospital MUSE Montpellier France

Department of Health Research Methods Evidence and Impact and Department of Medicine McMaster University Hamilton Ontario Canada

Department of Immunoallergology Cova da Beira University Hospital Centre Covilhã Portugal

Department of Immunology and Allergology Faculty of Medicine and Faculty Hospital in Pilsen Charles University Prague Pilsen Czech Republic

Department of Infection and Immunity Luxembourg Institute of Health Esch sur Alzette Luxembourg

Department of Internal Medicine and Infectious Diseases St Joseph University Hotel Dieu de France Hospital Beirut Lebanon

Department of Lung Diseases and Clinical Allergology University of Turku Turku Finland

Department of Medical Sciences and Public Health and Unit of Allergy and Clinical Immunology University Hospital Duilio Casula University of Cagliari Cagliari Italy

Department of Medical Sciences University of Torino Torino Italy

Department of Medicine Division of Respiratory Medicine and Allergology Showa University School of Medicine Tokyo Japan

Department of Medicine Faculty of Medicine and Surgery University of Malta Msida Malta

Department of Neurological ENT and Thoracic Sciences Fondazione Policlinico Universitario A Gemelli IRCCS Rome Italy

Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital and Beijing Institute of Otolaryngology Beijing China

Department of Otolaryngology Head and Neck Surgery Eye and Ear University Hospital Beirut Lebanon

Department of Otolaryngology Head and Neck Surgery Johns Hopkins School of Medicine Baltimore Maryland USA

Department of Otolaryngology Head and Neck Surgery Universitätsmedizin Mainz Mainz Germany

Department of Otolaryngology Nippon Medical School Tokyo Japan

Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore

Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam the Netherlands

Department of Otorhinolaryngology Charité Universitätsmedizin Berlin Berlin Germany

Department of Otorhinolaryngology Head and Neck School of Medical Sciences Universiti Sains Malaysia Kelantan Malaysia

Department of Otorhinolaryngology Head and Neck Surgery Dar Al Shifa Hospital Salmiya Kuwait

Department of Otorhinolaryngology Head and Neck Surgery Semmelweis University Budapest Hungary

Department of Otorhinolaryngology Head and Neck Surgery University Hospital of Crete Heraklion Crete Greece

Department of Paediatric Respiratory Medicine Immunology and Critical Care Medicine Charité Universitätsmedizin Berlin Germany

Department of Paediatrics Oslo University Hospital Oslo Norway

Department of Pediatric Pulmonology and Pediatric Allergology GRIAC Research Institute University Medical Center Groningen Beatrix Children's Hospital University of Groningen Groningen the Netherlands

Department of Pediatric Respiratory Diseases and Allergology Medical University of Warsaw Warsaw Poland

Department of Pediatrics Carol Davila University of Medicine and Pharmacy Bucharest Romania

Department of Pediatrics Federal University of Parana Curitiba Brazil

Department of Pediatrics Medical School Federal University of Minas Gerais Belo Horizonte Brazil

Department of Pediatrics Nippon Medical School Tokyo Japan

Department of Pneumology Medical University of Gdańsk Gdansk Poland

Department of Prevention of Environmental Hazards Allergology and Immunology Medical University of Warsaw Warsaw Poland

Department of Public Health and Health Products Paris Descartes University Sorbonne Paris Cité EA 4064 Paris France

Department of Pulmonary Diseases Celal Bayar University Faculty of Medicine Manisa Turkey

Department of Pulmonary Diseases Cerrahpaşa Faculty of Medicine Istanbul University Cerrahpaşa Istanbul Turkey

Department of Pulmonary Medicine CHU Liège Liège Belgium

Department of Pulmonary Medicine Mainz University Hospital Mainz Germany

Department of Pulmonary Medicine Rashid Hospital Dubai UAE

Department of Regenerative Medicine and Immune Regulation Medical University of Bialystok Bialystock Poland

Department of Respiratory Diseases Larrey Hospital Toulouse University Hospital Toulouse France

Department of Respiratory Medicine and Tuberculosis University Hospital Brno Czech Republic

Department of Respiratory Medicine Copenhagen University Hospital Hvidovre Copenhagen Denmark

Department of Respiratory Medicine National Institute of Diseases of the Chest and Hospital Dhaka Bangladesh

Division of Adult and Pediatric Allergy and Immunology University of the Philippines Philippines General Hospital Manila Philippines

Division of Allergy and Clinical Immunology Department of Medicine Santa Maria della Speranza Hospital Battipaglia Salerno Italy

Division of Allergy and Immunology Department of Dermatology Allergy and Venerology Charité Universitätsmedizin Berlin Berlin Germany

Division of Allergy and Immunology Department of Pediatrics Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA

Division of Allergy and Immunology Department of Pediatrics Siriraj Hospital Mahidol University Faculty of Medicine Bangkok Thailand

Division of Allergy Asthma and Clinical Immunology Emek Medical Center Afula Israel

Division of Allergy Asthma and Immunology Clinics Hospital San Lorenzo Paraguay

Division of Allergy Clinical Immunology and Rheumatology Department of Pediatrics Federal University of São Paulo São Paulo Brazil

Division of Allergy Immunology and Transplantation National Institute of Allergy and Infectious Diseases NIH Bethesda Maryland USA

Division of Allergy Immunology University of South Florida Tampa Florida USA

Division of Asthma Allergy and Lung Biology MRC and Asthma UK Centre in Allergic Mechanisms of Asthma King's College London London UK

Division of Immunology Allergy and Rheumatology Department of Medicine University of Cincinnati College of Medicine Cincinnati Ohio USA

Division of Immunology and Allergy Department of Medicine Solna Karolinska Institute Stockholm Sweden

Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology Infectiology and Immunology Medical University of Vienna Vienna Austria

Division of Internal Medicine Asthma and Allergy Barlicki University Hospital Medical University of Lodz Lodz Poland

Division of Pediatric Pulmonary Medicine UPMC Children's Hospital of Pittsburgh University of Pittsburgh Pittsburgh Pennsylvania USA

Division of Respiratory and Allergic Diseases Hospital 'A Cardarelli' University of Naples Federico 2 Naples Italy

Division of Respiratory Medicine Department of Pediatrics Hospital Nacional de Niños Universidad de Costa Rica San Jose Costa Rica

Division Paediatric Allergology University of Cape Town Cape Town South Africa

Dr Agostinho Neto University hospital Praia Cape Verde

Ecole Polytechnique de Palaiseau Palaiseau France

EDEGO Research Unit University of Oulu Oulu Finland

ENT Department Rhinology Unit and Smell Clinic Hospital Clínic Barcelona Spain

ENT Department University Hospital of Kinshasa Kinshasa Congo

Faculty of Health Sciences and CICS UBI Health Sciences Research Centre University of Beira Interior Covilhã Portugal

Faculty of Medicine Eduardo Mondlane University Maputo Mozambique

Faculty of Medicine Transylvania University of Brasov Brasov Romania

Faculty of Medicine University of Ljubljana Ljubljana Slovenia

Faculty of Public Health Medical University Sofia Sofia Bulgaria

Federation of Translational Medicine University of Strasbourg Strasbourg France

FILHA Finnish Lung Health Association Helsinki Finland

French Environment and Energy Management Agency Angers France

Fundaçao ProAR Federal University of Bahia and GARD WHO Planning Group Salvador Bahia Brazil

German Center of Lung Research Munich Germany

GIGA I3 Research Group University of Liège Liège Belgium

Global Allergy and Airways Patient Platform GAAPP Vienna Austria

Hans Christian Andersen Children's Hospital Odense University Hospital Odense Denmark

Harvard Medical School and Channing Division of Network Medicine Boston USA

Health Planning Unit Department of Social Medicine Faculty of Medicine University of Crete Heraklion Greece

Health Research Network Faculty of Medicine University of Porto Porto Portugal

Hospital San Luca Oaxaca Mexico

Hungarian Allergy Association Budapest Hungary

IMIM Barcelona Spain

Immunology and Allergy Division Clinical Hospital University of Chile Santiago Chile

Immunology Faculty of Medicine Cabo Verde University Praia Cape Verde

Imperial College and National Heart and Lung Institute London UK

Imperial College and Royal Brompton Hospital London UK

Imunoalergologia Centro Hospitalar Universitário de Coimbra Faculty of Medicine University of Coimbra Coimbra Portugal

Inserm Equipe d'Epidémiologie Respiratoire Intégrative CESP Villejuif France

INSERM Université Grenoble Alpes IAB U 1209 Team of Environmental Epidemiology applied to Reproduction and Respiratory Health Université Joseph Fourier Grenoble France

Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain

Institute for Advanced Biosciences UGA INSERM U1209 CNRS UMR5309 Site Santé La Tronche France

Institute for Clinical Epidemiology and Biometry University of Wuerzburg Wuerzburg Germany

Institute for Immunological Research University of Cartagena Campus de Zaragocilla Edificio Biblioteca Primer piso Cartagena Colombia

Institute of Allergology Charité Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin Berlin Germany

Institute of Biomedical Sciences Department of Pathology Faculty of Medicine Vilnius University Vilnius Lithuania

Institute of Clinical Medicine and Institute of Health Sciences Vilnius Lithuania

Institute of Clinical Medicine Clinic of Chest Diseases and Allergology Faculty of Medicine Vilnius University Vilnius Lithuania

Institute of Clinical Medicine University of Copenhagen Copenhagen Denmark

Institute of Environmental medicine Karolinska Institutet Stockholm Sweden

Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden

Institute of Epidemiology Helmholtz Zentrum München German Research Center for Environmental Health Neuherberg Germany

Institute of Immunology Faculty of Medicine University of Coimbra Coimbra Portugal

Institute of Lung Health NIHR Biomedical Research Centre Department of Respiratory and Infection Sciences University of Leicester Leicester UK

Institute of Sciences of Food Production National Research Council Bari Italy

Institute of Social Medicine Epidemiology and Health Economics Charité Universitätsmedizin Berlin Berlin Germany

Institute of Translational Pharmacology National Research Council Palermo Italy

International Primary Care Respiratory Group IPCRG Aberdeen Scotland

International Primary Care Respiratory Group IPCRG Aberdeen UK

IRBA Brétigny sur Orge France

IRCCS Ospedale Policlinico San Martino Genoa Italy

ISGlobal Barcelona Institute for Global Health Barcelona Spain

Japan Anti Tuberculosis Association Fukujuji Hospital Tokyo Japan

Kazakhstan Association of Allergology and Clinical Immunology Department of Allergology and Clinical Immunology of the Kazakh National Medical University Almaty Kazakhstan

Lebanese American University Clemenceau Medical Center DHCC Dubai UAE

Ludwig Maximilians University Munich University Hospital Munich Instituteand Outpatient Clinic for Occupational Social and Environmental Medicine Munich Germany

Makerere University Lung Institute Kampala Uganda

MASK air Montpellier France

MEDCIDS Department of Community Medicine Information and Health Decision Sciences; Faculty of Medicine University of Porto Porto Portugal

Medical Consulting Czarlewski Levallois France

Medical Faculty ENT Department Eskisehir Osmangazi University Eskisehir Turkey

Medical Faculty of Vilnius University Vilnius Lithuania

Medical Faculty Skopje University Clinic of Pulmonology and Allergy Skopje Republic of Macedonia

Medical Faculty University JJ Strossmayer of Osijek Osijek Croatia

Medical School University of Cyprus Nicosia Cyprus

Microbiology Department College of Medicine Kuwait University Kuwait City Kuwait

Mongolian Association of Hospital Managers Ulaanbaatar Mongolia

National Center for Research in Chronic Respiratory Diseases Tishreen University School of Medicine Latakia Syria

National Heart and Lung Institute Imperial College London London UK

National Heart and Lung Institute Imperial College London UK

National Institute of Pneumology M Nasta Bucharest Romania

NIHR Imperial Biomedical Research Centre London UK

NOVA Medical School Comprehensive Health Research Centre Lisbon Portugal

Odense Research Center for Anaphylaxis « ORCA » Odense Denmark

OncoGen Center County Clinical Emergency Hospital Pius Branzeu and University of Medicine and Pharmacy 5 Babes Timisoara Romania

Paris Municipal Department of Social Action Childhood and Health Paris France

Pediatric Allergy and Asthma Unit Hacettepe University School of Medicine Ankara Turkey

Pediatric Allergy and Clinical Immunology Hospital Espanol de Mexico Mexico City Mexico

Pediatric Allergy Immunology and Rheumatology Unit Children's Hospital Ain Shams University Cairo Egypt

Pediatric Pulmonology Immunology and Intensive Care Medicine Charité Universitätsmedizin Berlin Berlin Germany

Pediatrics Department Universidad Austral de Chile Valvidia Chile

Personalized medicine Asthma and Allergy IRCCS Humanitas Research Hospital Rozzano Milan Italy

Personalized medicine Asthma and Allergy Rozzano IRCCS Humanitas Research Center Milan Italy

Pharmaceutical Care Unit Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium

Pirkanmaa Welfare district Tampere Finland

Pneumologie AP HP Centre Université de Paris Cité Hôpital Cochin Paris France

Pneumology Unit Hospitais da Universidade de Coimbra Centro Hospitalar e Universitário de Coimbra Coimbra Portugal

Poltava State Medical University Poltava Ukraine

Portuguese National Programme for Respiratory Diseases Direção Geral da Saúde Faculdade de Medicina de Lisboa Instituto de Saúde Ambiental Lisbon Portugal

Postgraduate Programme in Allergy and Clinical Immunology University of Naples Federico 2 Naples Italy

PROMISE Department University of Palermo Palermo Italy

Pulmonary Division Heart Institute Hospital da Clinicas da Faculdade de Medicina da Universidade de Sao Paulo Sao Paulo Brazil

Pulmonary Environmental Epidemiology Unit CNR Institute of Clinical Physiology Pisa Italy

Quality Use of Respiratory Medicines Group Woolcock Institute of Medical Research Sydney NSW Australia

Quebec Heart and Lung Institute Laval University Quebec City Quebec Canada

Research on Healthcare Performance INSERM U1290 Université Claude Bernard Lyon1 Lyon France

Respiralab Research Group Guayaquil Guayas Ecuador

Respiratory Clinic Department of Internal Medicine University of Genoa Genoa Italy

Sach´s Children and Youth Hospital Södersjukhuset Stockholm Sweden

School of Health Sciences Catholic University of Salta Salta Argentina

School of Medicine Department of Chest Diseases Immunology and Allergy Division Hacettepe University Ankara Turkey

School of Medicine Life and Health Sciences Research Institute University of Minho Braga Portugal

School of Medicine University CEU San Pablo Madrid Spain

Scottish Centre for Respiratory Research Cardiovascular and Diabetes Medicine Medical Research Institute Ninewells Hospital University of Dundee Dundee UK

Sean N Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford California USA

Section of Allergy and Immunology Saint Louis University School of Medicine Saint Louis Missouri USA

Section of Rhinology and Allergy Department of Otorhinolaryngology Head and Neck Surgery University Hospital Marburg Philipps Universität Marburg Marburg Germany

Service de Pneumo Allergologie Centre Hospitalo Universitaire de Béni Messous Algiers Algeria

Servicio de Alergia Consultorios Médicos Privados Buenos Aires Argentina

Servicio de Alergia e Immunologia Clinica Santa Isabel Buenos Aires Argentina

Serviço de Imunoalergologia Hospital de Dona Estefânia Centro Hospitalar Universitário de Lisboa Central Lisbon Portugal

Skin and Allergy Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland

SLaai Sociedad Latinoamericana de Allergia Asma e Immunologia Barranquilla Columbia

SMAIC Société Marocaine d' Allergologie et Immunologie Clinique Rabat Morocco

Sorbonne université Hôpital américain de Paris Neuilly France

SOS Allergology and Clinical Immunology USL Toscana Centro Prato Italy

Srebrnjak Children's Hospital Zagreb Croatia

State Institute of Health Bavarian Health and Food Safety Authority Erlangen Germany

Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland

Sydney Local Health District Sydney NSW Australia

Sydney Pharmacy School The University of Sydney Sydney NSW Australia

Syrian Private University Damascus Syria

Tartu University Institute of Clinical Medicine Children's Clinic Tartu Estonia

The Allergy and Asthma Institute Islamabad Pakistan

The Capital Institute of Pediatrics Chaoyang district Beijing China

The Hospital for Sick Children Dalla Lana School of Public Health University of Toronto Toronto Canada

The Hospital for Sick Children Department of Paediatrics Division of Clinical Immunology and Allergy Food allergy and Anaphylaxis Program The University of Toronto Toronto Ontario Canada

UBIAir Clinical and Experimental Lung Centre and CICS UBI Health Sciences Research Centre University of Beira Interior Covilhã Portugal

UCIBIO REQUINTE Faculty of Pharmacy and Competence Center on Active and Healthy Ageing of University of Porto Porto Portugal

UMR 1016 Institut Cochin Paris France

Unit of Geriatric Immunoallergology University of Bari Medical School Bari Italy

Universidad Católica de Córdoba Universidad Nacional de Villa Maria Villa Maria Argentina

Universidad Espíritu Santo Samborondón Ecuador

Universidade Federal dos Pampa Uruguaiana Brazil

Universitat Pompeu Fabra Barcelona Spain

Université Catholique de Louvain Yvoir Belgium

Université Paris Cité Paris France

Université Paris Saclay UVSQ UnivParis Sud Villejuif France

University Clinic of Respiratory and Allergic Diseases Golnik Slovenia

University Hospital Montpellier Montpellier France

University of Central Lancashire Medical School Preston UK

University of Exeter Medical School College of Medicine and Health University of Exeter Exeter Devon UK

University of Medicine and Pharmacy Hochiminh City Vietnam

University of Southampton Southampton UK

Usher Institute The University of Edinburgh Edinburgh UK

VIM Suresnes UMR 0892 Pôle des Maladies des Voies Respiratoires Hôpital Foch Université Paris Saclay Suresnes France

See more in PubMed

Anto JM, Bousquet J, Akdis M, et al. Mechanisms of the development of allergy (MeDALL): introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139(2):388-399.

Bousquet J, Anto J, Auffray C, et al. MeDALL (mechanisms of the development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66(5):596-604.

McHugh T, Levin M, Snidvongs K, Banglawala SM, Sommer DD. Comorbidities associated with eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Clin Otolaryngol. 2020;45(4):574-583.

Niespodziana K, Borochova K, Pazderova P, et al. Towards personalization of asthma treatment according to trigger factors. J Allergy Clin Immunol. 2020;145:1529-1534.

Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med. 2019;13(11):1057-1068.

Hofmann MA, Fluhr JW, Ruwwe-Glosenkamp C, Stevanovic K, Bergmann KC, Zuberbier T. Role of IL-17 in atopy-a systematic review. Clin Transl Allergy. 2021;11(6):e12047.

Renert-Yuval Y, Thyssen JP, Bissonnette R, et al. Biomarkers in atopic dermatitis-a review on behalf of the international eczema council. J Allergy Clin Immunol. 2021;147(4):1174-1190.

Bousquet J, Chanez P, Campbell AM, et al. Inflammatory processes in asthma. Int Arch Allergy Appl Immunol. 1991;94(1-4):227-232.

Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739-751.

Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108(5 Suppl):S147-S334.

Custovic A, Custovic D, Kljaic Bukvic B, Fontanella S, Haider S. Atopic phenotypes and their implication in the atopic march. Expert Rev Clin Immunol. 2020;16(9):873-881.

Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911-920.

Cohen S, Berkman N, Picard E, et al. Co-morbidities and cognitive status in a cohort of teenagers with asthma. Pediatr Pulmonol. 2016;51(9):901-907.

Tonacci A, Pioggia G, Gangemi S. Autism spectrum disorders and atopic dermatitis: a new perspective from country-based prevalence data. Clin Mol Allergy. 2021;19(1):27.

Trubetskoy V, Pardinas AF, Qi T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604(7906):502-508.

Simons FE. Allergic rhinobronchitis: the asthma-allergic rhinitis link. J Allergy Clin Immunol. 1999;104(3 Pt 1):534-540.

Leynaert B, Neukirch C, Kony S, et al. Association between asthma and rhinitis according to atopic sensitization in a population-based study. J Allergy Clin Immunol. 2004;113(1):86-93.

Harrison C, Fortin M, van den Akker M, et al. Comorbidity versus multimorbidity: why it matters. J Comorb. 2021;11:2633556521993993.

Bousquet J, Anto JM, Wickman M, et al. Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. Allergy. 2015;70(9):1062-1078.

Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic Rhinosinusitis with nasal polyps and asthma. J Allergy Clin Immunol Pract. 2021;9(3):1133-1141.

Bousquet J, Coulomb Y, Arrendal H, Robinet-Levy M, Michel FB. Total serum IgE concentrations in adolescents and adults using the phadebas IgE PRIST technique. Allergy. 1982;37(6):397-406.

Bousquet J, Becker WM, Hejjaoui A, et al. Differences in clinical and immunologic reactivity of patients allergic to grass pollens and to multiple-pollen species. II. Efficacy of a double-blind, placebo-controlled, specific immunotherapy with standardized extracts. J Allergy Clin Immunol. 1991;88(1):43-53.

Bousquet J, Hejjaoui A, Becker WM, et al. Clinical and immunologic reactivity of patients allergic to grass pollens and to multiple pollen species. I. Clinical and immunologic characteristics. J Allergy Clin Immunol. 1991;87(3):737-746.

Pene J, Rivier A, Lagier B, Becker WM, Michel FB, Bousquet J. Differences in IL-4 release by PBMC are related with heterogeneity of atopy. Immunology. 1994;81(1):58-64.

Reid MJ, Schwietz LA, Whisman BA, Moss RB. Mountain cedar pollinosis: can it occur in non-atopics? N Engl Reg Allergy Proc. 1988;9(3):225-232.

Bousquet J, Knani J, Hejjaoui A, et al. Heterogeneity of atopy. I. Clinical and immunologic characteristics of patients allergic to cypress pollen. Allergy. 1993;48(3):183-188.

Guerra S, Allegra L, Blasi F, Cottini M. Age at symptom onset and distribution by sex and symptoms in patients sensitized to different allergens. Allergy. 1998;53(9):863-869.

Rosen FL. Hay fever and asthma following maximum exposure to ragweed. JAMA. 1946;132(14):854.

Frankland AW, Gorrill RH. Summer hay-fever and asthma treated with antihistaminic drugs. Br Med J. 1953;1(4813):761-764.

Leynaert B, Bousquet J, Neukirch C, Liard R, Neukirch F. Perennial rhinitis: an independent risk factor for asthma in nonatopic subjects: results from the European Community respiratory health survey. J Allergy Clin Immunol. 1999;104:301-304.

Anto JM, Sunyer J, Basagana X, et al. Risk factors of new-onset asthma in adults: a population-based international cohort study. Allergy. 2010;65(8):1021-1030.

Chanez P, Vignola AM, Vic P, et al. Comparison between nasal and bronchial inflammation in asthmatic and control subjects. Am J Respir Crit Care Med. 1999;159(2):588-595.

Gaga M, Lambrou P, Papageorgiou N, et al. Eosinophils are a feature of upper and lower airway pathology in non-atopic asthma, irrespective of the presence of rhinitis. Clin Exp Allergy. 2000;30(5):663-669.

Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy. 2003;33(5):579-587.

Braunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med. 2000;161(6):2051-2057.

Braunstahl GJ, Overbeek SE, Fokkens WJ, et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med. 2001;164(5):858-865.

Togias A, Gergen PJ, Hu JW, et al. Rhinitis in children and adolescents with asthma: ubiquitous, difficult to control, and associated with asthma outcomes. J Allergy Clin Immunol. 2019;143(3):1003-1011. e1010.

Cruz AA, Popov T, Pawankar R, et al. Common characteristics of upper and lower airways in rhinitis and asthma: ARIA update, in collaboration with GA(2)LEN. Allergy. 2007;62(Suppl 84):1-41.

Pinart M, Benet M, Annesi-Maesano I, et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respir Med. 2014;2(2):131-140.

Garcia-Aymerich J, Benet M, Saeys Y, et al. Phenotyping asthma, rhinitis and eczema in MeDALL population-based birth cohorts: an allergic comorbidity cluster. Allergy. 2015;70(8):973-984.

Bousquet J, Anto JM, Just J, Keil T, Siroux V, Wickman M. The multimorbid polysensitized phenotype is associated with the severity of allergic diseases. J Allergy Clin Immunol. 2017;139:1407-1408.

Fontanella S, Frainay C, Murray CS, Simpson A, Custovic A. Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: a cross-sectional analysis within a population-based birth cohort. PLoS Med. 2018;15(11):e1002691.

Zoratti EM, Krouse RZ, Babineau DC, et al. Asthma phenotypes in inner-city children. J Allergy Clin Immunol. 2016;138(4):1016-1029.

Liu AH, Babineau DC, Krouse RZ, et al. Pathways through which asthma risk factors contribute to asthma severity in inner-city children. J Allergy Clin Immunol. 2016;138(4):1042-1050.

Pongracic JA, Krouse RZ, Babineau DC, et al. Distinguishing characteristics of difficult-to-control asthma in inner-city children and adolescents. J Allergy Clin Immunol. 2016;138(4):1030-1041.

Barber D, Diaz-Perales A, Escribese MM, et al. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy. 2021;76(12):3642-3658.

Blazowski L, Majak P, Kurzawa R, Kuna P, Jerzynska J. Food allergy endotype with high risk of severe anaphylaxis in children-Monosensitization to cashew 2S albumin Ana o 3. Allergy. 2019;74(10):1945-1955.

Asarnoj A, Hamsten C, Lupinek C, et al. Prediction of peanut allergy in adolescence by early childhood storage protein-specific IgE signatures: the BAMSE population-based birth cohort. J Allergy Clin Immunol. 2017;140:587-590.

Gupta RS, Warren CM, Smith BM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2(1):e185630.

Sicherer SH, Warren CM, Dant C, Gupta RS, Nadeau KC. Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract. 2020;8(6):1854-1864.

Jimenez-Saiz R, Chu DK, Mandur TS, et al. Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy. J Allergy Clin Immunol. 2017;140(6):1604-1615. e1605.

Davidson WF, Leung DYM, Beck LA, et al. Report from the National Institute of Allergy and Infectious Diseases workshop on "atopic dermatitis and the atopic march: mechanisms and interventions". J Allergy Clin Immunol. 2019;143(3):894-913.

Punekar YS, Sheikh A. Establishing the sequential progression of multiple allergic diagnoses in a UK birth cohort using the general practice research database. Clin Exp Allergy. 2009;39(12):1889-1895.

Yang L, Fu J, Zhou Y. Research Progress in atopic march. Front Immunol. 2020;11:1907.

Nakamura T, Haider S, Fontanella S, Murray CS, Simpson A, Custovic A. Modelling trajectories of parentally reported and physician-confirmed atopic dermatitis in a birth cohort study. Br J Dermatol. 2022;186(2):274-284.

Dharma C, Lefebvre DL, Tran MM, et al. Patterns of allergic sensitization and atopic dermatitis from 1 to 3 years: effects on allergic diseases. Clin Exp Allergy. 2018;48(1):48-59.

Akdis CA. Does the epithelial barrier hypothesis explain the rise in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739-751.

Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA. Time trends in the incidence of Parkinson disease. JAMA Neurol. 2016;73(8):981-989.

Frye RE. Introduction to part 1. Semin Pediatr Neurol. 2020;34:100802.

Chiarotti F, Venerosi A. Epidemiology of autism Spectrum disorders: a review of worldwide prevalence estimates since 2014. Brain Sci. 2020;10(5):274.

Hidaka BH. Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord. 2012;140(3):205-214.

Akdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605.

Yang R, Tan M, Xu J, Zhao X. Investigating the regulatory role of ORMDL3 in airway barrier dysfunction using in vivo and in vitro models. Int J Mol Med. 2019;44(2):535-548.

Steelant B, Wawrzyniak P, Martens K, et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol. 2019;144(5):1242-1253. e1247.

Wawrzyniak P, Krawczyk K, Acharya S, et al. Inhibition of CpG methylation improves the barrier integrity of bronchial epithelial cells in asthma. Allergy. 2021;76(6):1864-1868.

Celebi-Sozener Z, Ozdel-Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2021;77:1418-1449.

Anto A, Sousa-Pinto B, Czarlewski W, et al. Automatic market research of mobile health apps for the self-management of allergic rhinitis. Clkin Exp Allergy. 2022;52:1195-1207.

Bousquet J, Anto JM, Bachert C, et al. ARIA digital anamorphosis: digital transformation of health and care in airway diseases from research to practice. Allergy. 2021;76(1):168-190.

Bousquet J, Devillier P, Anto JM, et al. Daily allergic multimorbidity in rhinitis using mobile technology: a novel concept of the MASK study. Allergy. 2018;73(8):1622-1631.

Burte E, Bousquet J, Siroux V, Just J, Jacquemin B, Nadif R. The sensitization pattern differs according to rhinitis and asthma multimorbidity in adults: the EGEA study. Clin Exp Allergy. 2017;47:520-529.

Siroux V, Ballardini N, Soler M, et al. The asthma-rhinitis multimorbidity is associated with IgE polysensitization in adolescents and adults. Allergy. 2018;73(7):1447-1458.

Kauffmann F, Dizier MH, Annesi-Maesano I, et al. EGEA (epidemiological study on the genetics and environment of asthma, bronchial hyperresponsiveness and atopy)-descriptive characteristics. Clin Exp Allergy. 1999;29(Suppl 4):17-21.

Filiou A, Holmdahl I, Asarnoj A, et al. Development of sensitization to multiple allergen molecules from preschool to school age is related to asthma. Int Arch Allergy Immunol. 2022;183(6):628-639.

Blondal V, Malinovschi A, Sundbom F, et al. Multimorbidity in asthma, association with allergy, inflammatory markers and symptom burden, results from the Swedish GA(2) LEN study. Clin Exp Allergy. 2021;51(2):262-272.

Schoos AM, Jelding-Dannemand E, Stokholm J, Bonnelykke K, Bisgaard H, Chawes BL. Single and multiple time-point allergic sensitization during childhood and risk of asthma by age 13. Pediatr Allergy Immunol. 2019;30(7):716-723.

Raciborski F, Bousquet J, Bousqet J, et al. Dissociating polysensitization and multimorbidity in children and adults from a polish general population cohort. Clin Transl Allergy. 2019;9:4.

Schmidt F, Hose AJ, Mueller-Rompa S, et al. Development of atopic sensitization in Finnish and Estonian children: a latent class analysis in a multicenter cohort. J Allergy Clin Immunol. 2019;143(5):1904-1913. e1909.

Hose AJ, Depner M, Illi S, et al. Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts. J Allergy Clin Immunol. 2017;139(6):1935-1945. e1912.

Toppila-Salmi S, Chanoine S, Karjalainen J, Pekkanen J, Bousquet J, Siroux V. Risk of adult-onset asthma increases with the number of allergic multimorbidities and decreases with age. Allergy. 2019;74(12):2406-2416.

Bengtsson C, Lindberg E, Jonsson L, et al. Chronic Rhinosinusitis impairs sleep quality: results of the GA2LEN study. Sleep. 2017;40(1). doi:10.1093/sleep/zsw021

Sears MR, Burrows B, Flannery EM, Herbison GP, Holdaway MD. Atopy in childhood. I. Gender and allergen related risks for development of hay fever and asthma. Clin Exp Allergy. 1993;23(11):941-948.

Aranda CS, Cocco RR, Pierotti FF, et al. Allergic sensitization pattern of patients in Brazil. J Pediatr. 2021;97(4):387-395.

Zhang W, Xie B, Liu M, Wang Y. Associations between sensitisation to allergens and allergic diseases: a hospital-based case-control study in China. BMJ Open. 2022;12(2):e050047.

Gao Z, Fu WY, Sun Y, et al. Artemisia pollen allergy in China: component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy. 2019;74(2):284-293.

Nwaru BI, Suzuki S, Ekerljung L, et al. Furry animal allergen component sensitization and clinical outcomes in adult asthma and rhinitis. J Allergy Clin Immunol Pract. 2019;7(4):1230-1238.

Suzuki S, Nwaru BI, Ekerljung L, et al. Characterization of sensitization to furry animal allergen components in an adult population. Clin Exp Allergy. 2019;49(4):495-505.

Hemmer W, Sestak-Greinecker G, Braunsteiner T, Wantke F, Wohrl S. Molecular sensitization patterns in animal allergy: relationship with clinical relevance and pet ownership. Allergy. 2021;76(12):3687-3696.

Cibella F, Ferrante G, Cuttitta G, et al. The burden of rhinitis and rhinoconjunctivitis in adolescents. Allergy Asthma Immunol Res. 2015;7(1):44-50.

Siroux V, Boudier A, Nadif R, Lupinek C, Valenta R, Bousquet J. Association between asthma, rhinitis, and conjunctivitis multimorbidities with molecular IgE sensitization in adults. Allergy. 2019;74(4):824-827.

Amaral R, Bousquet J, Pereira AM, et al. Disentangling the heterogeneity of allergic respiratory diseases by latent class analysis reveals novel phenotypes. Allergy. 2019;74(4):698-708.

Mikkelsen S, Dinh KM, Boldsen JK, et al. Combinations of self-reported rhinitis, conjunctivitis, and asthma predicts IgE sensitization in more than 25,000 Danes. Clin Transl Allergy. 2021;11(1):e12013.

Toppila-Salmi S, Lemmetyinen R, Chanoine S, et al. Risk factors for severe adult-onset asthma: a multi-factor approach. BMC Pulm Med. 2021;21(1):214.

Hill DA, Grundmeier RW, Ramos M, Spergel JM. Eosinophilic esophagitis is a late manifestation of the allergic march. J Allergy Clin Immunol Pract. 2018;6(5):1528-1533.

O'Shea KM, Rochman M, Shoda T, Zimmermann N, Caldwell J, Rothenberg ME. Eosinophilic esophagitis with extremely high esophageal eosinophil counts. J Allergy Clin Immunol. 2021;147(1):409-412. e405.

Corren J. The rhinitis-asthma link revisited. Ann Allergy Asthma Immunol. 2005;94(3):311-312.

Hanes LS, Issa E, Proud D, Togias A. Stronger nasal responsiveness to cold air in individuals with rhinitis and asthma, compared with rhinitis alone. Clin Exp Allergy. 2006;36(1):26-31.

Assanasen P, Baroody FM, Naureckas E, Naclerio RM. Hot, humid air increases cellular influx during the late-phase response to nasal challenge with antigen. Clin Exp Allergy. 2001;31(12):1913-1922.

Lau S, Matricardi PM, Wahn U, Lee YA, Keil T. Allergy and atopy from infancy to adulthood: messages from the German birth cohort MAS. Ann Allergy Asthma Immunol. 2019;122(1):25-32.

Gough H, Grabenhenrich L, Reich A, et al. Allergic multimorbidity of asthma, rhinitis, and eczema over 20 years in the German birth cohort MAS. Pediatr Allergy Immunol. 2015;26:431-437.

Kang H, Yu J, Yoo Y, Kim DK, Koh YY. Coincidence of atopy profile in terms of monosensitization and polysensitization in children and their parents. Allergy. 2005;60(8):1029-1033.

Keller T, Hohmann C, Standl M, et al. The sex-shift in single disease and multimorbid asthma and rhinitis during puberty - a study by MeDALL. Allergy. 2018;73(3):602-614.

Frohlich M, Pinart M, Keller T, et al. Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clin Transl Allergy. 2017;7:44.

Rosario CS, Cardozo CA, Neto HJC, Filho NAR. Do gender and puberty influence allergic diseases? Allergol Immunopathol. 2021;49(2):122-125.

Tohidinik HR, Mallah N, Takkouche B. History of allergic rhinitis and risk of asthma; a systematic review and meta-analysis. World Allergy Organ J. 2019;12(10):100069.

Gabet S, Just J, Couderc R, Bousquet J, Seta N, Momas I. Early polysensitisation is associated to allergic multimorbidity in PARIS birth cohort infants. Pediatr Allergy Immunol. 2016;27:831-837.

Rochat MK, Illi S, Ege MJ, et al. Allergic rhinitis as a predictor for wheezing onset in school-aged children. J Allergy Clin Immunol. 2010;126(6):1170-1175.

Shaaban R, Zureik M, Soussan D, et al. Rhinitis and onset of asthma: a longitudinal population-based study. Lancet. 2008;372(9643):1049-1057.

Asarnoj A, Hamsten C, Waden K, et al. Sensitization to cat and dog allergen molecules in childhood and prediction of symptoms of cat and dog allergy in adolescence: a BAMSE/MeDALL study. J Allergy Clin Immunol. 2016;137(3):813-821. e817.

Ballardini N, Bergstrom A, Wahlgren CF, et al. IgE antibodies in relation to prevalence and multimorbidity of eczema, asthma, and rhinitis from birth to adolescence. Allergy. 2016;71(3):342-349.

Wickman M, Lupinek C, Andersson N, et al. Detection of IgE reactivity to a handful of allergen molecules in early childhood predicts respiratory allergy in adolescence. EBioMedicine. 2017;26:91-99.

Siroux V, Boudier A, Bousquet J, et al. Trajectories of IgE sensitization to allergen molecules from childhood to adulthood and respiratory health in the EGEA cohort. Allergy. 2022;77(2):609-618.

Aguilar D, Pinart M, Koppelman GH, et al. Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS One. 2017;12(6):e0179125.

Aguilar D, Lemonnier N, Koppelman GH, et al. Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS One. 2019;14(11):e0224448.

Dizier MH, Bouzigon E, Guilloud-Bataille M, et al. Genome screen in the French EGEA study: detection of linked regions shared or not shared by allergic rhinitis and asthma. Genes Immun. 2005;6(2):95-102.

Dizier MH, Bouzigon E, Guilloud-Bataille M, et al. Evidence for a locus in 1p31 region specifically linked to the Co-morbidity of asthma and allergic rhinitis in the EGEA study. Hum Hered. 2007;63(3-4):162-167.

Ferreira MA, Matheson MC, Tang CS, et al. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J Allergy Clin Immunol. 2014;133(6):1564-1571.

Marenholz I, Esparza-Gordillo J, Ruschendorf F, et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun. 2015;6:8804.

Lemonnier N, Melen E, Jiang Y, et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 2020;75:3248-3260.

Forno E, Sordillo J, Brehm J, et al. Genome-wide interaction study of dust mite allergen on lung function in children with asthma. J Allergy Clin Immunol. 2017;140(4):996-1003.

Forno E, Wang T, Yan Q, et al. A multiomics approach to identify genes associated with childhood asthma risk and morbidity. Am J Respir Cell Mol Biol. 2017;57(4):439-447.

Pinto SM, Subbannayya Y, Rex DAB, et al. A network map of IL-33 signaling pathway. J Cell Commun Signal. 2018;12(3):615-624.

Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep. 2014;6:97.

Laulajainen-Hongisto A, Lyly A, Hanif T, et al. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy. 2020;10(1):45.

Li J, Zhang Y, Zhang L. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy. Curr Opin Allergy Clin Immunol. 2015;15(1):33-40.

Wise SK, Lin SY, Toskala E, et al. International consensus Statement on allergy and rhinology: allergic rhinitis. Int Forum Allergy Rhinol. 2018;8(2):108-352.

Li X, Ampleford EJ, Howard TD, et al. The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. J Allergy Clin Immunol. 2012;129(2):575-578.

Amaral AF, Minelli C, Guerra S, et al. The locus C11orf30 increases susceptibility to poly-sensitization. Allergy. 2015;70(3):328-333.

Sleiman PM, Wang ML, Cianferoni A, et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat Commun. 2014;5:5593.

Tamari M, Tanaka S, Hirota T. Genome-wide association studies of allergic diseases. Allergol Int. 2013;62(1):21-28.

Choi BY, Han M, Kwak JW, Kim TH. Genetics and epigenetics in allergic rhinitis. Genes (Basel). 2021;9:1.

Bunyavanich S, Melen E, Wilk JB, et al. Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma. Clin Mol Allergy. 2011;9:1.

Kottyan LC, Davis BP, Sherrill JD, et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat Genet. 2014;46(8):895-900.

Kottyan LC, Trimarchi MP, Lu X, et al. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J Allergy Clin Immunol. 2021;147(1):255-266.

Martin LJ, He H, Collins MH, et al. Eosinophilic esophagitis (EoE) genetic susceptibility is mediated by synergistic interactions between EoE-specific and general atopic disease loci. J Allergy Clin Immunol. 2018;141(5):1690-1698.

Stein MM, Thompson EE, Schoettler N, et al. A decade of research on the 17q12-21 asthma locus: piecing together the puzzle. J Allergy Clin Immunol. 2018;142(3):749-764. e743.

Haider S, Granell R, Curtin J, et al. Modelling wheezing spells identifies phenotypes with different outcomes and genetic associates. Am J Respir Crit Care Med. 2022;205:883-893.

Hallmark B, Wegienka G, Havstad S, et al. Chromosome 17q12-21 variants are associated with multiple wheezing phenotypes in childhood. Am J Respir Crit Care Med. 2021;203(7):864-870.

Andiappan AK, Sio YY, Lee B, et al. Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. J Allergy Clin Immunol. 2016;137(3):758-766.

Fuertes E, Soderhall C, Acevedo N, et al. Associations between the 17q21 region and allergic rhinitis in 5 birth cohorts. J Allergy Clin Immunol. 2015;135(2):573-576.

Karunas A, Fedorova Y, Gimalova GF, Etkina E, Khusnutdinova E. Association of Gasdermin B Gene GSDMB polymorphisms with risk of allergic diseases. Biochem Genet. 2021;59(6):1527-1543.

Waage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018;50(8):1072-1080.

Poninska JK, Samolinski B, Tomaszewska A, et al. Haplotype dependent association of rs7927894 (11q13.5) with atopic dermatitis and chronic allergic rhinitis: a study in ECAP cohort. PLoS One. 2017;12(9):e0183922.

El-Husseini ZW, Gosens R, Dekker F, Koppelman GH. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir Med. 2020;8(10):1045-1056.

Kanazawa J, Masuko H, Yatagai Y, et al. Association analyses of eQTLs of the TYRO3 gene and allergic diseases in Japanese populations. Allergol Int. 2019;68(1):77-81.

Acevedo N, Vergara C, Mercado D, Jimenez S, Caraballo L. The A-444C polymorphism of leukotriene C4 synthase gene is associated with IgE antibodies to Dermatophagoides pteronyssinus in a Colombian population. J Allergy Clin Immunol. 2007;119(2):505-507.

Bonnelykke K, Matheson MC, Pers TH, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45(8):902-906.

Marsh DG, Chase GA, Freidhoff LR, Meyers DA, Bias WB. Association of HLA antigens and total serum immunoglobulin E level with allergic response and failure to respond to ragweed allergen Ra3. Proc Natl Acad Sci U S A. 1979;76(6):2903-2907.

Fischer GF, Pickl WF, Fae I, et al. Association between IgE response against bet v I, the major allergen of birch pollen, and HLA-DRB alleles. Hum Immunol. 1992;33(4):259-265.

Tautz C, Rihs HP, Thiele A, et al. Association of class II sequences encoding DR1 and DQ5 specificities with hypersensitivity to chironomid allergen chi t I. J Allergy Clin Immunol. 1994;93(5):918-925.

Soriano JB, Ercilla G, Sunyer J, et al. HLA class II genes in soybean epidemic asthma patients. Am J Respir Crit Care Med. 1997;156(5):1394-1398.

D'Amato M, Scotto d'Abusco A, Maggi E, et al. Association of responsiveness to the major pollen allergen of Parietaria officinalis with HLA-DRB1* alleles: a multicenter study. Hum Immunol. 1996;46(2):100-106.

Joshi SK, Suresh PR, Chauhan VS. Flexibility in MHC and TCR recognition: degenerate specificity at the T cell level in the recognition of promiscuous Th epitopes exhibiting no primary sequence homology. J Immunol. 2001;166(11):6693-6703.

Gheerbrant H, Guillien A, Vernet R, et al. Associations between specific IgE sensitization to 26 respiratory allergen molecules and HLA class II alleles in the EGEA cohort. Allergy. 2021;76:2575-2586.

Kanchan K, Clay S, Irizar H, Bunyavanich S, Mathias RA. Current insights into the genetics of food allergy. J Allergy Clin Immunol. 2021;147(1):15-28.

Xu CJ, Soderhall C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 2018;6(5):379-388.

Xu CJ, Gruzieva O, Qi C, et al. Shared DNA methylation signatures in childhood allergy: the MeDALL study. J Allergy Clin Immunol. 2021;147(3):1031-1040.

Ek WE, Ahsan M, Rask-Andersen M, et al. Epigenome-wide DNA methylation study of IgE concentration in relation to self-reported allergies. Epigenomics. 2017;9(4):407-418.

Zhang H, Kaushal A, Merid SK, et al. DNA methylation and allergic sensitizations: a genome-scale longitudinal study during adolescence. Allergy. 2019;74(6):1166-1175.

Qi C, Jiang Y, Yang IV, et al. Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol. 2020;145(6):1655-1663.

Sarnowski C, Laprise C, Malerba G, et al. DNA methylation within melatonin receptor 1A (MTNR1A) mediates paternally transmitted genetic variant effect on asthma plus rhinitis. J Allergy Clin Immunol. 2016;138(3):748-753.

Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pedaitr Allergy Immunol. 2022;33(5):e13780.

Savoure M, Bousquet J, Leynaert B, et al. Rhinitis phenotypes and multimorbidities in the general population Constances cohort. Eur Respir J. 2023;61(2):2200943.

Sousa-Pinto B, Schunemann HJ, Sa-Sousa A, et al. Comparison of rhinitis treatments using MASK-air(R) data and considering the minimal important difference. Allergy. 2022;77(10):3002-3014.

Bedard A, Basagana X, Anto JM, et al. Mobile technology offers novel insights into the control and treatment of allergic rhinitis: the MASK study. J Allergy Clin Immunol. 2019;144(1):135-143.

Sousa-Pinto B, Sa-Sousa A, Vieira RJ, et al. Behavioural patterns in allergic rhinitis medication in Europe: a study using MASK-air((R)) real-world data. Allergy. 2022;77:2699-2711.

Belgrave DC, Granell R, Simpson A, et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11(10):e1001748.

Renert-Yuval Y, Del Duca E, Pavel AB, et al. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J Allergy Clin Immunol. 2021;148(1):148-163.

Bjorksten F, Suoniemi I, Koski V. Neonatal birch-pollen contact and subsequent allergy to birch pollen. Clin Allergy. 1980;10(5):585-591.

Graf N, Johansen P, Schindler C, et al. Analysis of the relationship between pollinosis and date of birth in Switzerland. Int Arch Allergy Immunol. 2007;143(4):269-275.

Kihlstrom A, Lilja G, Pershagen G, Hedlin G. Exposure to birch pollen in infancy and development of atopic disease in childhood. J Allergy Clin Immunol. 2002;110(1):78-84.

Aalberse RC, Nieuwenhuys EJ, Hey M, Stapel SO. 'Horoscope effect' not only for seasonal but also for non-seasonal allergens. Clin Exp Allergy. 1992;22(11):1003-1006.

Schafer T, Przybilla B, Ring J, Kunz B, Greif A, Uberla K. Manifestation of atopy is not related to patient's month of birth. Allergy. 1993;48(4):291-294.

Peterson B, Saxon A. Global increases in allergic respiratory disease: the possible role of diesel exhaust particles. Ann Allergy Asthma Immunol. 1996;77(4):263-268.

Ohtani T, Nakagawa S, Kurosawa M, Mizuashi M, Ozawa M, Aiba S. Cellular basis of the role of diesel exhaust particles in inducing Th2-dominant response. J Immunol. 2005;174(4):2412-2419.

Llop-Guevara A, Chu DK, Walker TD, et al. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLoS One. 2014;9(2):e88714.

Han M, Rajput C, Hershenson MB. Rhinovirus attributes that contribute to asthma development. Immunol Allergy Clin North Am. 2019;39(3):345-359.

Niespodziana K, Stenberg-Hammar K, Papadopoulos NG, et al. Microarray technology may reveal the contribution of allergen exposure and rhinovirus infections as possible triggers for acute wheezing attacks in preschool children. Viruses. 2021;13(5). doi:10.3390/v13050915

Rajput C, Han M, Ishikawa T, et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front Immunol. 2021;12:649520.

Jackson DJ, Makrinioti H, Rana BM, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(12):1373-1382.

Werder RB, Ullah MA, Rahman MM, et al. Targeting the P2Y13 receptor suppresses IL-33 and HMGB1 release and ameliorates experimental asthma. Am J Respir Crit Care Med. 2022;205(3):300-312.

Al-Garawi A, Fattouh R, Botelho F, et al. Influenza a facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal Immunol. 2011;4(6):682-694.

Sahu U, Biswas D, Prajapati VK, Singh AK, Samant M, Khare P. Interleukin-17-a multifaceted cytokine in viral infections. J Cell Physiol. 2021;236(12):8000-8019.

Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev. 2017;278(1):116-130.

De Benedetto A, Kubo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132(3 Pt 2):949-963.

Tham EH, Leung DY. Mechanisms by which atopic dermatitis predisposes to food allergy and the atopic march. Allergy Asthma Immunol Res. 2019;11(1):4-15.

Sahiner UM, Layhadi JA, Golebski K, et al. Innate lymphoid cells: the missing part of a puzzle in food allergy. Allergy. 2021;76(7):2002-2016.

Imai Y. Interleukin-33 in atopic dermatitis. J Dermatol Sci. 2019;96(1):2-7.

Roesner LM, Werfel T, Heratizadeh A. The adaptive immune system in atopic dermatitis and implications on therapy. Expert Rev Clin Immunol. 2016;12(7):787-796.

Sorensen M, Klingenberg C, Wickman M, et al. Staphylococcus aureus enterotoxin-sensitization is associated with allergic poly-sensitization and allergic multimorbidity in adolescents. Allergy. 2017;72:1548-1555.

Al Kindi A, Williams H, Matsuda K, et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33. J Allergy Clin Immunol. 2021;147(4):1354-1368.

Smole U, Gour N, Phelan J, et al. Serum amyloid a is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol. 2020;21(7):756-765.

Abdel-Gadir A, Stephen-Victor E, Gerber GK, et al. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat Med. 2019;25(7):1164-1174.

Cephus JY, Stier MT, Fuseini H, et al. Testosterone attenuates group 2 innate lymphoid cell-mediated airway inflammation. Cell Rep. 2017;21(9):2487-2499.

Laffont S, Blanquart E, Guery JC. Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol. 2017;8:1069.

Cephus JY, Gandhi VD, Shah R, et al. Estrogen receptor-alpha signaling increases allergen-induced IL-33 release and airway inflammation. Allergy. 2021;76(1):255-268.

Gandhi VD, Cephus JY, Norlander AE, et al. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest. 2022;132(4):e153397.

Munoz X, Barreiro E, Bustamante V, Lopez-Campos JL, Gonzalez-Barcala FJ, Cruz MJ. Diesel exhausts particles: their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci Total Environ. 2019;652:1129-1138.

Sposato B, Liccardi G, Russo M, et al. Cypress pollen: an unexpected major sensitizing agent in different regions of Italy. J Investig Allergol Clin Immunol. 2014;24(1):23-28.

Asero R. Birch and ragweed pollinosis north of Milan: a model to investigate the effects of exposure to "new" airborne allergens. Allergy. 2002;57(11):1063-1066.

Asero R. Ragweed allergy in northern Italy: are patterns of sensitization changing? Eur Ann Allergy Clin Immunol. 2012;44(4):157-159.

Caimmi D, Raschetti R, Pons P, et al. Epidemiology of cypress pollen allergy in Montpellier. J Investig Allergol Clin Immunol. 2012;22(4):280-285.

Anto JM, Sunyer J, Rodriguez-Roisin R, Suarez-Cervera M, Vazquez L. Community outbreaks of asthma associated with inhalation of soybean dust. Toxicoepidemiological committee. N Engl J Med. 1989;320(17):1097-1102.

Synek M, Anto JM, Beasley R, et al. Immunopathology of fatal soybean dust-induced asthma. Eur Respir J. 1996;9(1):54-57.

Poposki JA, Klingler AI, Stevens WW, et al. Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022;149(5):1666-1674.

Delemarre T, Bochner BS, Simon HU, Bachert C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J Allergy Clin Immunol. 2021;148(2):327-335.

Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S. Monoclonal antibodies and airway diseases. Int J Mol Sci. 2020;21(24):9477.

Sintobin I, Siroux V, Holtappels G, et al. Sensitisation to staphylococcal enterotoxins and asthma severity: a longitudinal study in the EGEA cohort. Eur Respir J. 2019;54(3):1900198.

Bachert C, van Steen K, Zhang N, et al. Specific IgE against Staphylococcus aureus enterotoxins: an independent risk factor for asthma. J Allergy Clin Immunol. 2012;130(2):376-381.

Bachert C, Humbert M, Hanania NA, et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J. 2020;55(4):1901592.

Krysko O, Teufelberger A, Van Nevel S, Krysko DV, Bachert C. Protease/antiprotease network in allergy: the role of Staphylococcus aureus protease-like proteins. Allergy. 2019;74(11):2077-2086.

Teufelberger AR, Broker BM, Krysko DV, Bachert C, Krysko O. Staphylococcus aureus orchestrates type 2 airway diseases. Trends Mol Med. 2019;25(8):696-707.

Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022;149(5):1491-1503.

Huang K, Li F, Wang X, et al. Clinical and cytokine patterns of uncontrolled asthma with and without comorbid chronic rhinosinusitis: a cross-sectional study. Respir Res. 2022;23(1):119.

Eid R, Yan CH, Stevens W, Doherty TA, Borish L. Innate immune cell dysregulation drives inflammation and disease in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2021;148(2):309-318.

Knudgaard MH, Andreasen TH, Ravnborg N, et al. Rhinitis prevalence and association with atopic dermatitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2021;127(1):49-56.

Deacy AM, Gan SK, Derrick JP. Superantigen recognition and interactions: functions, mechanisms and applications. Front Immunol. 2021;12:731845.

Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med. 2018;198(4):452-463.

Tang HHF, Lang A, Teo SM, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J Allergy Clin Immunol. 2021;147(5):1683-1691.

Leyva-Castillo JM, Geha RS. Cutaneous type 2 innate lymphoid cells come in distinct flavors. JID Innov. 2021;1(3):100059.

Chu DK, Jimenez-Saiz R, Verschoor CP, et al. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J Exp Med. 2014;211(8):1657-1672.

Chu DK, Llop-Guevara A, Walker TD, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131(1):187-200.

Liew KY, Koh SK, Hooi SL, et al. Rhinovirus-induced cytokine alterations with potential implications in asthma exacerbations: a systematic review and meta-analysis. Front Immunol. 2022;13:782936.

Murdaca G, Paladin F, Tonacci A, et al. Involvement of Il-33 in the pathogenesis and prognosis of major respiratory viral infections: future perspectives for personalized therapy. Biomedicine. 2022;10(3):715.

Suzuki M, Cooksley C, Suzuki T, et al. TLR signals in epithelial cells in the nasal cavity and paranasal sinuses. Front Allergy. 2021;2:780425.

Henmyr V, Carlberg D, Manderstedt E, et al. Genetic variation of the toll-like receptors in a Swedish allergic rhinitis case population. BMC Med Genet. 2017;18(1):18.

Henmyr V, Lind-Hallden C, Carlberg D, et al. Characterization of genetic variation in TLR8 in relation to allergic rhinitis. Allergy. 2016;71(3):333-341.

Fuertes E, Brauer M, MacIntyre E, et al. Childhood allergic rhinitis, traffic-related air pollution, and variability in the GSTP1, TNF, TLR2, and TLR4 genes: results from the TAG study. J Allergy Clin Immunol. 2013;132(2):342-352. e342.

Arebro J, Ekstedt S, Hjalmarsson E, Winqvist O, Kumlien Georen S, Cardell LO. A possible role for neutrophils in allergic rhinitis revealed after cellular subclassification. Sci Rep. 2017;7:43568.

Malizia V, Ferrante G, Cilluffo G, et al. Endotyping seasonal allergic rhinitis in children: a cluster analysis. Front Med (Lausanne). 2021;8:806911.

Brightling CE, Nair P, Cousins DJ, Louis R, Singh D. Risankizumab in severe asthma - a phase 2a, placebo-controlled trial. N Engl J Med. 2021;385(18):1669-1679.

Stein MM, Hrusch CL, Gozdz J, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375(5):411-421.

Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701-709.

House JS, Wyss AB, Hoppin JA, et al. Early-life farm exposures and adult asthma and atopy in the agricultural lung health study. J Allergy Clin Immunol. 2017;140(1):249-256. e214.

von Hertzen LC, Laatikainen T, Pennanen S, Makela MJ, Haahtela T. Karelian allergy study G. is house dust mite monosensitization associated with clinical disease? Allergy. 2008;63(3):379-381.

Matsushita K, Yoshimoto T. B cell-intrinsic MyD88 signaling is essential for IgE responses in lungs exposed to pollen allergens. J Immunol. 2014;193(12):5791-5800.

Ruokolainen L, Fyhrquist N, Laatikainen T, et al. Immune-microbiota interaction in Finnish and Russian Karelia young people with high and low allergy prevalence. Clin Exp Allergy. 2020;50(10):1148-1158.

Ruokolainen L, Paalanen L, Karkman A, et al. Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clin Exp Allergy. 2017;47(5):665-674.

Wisgrill L, Fyhrquist N, Ndika J, et al. Bet v 1 triggers antiviral-type immune signalling in birch-pollen-allergic individuals. Clin Exp Allergy. 2022;52:929-941.

Ndika J, Karisola P, Lahti V, et al. Epigenetic differences in long non-coding RNA expression in Finnish and Russian Karelia teenagers with contrasting risk of allergy and asthma. Front Allergy. 2022;3:878862.

Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10(2):103-110.

Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine. 2017;100:1-10.

Johnson AN, Harkema JR, Nelson AJ, et al. MyD88 regulates a prolonged adaptation response to environmental dust exposure-induced lung disease. Respir Res. 2020;21(1):97.

Pawar S, Feehley T, Nagler C. Commensal bacteria-induced MyD88 signaling regulates intestinal permeability to food allergen via anti-microbial peptide and mucin production (MUC9P.741). J Immunol. 2015;194:205.

Stephen-Victor E, Crestani E, Chatila TA. Dietary and microbial determinants in food allergy. Immunity. 2020;53(2):277-289.

Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154-168.

Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity and microbiome. Oral Dis. 2017;23(7):854-865.

Majumder S, McGeachy MJ. IL-17 in the pathogenesis of disease: Good intentions gone awry. Annu Rev Immunol. 2021;39:537-556.

Palmieri V, Ebel JF, Ngo Thi Phuong N, et al. Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity. Mucosal Immunol. 2021;14(4):923-936.

Segata N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr Biol. 2015;25(14):R611-R613.

Bibbo S, Ianiro G, Giorgio V, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20(22):4742-4749.

Vangay P, Johnson AJ, Ward TL, et al. US immigration westernizes the human gut microbiome. Cell. 2018;175(4):962-972.

Zuo T, Kamm MA, Colombel JF, Ng SC. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2018;15(7):440-452.

Wilson AS, Koller KR, Ramaboli MC, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020;65(3):723-740.

Bostock J. Case of a periodical affection of the eyes and the chest. Med Surg Trans London. 1819;xiv:161-166.

Roslund MI, Parajuli A, Hui N, et al. A placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol Environ Saf. 2022;242:113900.

Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal gammadelta T cells. Cell Rep. 2021;36(1):109332.

Li M, van Esch B, Henricks PAJ, Garssen J, Folkerts G. IL-33 is involved in the anti-inflammatory effects of butyrate and propionate on TNFalpha-activated endothelial cells. Int J Mol Sci. 2021;22(5):2447.

Capucilli P, Cianferoni A, Grundmeier RW, Spergel JM. Comparison of comorbid diagnoses in children with and without eosinophilic esophagitis in a large population. Ann Allergy Asthma Immunol. 2018;121(6):711-716.

Mannion JM, McLoughlin RM, Lalor SJ. The airway microbiome-IL-17 Axis: a critical regulator of chronic inflammatory disease. Clin Rev Allergy Immunol. 2022. doi:10.1007/s12016-022-08928-y

Ritzmann F, Beisswenger C. Preclinical studies and the function of IL-17 cytokines in COPD. Ann Anat. 2021;237:151729.

Chen J, Liu X, Zhong Y. Interleukin-17A: the key cytokine in neurodegenerative diseases. Front Aging Neurosci. 2020;12:566922.

Yuan C. IL-33 in autoimmunity; possible therapeutic target. Int Immunopharmacol. 2022;108:108887.

Zhao Q, Xiao X, Wu Y, et al. Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol. 2011;41(8):2314-2322.

Hofmann MA, Kiecker F, Zuberbier T. A systematic review of the role of interleukin-17 and the interleukin-20 family in inflammatory allergic skin diseases. Curr Opin Allergy Clin Immunol. 2016;16(5):451-457.

Paira DA, Silvera-Ruiz S, Tissera A, et al. Interferon gamma, IL-17, and IL-1beta impair sperm motility and viability and induce sperm apoptosis. Cytokine. 2022;152:155834.

Crosby DA, Glover LE, Brennan EP, et al. Dysregulation of the interleukin-17A pathway in endometrial tissue from women with unexplained infertility affects pregnancy outcome following assisted reproductive treatment. Hum Reprod. 2020;35(8):1875-1888.

Pandolfo G, Genovese G, Casciaro M, et al. IL-33 in Mental Disorders. Medicina (Kaunas). 2021;57(4):315.

Kato T, Yasuda K, Matsushita K, et al. Interleukin-1/−33 signaling pathways as therapeutic targets for endometriosis. Front Immunol. 2019;10:2021.

Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019;129(4):1493-1503.

Wang X, Zhang N, Bo M, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344-1353.

Wang M, Zhang N, Zheng M, et al. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2019;144(5):1254-1264.

Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory Endotypes and clinical presentations in chronic Rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7(8):2812-2820.

Wang M, Zhang Y, Han D, Zhang L. Association between polymorphisms in cytokine genes IL-17A and IL-17F and development of allergic rhinitis and comorbid asthma in Chinese subjects. Hum Immunol. 2012;73(6):647-653.

Chanoine S, Sanchez M, Pin I, et al. Multimorbidity medications and poor asthma prognosis. Eur Respir J. 2018;51(4):1702114.

Roman-Rodriguez M, Kaplan A. GOLD 2021 strategy report: implications for asthma-COPD overlap. Int J Chron Obstruct Pulmon Dis. 2021;16:1709-1715.

Eberl G. Immunity by equilibrium. Nat Rev Immunol. 2016;16(8):524-532.

Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-1353.

Vignola AM, Chanez P, Godard P, Bousquet J. Relationships between rhinitis and asthma. Allergy. 1998;53(9):833-839.

Bousquet J, Burney PG, Zuberbier T, et al. GA2LEN (global allergy and asthma European network) addresses the allergy and asthma 'epidemic'. Allergy. 2009;64(7):969-977.

Bousquet J, Anto JM, Bachert C, et al. Factors responsible for differences between asymptomatic subjects and patients presenting an IgE sensitization to allergens. A GALEN Project. Allergy. 2006;61(6):671-680.

Bousquet J, Bedbrook A, Czarlewski W, et al. Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma. Clin Transl Allergy. 2019;9:16.

Westman M, Lupinek C, Bousquet J, et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J Allergy Clin Immunol. 2015;135(5):1199-1206.

Havstad S, Johnson CC, Kim H, et al. Atopic phenotypes identified with latent class analyses at age 2 years. J Allergy Clin Immunol. 2014;134(3):722-727.

Westman M, Aberg K, Apostolovic D, et al. Sensitization to grass pollen allergen molecules in a birth cohort-natural Phl p 4 as an early indicator of grass pollen allergy. J Allergy Clin Immunol. 2020;145:1174-1181.

Bougas N, Just J, Beydon N, et al. Unsupervised trajectories of respiratory/allergic symptoms throughout childhood in the PARIS cohort. Pediatr Allergy Immunol. 2019;30(3):315-324.

Custovic A, Sonntag HJ, Buchan IE, Belgrave D, Simpson A, Prosperi MC. Evolution pathways of IgE responses to grass and mite allergens throughout childhood. J Allergy Clin Immunol. 2015;136(6):1645-1652.

Tang HH, Teo SM, Belgrave DC, et al. Trajectories of childhood immune development and respiratory health relevant to asthma and allergy. Elife. 2018;7. doi:10.7554/eLife.35856

Posa D, Perna S, Resch Y, et al. Evolution and predictive value of IgE responses toward a comprehensive panel of house dust mite allergens during the first 2 decades of life. J Allergy Clin Immunol. 2017;139(2):541-549.

Garden FL, Simpson JM, Marks GB, Investigators C. Atopy phenotypes in the childhood asthma prevention study (CAPS) cohort and the relationship with allergic disease: clinical mechanisms in allergic disease. Clin Exp Allergy. 2013;43(6):633-641.

Havstad SL, Sitarik A, Kim H, et al. Increased risk of asthma at age 10 years for children sensitized to multiple allergens. Ann Allergy Asthma Immunol. 2021;127(4):441-445.

Lazic N, Roberts G, Custovic A, et al. Multiple atopy phenotypes and their associations with asthma: similar findings from two birth cohorts. Allergy. 2013;68(6):764-770.

Rodriguez-Martinez CE, Sossa-Briceno MP, Castro-Rodriguez JA. Factors predicting persistence of early wheezing through childhood and adolescence: a systematic review of the literature. J Asthma Allergy. 2017;10:83-98.

Haahtela T, Laatikainen T, Alenius H, et al. Hunt for the origin of allergy - comparing the Finnish and Russian Karelia. Clin Exp Allergy. 2015;45(5):891-901.

Ke S, Weiss ST, Liu YY. Rejuvenating the human gut microbiome. Trends Mol Med. 2022;28(8):619-630.

McSorley HJ, Smyth DJ. IL-33: a central cytokine in helminth infections. Semin Immunol. 2021;53:101532.

Hung LY, Tanaka Y, Herbine K, et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol. 2020;5(53). doi:10.1126/sciimmunol.abc6259

Rajasekaran S, Anuradha R, Bethunaickan R. TLR specific immune responses against helminth infections. J Parasitol Res. 2017;2017:6865789.

Chung SH, Ye XQ, Iwakura Y. Interleukin-17 family members in health and disease. Int Immunol. 2021;33(12):723-729.

Wen TH, Tsai KW, Wu YJ, Liao MT, Lu KC, Hu WC. The framework for human host immune responses to four types of parasitic infections and relevant key JAK/STAT signaling. Int J Mol Sci. 2021;22(24). doi:10.3390/ijms222413310

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...