• This record comes from PubMed

Why is manganese so valuable to bacterial pathogens?

. 2023 ; 13 () : 943390. [epub] 20230203

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.

See more in PubMed

Abbouni B., Oehlmann W., Stolle P., Pierik A. J., Auling G. (2009). Electron paramagnetic resonance (EPR) spectroscopy of the stable-free radical in the native metallo-cofactor of the manganese-ribonucleotide reductase (Mn-RNR) of Corynebacterium glutamicum . Free Radic. Res. 43 (10), 943–950. doi: 10.1080/10715760903140568 PubMed DOI

Adjogatse E., Erskine P., Wells S. A., Kelly J. M., Wilden J. D., Chan A. W. E., et al. . (2018). Structure and function of L-threonine-3-dehydrogenase from the parasitic protozoan Trypanosoma brucei revealed by X-ray crystallography and geometric simulations. Acta Crystallogr. D Struct. Biol. 74 (Pt 9), 861–876. doi: 10.1107/s2059798318009208 PubMed DOI

Afonyushkin T., Vecerek B., Moll I., Blasi U., Kaberdin V. R. (2005). Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res. 33 (5), 1678–1689. doi: 10.1093/nar/gki313 PubMed DOI PMC

Aguirre J. D., Clark H. M., McIlvin M., Vazquez C., Palmere S. L., Grab D. J., et al. . (2013). A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi . J. Biol. Chem. 288 (12), 8468–8478. doi: 10.1074/jbc.M112.433540 PubMed DOI PMC

Aguirre J. D., Culotta V. C. (2012). Battles with iron: manganese in oxidative stress protection. J. Biol. Chem. 287 (17), 13541–13548. doi: 10.1074/jbc.R111.312181 PubMed DOI PMC

Akana J., Fedorov A. A., Fedorov E., Novak W. R., Babbitt P. C., Almo S. C., et al. . (2006). D-ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily. Biochemistry 45 (8), 2493–2503. doi: 10.1021/bi052474m PubMed DOI

Alker W., Haase H. (2018). Zinc and sepsis. Nutrients 10 (8), 976. doi: 10.3390/nu10080976 PubMed DOI PMC

Al-Maghrebi M., Fridovich I., Benov L. (2002). Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli . Arch. Biochem. Biophys. 402 (1), 104–109. doi: 10.1016/S0003-9861(02)00065-6 PubMed DOI

Alqurashi A., Alfs L., Swann J., Butt J. N., Kelly D. J. (2021). The flavodoxin FldA activates the class Ia ribonucleotide reductase of Campylobacter jejuni . Mol. Microbiol. 116 (1), 343–358. doi: 10.1111/mmi.14715 PubMed DOI

Altuvia S., Almiron M., Huisman G., Kolter R., Storz G. (1994). The dps promoter is activated by OxyR during growth and by IHF and σ S in stationary phase. Mol. Microbiol. 13 (2), 265–272. doi: 10.1111/j.1365-2958.1994.tb00421.x PubMed DOI

Anbar A. D. (2008). Oceans. elements and evolution. Science 322 (5907), 1481–1483. doi: 10.1126/science.1163100 PubMed DOI

Andersson C. S., Hogbom M. (2009). A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold. Proc. Natl. Acad. Sci. U.S.A. 106 (14), 5633–5638. doi: 10.1073/pnas.0812971106 PubMed DOI PMC

Andreini C., Bertini I., Cavallaro G., Holliday G. L., Thornton J. M. (2008). Metal ions in biological catalysis: from enzyme databases to general principles. JBIC J. Biol. Inorganic Chem. 13 (8), 1205–1218. doi: 10.1007/s00775-008-0404-5 PubMed DOI

Anjem A., Imlay J. A. (2012). Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J. Biol. Chem. 287 (19), 15544–15556. doi: 10.1074/jbc.M111.330365 PubMed DOI PMC

Anjem A., Varghese S., Imlay J. A. (2009). Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli . Mol. Microbiol. 72 (4), 844–858. doi: 10.1111/j.1365-2958.2009.06699.x PubMed DOI PMC

Aono R., Sato T., Imanaka T., Atomi H. (2015). A pentose bisphosphate pathway for nucleoside degradation in archaea. Nat. Chem. Biol. 11 (5), 355–360. doi: 10.1038/nchembio.1786 PubMed DOI

Archibald F. S., Duong M. N. (1984). Manganese acquisition by Lactobacillus plantarum . J. Bacteriol 158 (1), 1–8. doi: 10.1128/jb.158.1.1-8.1984 PubMed DOI PMC

Archibald F. S., Duong M. N. (1986). Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria . Infect. Immun. 51 (2), 631–641. doi: 10.1128/iai.51.2.631-641.1986 PubMed DOI PMC

Archibald F. S., Fridovich I. (1981). Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol 146 (3), 928–936. doi: 10.1128/jb.146.3.928-936.1981 PubMed DOI PMC

Atack J. M., Kelly D. J. (2009). Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiol. 4 (6), 677–690. doi: 10.2217/fmb.09.44 PubMed DOI

Atta M., Nordlund P., Aberg A., Eklund H., Fontecave M. (1992). Substitution of manganese for iron in ribonucleotide reductase from Escherichia coli. Spectroscopic and crystallographic characterization. J. Biol. Chem. 267 (29), 20682–20688. doi: 10.1016/S0021-9258(19)36739-0 PubMed DOI

Auld D. S., Bergman T. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families : The role of zinc for alcohol dehydrogenase structure and function. Cell Mol. Life Sci. 65 (24), 3961–3970. doi: 10.1007/s00018-008-8593-1 PubMed DOI PMC

Babcock G. T., Wikstrom M. (1992). Oxygen activation and the conservation of energy in cell respiration. Nature 356 (6367), 301–309. doi: 10.1038/356301a0 PubMed DOI

Bakshi C. S., Malik M., Regan K., Melendez J. A., Metzger D. W., Pavlov V. M., et al. . (2006). Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence. J. Bacteriol 188 (17), 6443–6448. doi: 10.1128/JB.00266-06 PubMed DOI PMC

Banci L., Bertini I., Calderone V., Cramaro F., Del Conte R., Fantoni A., et al. . (2005). A prokaryotic superoxide dismutase paralog lacking two Cu ligands: from largely unstructured in solution to ordered in the crystal. Proc. Natl. Acad. Sci. U.S.A. 102 (21), 7541–7546. doi: 10.1073/pnas.0502450102 PubMed DOI PMC

Barber J. (2017). A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 3, 17041. doi: 10.1038/nplants.2017.41 PubMed DOI

Barnese K., Gralla E. B., Valentine J. S., Cabelli D. E. (2012). Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proc. Natl. Acad. Sci. U.S.A. 109 (18), 6892–6897. doi: 10.1073/pnas.1203051109 PubMed DOI PMC

Barwinska-Sendra A., Garcia Y. M., Sendra K. M., Basle A., Mackenzie E. S., Tarrant E., et al. . (2020). An evolutionary path to altered cofactor specificity in a metalloenzyme. Nat. Commun. 11 (1). doi: 10.1038/s41467-020-16478-0 PubMed DOI PMC

Bashir Q., Rashid N., Jamil F., Imanaka T., Akhtar M. (2009). Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis . J. Biochem. 146 (1), 95–102. doi: 10.1093/jb/mvp051 PubMed DOI

Beaman B. L., Scates S. M., Moring S. E., Deem R., Misra H. P. (1983). Purification and properties of a unique superoxide dismutase from Nocardia asteroides . J. Biol. Chem. 258 (1), 91–96. doi: 10.1016/S0021-9258(18)33224-1 PubMed DOI

Beauchene N. A., Mettert E. L., Moore L. J., Keles S., Willey E. R., Kiley P. J. (2017). O2 availability impacts iron homeostasis in Escherichia coli . Proc. Natl. Acad. Sci. U.S.A. 114 (46), 12261–12266. doi: 10.1073/pnas.1707189114 PubMed DOI PMC

Becker A., Schlichting I., Kabsch W., Groche D., Schultz S., Wagner A. (1998). Iron center, substrate recognition and mechanism of peptide deformylase. Nat. Struct. Biol. 5 (12), 1053–1058. doi: 10.1038/4162 PubMed DOI

Beckman J. S., Koppenol W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271 (5 Pt 1), C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424 PubMed DOI

Behnsen J., Zhi H., Aron A. T., Subramanian V., Santus W., Lee M. H., et al. . (2021). Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat. Commun. 12 (1), 7016. doi: 10.1038/s41467-021-27297-2 PubMed DOI PMC

Bellapadrona G., Ardini M., Ceci P., Stefanini S., Chiancone E. (2010). Dps proteins prevent Fenton-mediated oxidative damage by trapping hydroxyl radicals within the protein shell. Free Radical Biol. Med. 48 (2), 292–297. doi: 10.1016/j.freeradbiomed.2009.10.053 PubMed DOI

Benov L. (2001). How superoxide radical damages the cell. Protoplasma 217 (1-3), 33–36. doi: 10.1007/BF01289410 PubMed DOI

Besold A. N., Culbertson E. M., Culotta V. C. (2016). The yin and yang of copper during infection. J. Biol. Inorg Chem. 21 (2), 137–144. doi: 10.1007/s00775-016-1335-1 PubMed DOI PMC

Besold A. N., Gilston B. A., Radin J. N., Ramsoomair C., Culbertson E. M., Li C. X., et al. . (2018). Role of calprotectin in withholding zinc and copper from Candida albicans . Infect. Immun. 86 (2). doi: 10.1128/IAI.00779-17 PubMed DOI PMC

Beyer W. F., Fridovich I. (1991). In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli . J. Biol. Chem. 266 (1), 303–308. doi: 10.1016/S0021-9258(18)52435-2 PubMed DOI

Blaesi E. J., Palowitch G. M., Hu K., Kim A. J., Rose H. R., Alapati R., et al. . (2018). Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. Proc. Natl. Acad. Sci. 115 (40), 10022. doi: 10.1073/pnas.1811993115 PubMed DOI PMC

Boal A. K., Cotruvo J. A., Jr., Stubbe J., Rosenzweig A. C. (2010). Structural basis for activation of class Ib ribonucleotide reductase. Science 329 (5998), 1526–1530. doi: 10.1126/science.1190187 PubMed DOI PMC

Bollinger J. M., Chen S., Parkin S. E., Mangravite L. M., Ley B. A., Edmondson D. E., et al. . (1997). Differential iron (II) affinity of the sites of the diiron cluster in protein R2 of Escherichia coli ribonucleotide reductase: Tracking the individual sites through the O2 activation sequence. J. Am. Chem. Soc. 119 (25), 5976–5977. doi: 10.1021/ja970319s DOI

Bosma E. F., Rau M. H., van Gijtenbeek L. A., Siedler S. (2021). Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol. Rev. 45 (6). doi: 10.1093/femsre/fuab028 PubMed DOI PMC

Botella H., Peyron P., Levillain F., Poincloux R., Poquet Y., Brandli I., et al. . (2011). Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10 (3), 248–259. doi: 10.1016/j.chom.2011.08.006 PubMed DOI PMC

Boyer E., Bergevin I., Malo D., Gros P., Cellier M. F. (2002). Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 70 (11), 6032–6042. doi: 10.1128/IAI.70.11.6032-6042.2002 PubMed DOI PMC

Bradley J. M., Svistunenko D. A., Wilson M. T., Hemmings A. M., Moore G. R., Le Brun N. E. (2020). Bacterial iron detoxification at the molecular level. J. Biol. Chem. 295 (51), 17602–17623. doi: 10.1074/jbc.REV120.007746 PubMed DOI PMC

Brandenburg F., Schoffman H., Kurz S., Krämer U., Keren N., Weber A. P. M., et al. . (2017). The Synechocystis manganese exporter Mnx is essential for manganese homeostasis in cyanobacteria. Plant Physiol. 173 (3), 1798–1810. doi: 10.1104/pp.16.01895 PubMed DOI PMC

Breckau D., Mahlitz E., Sauerwald A., Layer G., Jahn D. (2003). Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J. Biol. Chem. 278 (47), 46625–46631. doi: 10.1074/jbc.M308553200 PubMed DOI

Britton L., Malinowski D. P., Fridovich I. (1978). Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms. J. Bacteriol 134 (1), 229–236. doi: 10.1128/jb.134.1.229-236.1978 PubMed DOI PMC

Brophy M. B., Nakashige T. G., Gaillard A., Nolan E. M. (2013). Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J. Am. Chem. Soc. 135 (47), 17804–17817. doi: 10.1021/ja407147d PubMed DOI PMC

Bunting K., Cooper J. B., Badasso M. O., Tickle I. J., Newton M., Wood S. P., et al. . (1998). Engineering a change in metal-ion specificity of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis– X-ray structure analysis of site-directed mutants. Eur. J. Biochem. 251 (3), 795–803. doi: 10.1046/j.1432-1327.1998.2510795.x PubMed DOI

Capek J., Prochazkova I., Matousek T., Hot D., Vecerek B. (2021). A unique reverse adaptation mechanism assists Bordetella pertussis in resistance to both scarcity and toxicity of manganese. mBio 12 (5), e0190221. doi: 10.1128/mBio.01902-21 PubMed DOI PMC

Carlioz A., Touati D. (1986). Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5 (3), 623–630. doi: 10.1002/j.1460-2075.1986.tb04256.x PubMed DOI PMC

Caruthers J., Bosch J., Buckner F., Van Voorhis W., Myler P., Worthey E., et al. . (2006). Structure of a ribulose 5-phosphate 3-epimerase from Plasmodium falciparum . Proteins 62 (2), 338–342. doi: 10.1002/prot.20764 PubMed DOI

Case A. J. (2017). On the origin of superoxide dismutase: An evolutionary perspective of superoxide-mediated redox signaling. Antioxidants (Basel) 6 (4). doi: 10.3390/antiox6040082 PubMed DOI PMC

Cellier M. F., Bergevin I., Boyer E., Richer E. (2001). Polyphyletic origins of bacterial Nramp transporters. Trends Genet. 17 (7), 365–370. doi: 10.1016/s0168-9525(01)02364-2 PubMed DOI

Cellier M. F., Courville P., Campion C. (2007). Nramp1 phagocyte intracellular metal withdrawal defense. Microbes infection 9 (14-15), 1662–1670. doi: 10.1016/j.micinf.2007.09.006 PubMed DOI

Chan M. K., Gong W., Rajagopalan P. T., Hao B., Tsai C. M., Pei D. (1997). Crystal structure of the Escherichia coli peptide deformylase. Biochemistry 36 (45), 13904–13909. doi: 10.1021/bi9711543 PubMed DOI

Charney J., Fisher W. P., Hegarty C. P. (1951). Managanese as an essential element for sporulation in the genus Bacillus . J. bacteriology 62 (2), 145–148. doi: 10.1128/jb.62.2.145-148.1951 PubMed DOI PMC

Chen L., Helmann J. D. (1995). Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol. Microbiol. 18 (2), 295–300. doi: 10.1111/j.1365-2958.1995.mmi_18020295.x PubMed DOI

Christodoulou D., Link H., Fuhrer T., Kochanowski K., Gerosa L., Sauer U. (2018). Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress. Cell Syst. 6 (5), 569–578.e567. doi: 10.1016/j.cels.2018.04.009 PubMed DOI

Clohessy P. A., Golden B. E. (1995). Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand. J. Immunol. 42 (5), 551–556. doi: 10.1111/j.1365-3083.1995.tb03695.x PubMed DOI

Corbin B. D., Seeley E. H., Raab A., Feldmann J., Miller M. R., Torres V. J., et al. . (2008). Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319 (5865), 962–965. doi: 10.1126/science.1152449 PubMed DOI

Cotruvo J. A., Jr., Stich T. A., Britt R. D., Stubbe J. (2013). Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. J. Am. Chem. Soc. 135 (10), 4027–4039. doi: 10.1021/ja312457t PubMed DOI PMC

Cotruvo J. A., Jr., Stubbe J. (2010). An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry 49 (6), 1297–1309. doi: 10.1021/bi902106n PubMed DOI PMC

Cotruvo J. A., Stubbe J. (2011). Escherichia coli class Ib ribonucleotide reductase contains a Dimanganese(III)-tyrosyl radical cofactor in vivo. Biochemistry 50 (10), 1672–1681. doi: 10.1021/bi101881d PubMed DOI PMC

Cotruvo J. A., Jr., Stubbe J. (2012). Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 4 (10), 1020–1036. doi: 10.1039/c2mt20142a PubMed DOI PMC

Cox N., Ogata H., Stolle P., Reijerse E., Auling G., Lubitz W. (2010). A tyrosyl–dimanganese coupled spin system is the native metalloradical cofactor of the R2F subunit of the ribonucleotide reductase of Corynebacterium ammoniagenes . J. Am. Chem. Soc. 132 (32), 11197–11213. doi: 10.1021/ja1036995 PubMed DOI

Cross P. J., Pietersma A. L., Allison T. M., Wilson-Coutts S. M., Cochrane F. C., Parker E. J. (2013). Neisseria meningitidis expresses a single 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine. Protein Sci. 22 (8), 1087–1099. doi: 10.1002/pro.2293 PubMed DOI PMC

Cubillas C., Vinuesa P., Luisa Tabche M., Dávalos A., Vázquez A., Hernández-Lucas I., et al. . (2014). The cation diffusion facilitator protein EmfA of Rhizobium etli belongs to a novel subfamily of Mn2+/Fe2+ transporters conserved in α-proteobacteria. Metallomics 6 (10), 1808–1815. doi: 10.1039/C4MT00135D PubMed DOI

Cybulski R. J., Jr., Sanz P., Alem F., Stibitz S., Bull R. L., O'Brien A. D. (2009). Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect. Immun. 77 (1), 274–285. doi: 10.1128/IAI.00515-08 PubMed DOI PMC

Dailey H. A. (1987). Metal inhibition of ferrochelatase. Ann. N Y Acad. Sci. 514, 81–86. doi: 10.1111/j.1749-6632.1987.tb48763.x PubMed DOI

Dale I., Fagerhol M. K., Naesgaard I. (1983). Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur. J. Biochem. 134 (1), 1–6. doi: 10.1111/j.1432-1033.1983.tb07522.x PubMed DOI

Daly M. J., Gaidamakova E. K., Matrosova V. Y., Kiang J. G., Fukumoto R., Lee D. Y., et al. . (2010). Small-molecule antioxidant proteome-shields in Deinococcus radiodurans . PloS One 5 (9), e12570. doi: 10.1371/journal.pone.0012570 PubMed DOI PMC

Daly M. J., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Venkateswaran A., et al. . (2004). Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306 (5698), 1025–1028. doi: 10.1126/science.1103185 PubMed DOI

Davidsson L., Lönnerdal B., Sandström B., Kunz C., Keen C. L. (1989). Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J. Nutr. 119 (10), 1461–1464. doi: 10.1093/jn/119.10.1461 PubMed DOI

DeShazer D., Barnnan J. D., Moran M. J., Friedman R. L. (1994). Characterization of the gene encoding superoxide dismutase of Bordetella pertussis and construction of a SOD-deficient mutant. Gene 142 (1), 85–89. doi: 10.1016/0378-1119(94)90359-X PubMed DOI

De Vendittis A., Amato M., Mickniewicz A., Parlato G., De Angelis A., Castellano I., et al. . (2010). Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor. Mol. Biosyst. 6 (10), 1973–1982. doi: 10.1039/c003557b PubMed DOI

Diaz-Ochoa V. E., Lam D., Lee C. S., Klaus S., Behnsen J., Liu J. Z., et al. . (2016). Salmonella mitigates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe 19 (6), 814–825. doi: 10.1016/j.chom.2016.05.005 PubMed DOI PMC

Dosselaere F., Vanderleyden J. (2001). A metabolic node in action: Chorismate-utilizing enzymes in microorganisms. Crit. Rev. Microbiol. 27 (2), 75–131. doi: 10.1080/20014091096710 PubMed DOI

Duckworth O. W., Sposito G. (2005). Siderophore–Manganese(III) interactions. i. air-oxidation of Manganese(II) promoted by desferrioxamine B. Environ. Sci. Technol. 39 (16), 6037–6044. doi: 10.1021/es050275k PubMed DOI

Dudev T., Lim C. (2014). Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev. 114 (1), 538–556. doi: 10.1021/cr4004665 PubMed DOI

Edge R., Truscott T. G. (2018). Singlet oxygen and free radical reactions of retinoids and carotenoids-A review. Antioxidants (Basel) 7 (1). doi: 10.3390/antiox7010005 PubMed DOI PMC

Eijkelkamp B. A., Morey J. R., Ween M. P., Ong C. L., McEwan A. G., Paton J. C., et al. . (2014). Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae . PloS One 9 (2), e89427. doi: 10.1371/journal.pone.0089427 PubMed DOI PMC

El Shafey H. M., Ghanem S., Merkamm M., Guyonvarch A. (2008). Corynebacterium glutamicum superoxide dismutase is a manganese-strict non-cambialistic enzyme in vitro . Microbiol. Res. 163 (1), 80–86. doi: 10.1016/j.micres.2006.05.005 PubMed DOI

Epperly B. R., Dekker E. E. (1991). L-threonine dehydrogenase from Escherichia coli. Identification of an active site cysteine residue and metal ion studies. J. Biol. Chem. 266 (10), 6086–6092. doi: 10.1016/S0021-9258(18)38087-6 PubMed DOI

Eriksson M., Jordan A., Eklund H. (1998). Structure of Salmonella Typhimurium nrdF ribonucleotide reductase in its oxidized and reduced forms. Biochemistry 37 (38), 13359–13369. doi: 10.1021/bi981380s PubMed DOI

Ernst F. D., Homuth G., Stoof J., Mader U., Waidner B., Kuipers E. J., et al. . (2005). Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J. Bacteriol 187 (11), 3687–3692. doi: 10.1128/JB.187.11.3687-3692.2005 PubMed DOI PMC

Fagerhol M. K., Dale I., Anderson T. (1980). Release and quantitation of a leucocyte derived protein (L1). Scandinavian J. Haematology 24 (5), 393–398. doi: 10.1111/j.1600-0609.1980.tb02754.x DOI

Fanali G., Cao Y., Ascenzi P., Fasano M. (2012). Mn(II) binding to human serum albumin: A 1H-NMR relaxometric study. J. Inorganic Biochem. 117, 198–203. doi: 10.1016/j.jinorgbio.2012.08.013 PubMed DOI

Farkas E., Szabo O., Parajdi-Losonczi P. L., Balla G., Pocsi I. (2014). Mn(II)/Mn(III) and Fe(III) binding capability of two Aspergillus fumigatus siderophores, desferricrocin and N', N'', N'''-triacetylfusarinine C. J. Inorg Biochem. 139, 30–37. doi: 10.1016/j.jinorgbio.2014.06.005 PubMed DOI

Faulkner K. M., Stevens R. D., Fridovich I. (1994). Characterization of Mn(III) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity. Arch. Biochem. Biophysics 310 (2), 341–346. doi: 10.1006/abbi.1994.1176 PubMed DOI

Fell J. S., Steele D. M., Hatcher T. C., Gherman B. F. (2015). Electronic effects on the reaction mechanism of the metalloenzyme peptide deformylase. Theor. Chem. Accounts 134 (5), 1–7. doi: 10.1007/s00214-015-1674-y DOI

Fisher C. R., Wyckoff E. E., Peng E. D., Payne S. M. (2016). Identification and characterization of a putative manganese export protein in Vibrio cholerae . J. bacteriology 198 (20), 2810–2817. doi: 10.1128/JB.00215-16 PubMed DOI PMC

Fitsanakis V. A., Zhang N., Garcia S., Aschner M. (2010). Manganese (Mn) and iron (Fe): interdependency of transport and regulation. Neurotox Res. 18 (2), 124–131. doi: 10.1007/s12640-009-9130-1 PubMed DOI PMC

Flint D. H., Tuminello J. F., Emptage M. H. (1993). The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268 (30), 22369–22376. doi: 10.1016/S0021-9258(18)41538-4 PubMed DOI

Forbes J. R., Gros P. (2001). Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 9 (8), 397–403. doi: 10.1016/s0966-842x(01)02098-4 PubMed DOI

Forbes J. R., Gros P. (2003). Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102 (5), 1884–1892. doi: 10.1182/blood-2003-02-0425 PubMed DOI

Fridovich I. (2013). Oxygen: How do we stand it? Med. Principles Pract. 22 (2), 131–137. doi: 10.1159/000339212 PubMed DOI PMC

Frye K. A., Sendra K. M., Waldron K. J., Kehl-Fie T. E. (2022). Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. J. Inorganic Biochem. 230, 111748. doi: 10.1016/j.jinorgbio.2022.111748 PubMed DOI PMC

Furdui C., Zhou L., Woodard R. W., Anderson K. S. (2004). Insights into the mechanism of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (Phe) from Escherichia coli using a transient kinetic analysis. J. Biol. Chem. 279 (44), 45618–45625. doi: 10.1074/jbc.M404753200 PubMed DOI

Gardner P. R., Fridovich I. (1991). Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266 (29), 19328–19333. doi: 10.1016/S0021-9258(18)55001-8 PubMed DOI

Gerlach D., Reichardt W., Vettermann S. (1998). Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol. Lett. 160 (2), 217–224. doi: 10.1111/j.1574-6968.1998.tb12914.x PubMed DOI

Girotti A. W. (1990). Photodynamic lipid peroxidation in biological systems. Photochem. Photobiol. 51 (4), 497–509. doi: 10.1111/j.1751-1097.1990.tb01744.x PubMed DOI

Golonka R., Yeoh B. S., Vijay-Kumar M. (2019). The iron tug-of-war between bacterial siderophores and innate immunity. J. Innate Immun. 11 (3), 249–262. doi: 10.1159/000494627 PubMed DOI PMC

Graeff-Wohlleben H., Killat S., Banemann A., Guiso N., Gross R. (1997). Cloning and characterization of an Mn-containing superoxide dismutase (SodA) of Bordetella pertussis . J. Bacteriol 179 (7), 2194–2201. doi: 10.1128/jb.179.7.2194-2201.1997 PubMed DOI PMC

Grage K. (2005). “Oxygen-independent coproporphyrinogen III oxidase,” in Characterization of Escherichia coli HemN and investigation of proposed functional analogs Dissertation (Braunschweig, Germany: Universität Carolo-Wilhelmina; ).

Grāve K., Griese J. J., Berggren G., Bennett M. D., Högbom M. (2020). The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. JBIC J. Biol. Inorganic Chem. 25 (4), 571–582. doi: 10.1007/s00775-020-01782-3 PubMed DOI PMC

Griese J. J., Roos K., Cox N., Shafaat H. S., Branca R. M., Lehtio J., et al. . (2013). Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Proc. Natl. Acad. Sci. U.S.A. 110 (43), 17189–17194. doi: 10.1073/pnas.1304368110 PubMed DOI PMC

Groche D., Becker A., Schlichting I., Kabsch W., Schultz S., Wagner A. V. (1998). Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site. Biochem. Biophys. Res. Commun. 246 (2), 342–346. doi: 10.1006/bbrc.1998.8616 PubMed DOI

Grunenwald C. M., Choby J. E., Juttukonda L. J., Beavers W. N., Weiss A., Torres V. J., et al. . (2019). Manganese detoxification by MntE is critical for resistance to oxidative stress and virulence of Staphylococcus aureus . mBio 10 (1), e02915–e02918. doi: 10.1128/mBio.02915-18 PubMed DOI PMC

Guedon E., Helmann J. D. (2003). Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol. Microbiol. 48 (2), 495–506. doi: 10.1046/j.1365-2958.2003.03445.x PubMed DOI

Gu M., Imlay J. A. (2013). Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol. Microbiol. 89 (1), 123–134. doi: 10.1111/mmi.12263 PubMed DOI PMC

Gunter T. E., Gerstner B., Gunter K. K., Malecki J., Gelein R., Valentine W. M., et al. . (2013). Manganese transport via the transferrin mechanism. NeuroToxicology 34, 118–127. doi: 10.1016/j.neuro.2012.10.018 PubMed DOI PMC

Haber F., Weiss J., Pope W. J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London. Ser. A - Math. Phys. Sci. 147 (861), 332–351. doi: 10.1098/rspa.1934.0221 DOI

Hackam D. J., Rotstein O. D., Zhang W., Gruenheid S., Gros P., Grinstein S. (1998). Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 188 (2), 351–364. doi: 10.1084/jem.188.2.351 PubMed DOI PMC

Hall R. S., Fedorov A. A., Xu C., Fedorov E. V., Almo S. C., Raushel F. M. (2011). Three-dimensional structure and catalytic mechanism of cytosine deaminase. Biochemistry 50 (22), 5077–5085. doi: 10.1021/bi200483k PubMed DOI PMC

Halliwell B., Gutteridge J. M. (1992). Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett. 307 (1), 108–112. doi: 10.1016/0014-5793(92)80911-y PubMed DOI

Hammerstad M., Røhr Å.K., Andersen N. H., Gräslund A., Högbom M., Andersson K. K. (2014). The class Ib ribonucleotide reductase from Mycobacterium tuberculosis has two active R2F subunits. JBIC J. Biol. Inorganic Chem. 19 (6), 893–902. doi: 10.1007/s00775-014-1121-x PubMed DOI

Handing K. B., Shabalin I. G., Kassaar O., Khazaipoul S., Blindauer C. A., Stewart A. J., et al. . (2016). Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chem. Sci. 7 (11), 6635–6648. doi: 10.1039/c6sc02267g PubMed DOI PMC

Hantke K. (1987). Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol. Gen. Genet. 210 (1), 135–139. doi: 10.1007/BF00337769 PubMed DOI

Harrington J. M., Parker D. L., Bargar J. R., Jarzecki A. A., Tebo B. M., Sposito G., et al. . (2012). Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochimica Cosmochimica Acta 88, 106–119. doi: 10.1016/j.gca.2012.04.006 DOI

Harris W. R., Chen Y. (1994). Electron paramagnetic resonance and difference ultraviolet studies of Mn2+ binding to serum transferrin. J. Inorganic Biochem. 54 (1), 1–19. doi: 10.1016/0162-0134(94)85119-0 PubMed DOI

Harvie D. R., Vílchez S., Steggles J. R., Ellar D. J. (2005). Bacillus cereus fur regulates iron metabolism and is required for full virulence. Microbiol. (Reading) 151 (Pt 2), 569–577. doi: 10.1099/mic.0.27744-0 PubMed DOI

Hassett D. J., Howell M. L., Ochsner U. A., Vasil M. L., Johnson Z., Dean G. E. (1997). An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels. J. Bacteriol 179 (5), 1452–1459. doi: 10.1128/jb.179.5.1452-1459.1997 PubMed DOI PMC

Häuslein I., Manske C., Goebel W., Eisenreich W., Hilbi H. (2016). Pathway analysis using 13C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila . Mol. Microbiol. 100 (2), 229–246. doi: 10.1111/mmi.13313 PubMed DOI

Heinzen R. A., Frazier M. E., Mallavia L. P. (1992). Coxiella burnetii superoxide dismutase gene: cloning, sequencing, and expression in Escherichia coli . Infect. Immun. 60 (9), 3814–3823. doi: 10.1128/iai.60.9.3814-3823.1992 PubMed DOI PMC

Henriques A. O., Melsen L. R., Moran C. P., Jr (1998). Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis . J. Bacteriol 180 (9), 2285–2291. doi: 10.1128/JB.180.9.2285-2291.1998 PubMed DOI PMC

Hider R. C., Kong X. (2010). Chemistry and biology of siderophores. Nat. Prod Rep. 27 (5), 637–657. doi: 10.1039/b906679a PubMed DOI

Higashi N., Tanimoto K., Nishioka M., Ishikawa K., Taya M. (2008). Investigating a catalytic mechanism of hyperthermophilic L-threonine dehydrogenase from Pyrococcus horikoshii . J. Biochem. 144 (1), 77–85. doi: 10.1093/jb/mvn041 PubMed DOI

Hiraoka B. Y., Yamakura F., Sugio S., Nakayama K. (2000). A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of gln-70 to gly and ala-142 to gln. Biochem. J. 345 Pt 2, 345–350. doi: 10.1042/bj3450345 PubMed DOI PMC

Hogbom M., Galander M., Andersson M., Kolberg M., Hofbauer W., Lassmann G., et al. . (2003). Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-Å x-ray data. Proc. Natl. Acad. Sci. U.S.A. 100 (6), 3209–3214. doi: 10.1073/pnas.0536684100 PubMed DOI PMC

Hogbom M., Stenmark P., Voevodskaya N., McClarty G., Graslund A., Nordlund P. (2004). The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305 (5681), 245–248. doi: 10.1126/science.1098419 PubMed DOI

Honarmand Ebrahimi K., Hagedoorn P. L., Hagen W. R. (2015). Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin. Chem. Rev. 115 (1), 295–326. doi: 10.1021/cr5004908 PubMed DOI

Hosseinzadeh P., Lu Y. (2016). Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochim. Biophys. Acta (BBA) - Bioenergetics 1857 (5), 557–581. doi: 10.1016/j.bbabio.2015.08.006 PubMed DOI PMC

Huang X., Shin J.-H., Pinochet-Barros A., Su T. T., Helmann J. D. (2017). Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. Mol. Microbiol. 103 (2), 253–268. doi: 10.1111/mmi.13554 PubMed DOI PMC

Huang S.-H., Wang C.-K., Peng H.-L., Wu C.-C., Chen Y.-T., Hong Y.-M., et al. . (2012). Role of the small RNA RyhB in the fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in Klebsiella pneumoniae . BMC Microbiol. 12 (1), 148. doi: 10.1186/1471-2180-12-148 PubMed DOI PMC

Imlay J. A. (2006). Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59 (4), 1073–1082. doi: 10.1111/j.1365-2958.2006.05028.x PubMed DOI

Imlay J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11 (7), 443–454. doi: 10.1038/nrmicro3032 PubMed DOI PMC

Imlay J. A. (2014). The mismetallation of enzymes during oxidative stress. J. Biol. Chem. 289 (41), 28121–28128. doi: 10.1074/jbc.R114.588814 PubMed DOI PMC

Inaoka T., Matsumura Y., Tsuchido T. (1999). SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis . J. Bacteriol 181 (6), 1939–1943. doi: 10.1128/JB.181.6.1939-1943.1999 PubMed DOI PMC

Ireton G. C., Black M. E., Stoddard B. L. (2003). The 1.14 Å crystal structure of yeast cytosine deaminase: Evolution of nucleotide salvage enzymes and implications for genetic chemotherapy. Structure 11 (8), 961–972. doi: 10.1016/S0969-2126(03)00153-9 PubMed DOI

Ireton G. C., McDermott G., Black M. E., Stoddard B. L. (2002. a). The structure of Escherichia coli cytosine deaminase. J. Mol. Biol. 315 (4), 687–697. doi: 10.1006/jmbi.2001.5277 PubMed DOI

Ireton G. C., McDermott G., Black M. E., Stoddard B. L. (2002. b). The structure of Escherichia coli cytosine deaminase. J. Mol. Biol. 315 (4), 687–697. doi: 10.1006/jmbi.2001.5277 PubMed DOI

Irving H., Williams R. J. P. (1948). Order of stability of metal complexes. Nature 162, 746–747. doi: 10.1038/162746a0 DOI

Jacques J.-F., Jang S., Prévost K., Desnoyers G., Desmarais M., Imlay J., et al. . (2006). RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli . Mol. Microbiol. 62 (4), 1181–1190. doi: 10.1111/j.1365-2958.2006.05439.x PubMed DOI

Jang S., Imlay J. A. (2007). Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J. Biol. Chem. 282 (2), 929–937. doi: 10.1074/jbc.M607646200 PubMed DOI PMC

Jang S., Imlay J. A. (2010). Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol. Microbiol. 78 (6), 1448–1467. doi: 10.1111/j.1365-2958.2010.07418.x PubMed DOI PMC

Jayachandran M., Yoon J., Wu J., Cipurko D., Quon J., Makhlynets O. (2021). Mechanistic studies of the cofactor assembly in class Ib ribonucleotide reductases and protein affinity for MnII and FeII. Metallomics 13 (11). doi: 10.1093/mtomcs/mfab062 PubMed DOI

Jelakovic S., Kopriva S., Süss K.-H., Schulz G. E. (2003). Structure and catalytic mechanism of the cytosolic D-Ribulose-5-phosphate 3-epimerase from rice. J. Mol. Biol. 326 (1), 127–135. doi: 10.1016/S0022-2836(02)01374-8 PubMed DOI

Jensen W. B. (1978). The Lewis acid-base definitions: a status report. Chemistry 78 (1), 1–22. doi: 10.1021/cr60311a002 DOI

Jiang W., Yun D., Saleh L., Barr E. W., Xing G., Hoffart L. M., et al. . (2007). A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science 316 (5828), 1188–1191. doi: 10.1126/science.1141179 PubMed DOI

John J., Aurelius O., Srinivas V., Saura P., Kim I. S., Bhowmick A., et al. . (2022). Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b-NrdI complex monitored by serial femtosecond crystallography. Elife 11. doi: 10.7554/eLife.79226 PubMed DOI PMC

Johne B., Fagerhol M. K., Lyberg T., Prydz H., Brandtzaeg P., Naess-Andresen C. F., et al. . (1997). Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol. Pathol. 50 (3), 113–123. doi: 10.1136/mp.50.3.113 PubMed DOI PMC

Johnson A. R., Chen Y. W., Dekker E. E. (1998). Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Arch. Biochem. Biophys. 358 (2), 211–221. doi: 10.1006/abbi.1998.0845 PubMed DOI

Johnsrude M. J., Pitzer J. E., Martin D. W., Roop R. M. (2019). The cation diffusion facilitator family protein EmfA confers resistance to manganese toxicity in Brucella abortus 2308 and is an essential virulence determinant in mice. J. Bacteriol 202 (1), e00357–e00319. doi: 10.1128/JB.00357-19 PubMed DOI PMC

Jursa T., Smith D. R. (2009). Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol. Sci. 107 (1), 182–193. doi: 10.1093/toxsci/kfn231 PubMed DOI PMC

Juttukonda L. J., Skaar E. P. (2015). Manganese homeostasis and utilization in pathogenic bacteria. Mol. Microbiol. 97 (2), 216–228. doi: 10.1111/mmi.13034 PubMed DOI PMC

Kehres D. G., Janakiraman A., Slauch J. M., Maguire M. E. (2002). Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H(2)O(2), Fe(2+), and Mn(2+). J. Bacteriol 184 (12), 3151–3158. doi: 10.1128/JB.184.12.3151-3158.2002 PubMed DOI PMC

Kehres D. G., Zaharik M. L., Finlay B. B., Maguire M. E. (2000). The NRAMP proteins of Salmonella Typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol. Microbiol. 36 (5), 1085–1100. doi: 10.1046/j.1365-2958.2000.01922.x PubMed DOI

Kelliher J., Kehl-Fie T. (2016). Competition for manganese at the host–pathogen interface. Prog. Mol. Biol. Trans. Sci. 142, 1–25. doi: 10.1016/bs.pmbts.2016.05.002 PubMed DOI

Keyer K., Imlay J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. U.S.A. 93 (24), 13635–13640. doi: 10.1073/pnas.93.24.13635 PubMed DOI PMC

Kimoto R., Funahashi T., Yamamoto N., Miyoshi S.-i., Narimatsu S., Yamamoto S. (2001). Identification and characterization of the sodA genes encoding manganese superoxide dismutases in Vibrio parahaemolyticus, Vibrio mimicus, and Vibrio vulnificus . Microbiol. Immunol. 45 (2), 135–142. doi: 10.1111/j.1348-0421.2001.tb01281.x PubMed DOI

Kisgeropoulos E. C., Griese J. J., Smith Z. R., Branca R. M. M., Schneider C. R., Hogbom M., et al. . (2020). Key structural motifs balance metal binding and oxidative reactivity in a heterobimetallic Mn/Fe protein. J. Am. Chem. Soc. 142 (11), 5338–5354. doi: 10.1021/jacs.0c00333 PubMed DOI PMC

König V., Pfeil A., Braus G. H., Schneider T. R. (2004). Substrate and metal complexes of 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae provide new insights into the catalytic mechanism. J. Mol. Biol. 337 (3), 675–690. doi: 10.1016/j.jmb.2004.01.055 PubMed DOI

Koppenol W. H. (1993). The centennial of the Fenton reaction. Free Radical Biol. Med. 15 (6), 645–651. doi: 10.1016/0891-5849(93)90168-T PubMed DOI

Koppenol W. H., Butler J. (1977). Mechanism of reactions involving singlet oxygen and the superoxide anion. FEBS Lett. 83 (1), 1–6. doi: 10.1016/0014-5793(77)80628-5 PubMed DOI

Koppenol W. H., Stanbury D. M., Bounds P. L. (2010). Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic. Biol. Med. 49 (3), 317–322. doi: 10.1016/j.freeradbiomed.2010.04.011 PubMed DOI

Kraemer S. M. (2004). Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66 (1), 3–18. doi: 10.1007/s00027-003-0690-5 DOI

Krauss I. R., Merlino A., Pica A., Rullo R., Bertoni A., Capasso A., et al. . (2015). Fine tuning of metal-specific activity in the Mn-like group of cambialistic superoxide dismutases. RSC Adv. 5 (107), 87876–87887. doi: 10.1039/C5RA13559A DOI

Kroll J. S., Wilks K. E., Farrant J. L., Langford P. R. (1998). Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl. Acad. Sci. U.S.A. 95 (21), 12381–12385. doi: 10.1073/pnas.95.21.12381 PubMed DOI PMC

Kuehne A., Emmert H., Soehle J., Winnefeld M., Fischer F., Wenck H., et al. . (2015). Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59 (3), 359–371. doi: 10.1016/j.molcel.2015.06.017 PubMed DOI

Kuo C. F., Mashino T., Fridovich I. (1987). Alpha, beta-dihydroxyisovalerate dehydratase. a superoxide-sensitive enzyme. J. Biol. Chem. 262 (10), 4724–4727. doi: 10.1016/S0021-9258(18)61255-4 PubMed DOI

Kwak Y., Jiang W., Dassama L. M., Park K., Bell C. B., Liu L. V., et al. . (2013). Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class Ia binuclear non-heme iron enzyme. J. Am. Chem. Soc. 135 (46), 17573–17584. doi: 10.1021/ja409510d PubMed DOI PMC

Labbé R. F., Vreman H. J., Stevenson D. K. (1999). Zinc protoporphyrin: A metabolite with a mission. Clin. Chem. 45 (12), 2060–2072. doi: 10.1093/clinchem/45.12.2060 PubMed DOI

Ladomersky E., Khan A., Shanbhag V., Cavet J. S., Chan J., Weisman G. A., et al. . (2017). Host and pathogen copper-transporting P-type ATPases function antagonistically during Salmonella infection. Infect. Immun. 85 (9), e00351–e00317. doi: 10.1128/IAI.00351-17 PubMed DOI PMC

Lalaouna D., Baude J., Wu Z., Tomasini A., Chicher J., Marzi S., et al. . (2019). RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res. 47 (18), 9871–9887. doi: 10.1093/nar/gkz728 PubMed DOI PMC

Lam L. N., Wong J. J., Chong K. K. L., Kline K. A. (2020). Enterococcus faecalis manganese exporter MntE alleviates manganese toxicity and is required for mouse gastrointestinal colonization. Infect. Immun. 88 (6), e00058–e00020. doi: 10.1128/IAI.00058-20 PubMed DOI PMC

Lang P. F., Smith B. C. (2003). Ionization energies of atoms and atomic ions. J. Chem. Educ. 80 (8), 938–946. doi: 10.1021/ed080p938 DOI

Lapinskas P. J., Cunningham K. W., Liu X. F., Fink G. R., Culotta V. C. (1995). Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol. Cell Biol. 15 (3), 1382–1388. doi: 10.1128/MCB.15.3.1382 PubMed DOI PMC

Letendre E. D., Holbein B. E. (1984). Ceruloplasmin and regulation of transferrin iron during Neisseria meningitidis infection in mice. Infection Immun. 45 (1), 133–138. doi: 10.1128/iai.45.1.133-138.1984 PubMed DOI PMC

Liang W., Ouyang S., Shaw N., Joachimiak A., Zhang R., Liu Z.-J. (2011). Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate: new insights from structural and biochemical studies on human RPE. FASEB J. Off. Publ. Fed. Am. Societies Exp. Biol. 25 (2), 497–504. doi: 10.1096/fj.10-171207 PubMed DOI PMC

Lingappa U. F., Monteverde D. R., Magyar J. S., Valentine J. S., Fischer W. W. (2019). How manganese empowered life with dioxygen (and vice versa). Free Radical Biol. Med. 140, 113–125. doi: 10.1016/j.freeradbiomed.2019.01.036 PubMed DOI

Li C., Tao J., Mao D., He C. (2011). A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PloS One 6 (7), e21983. doi: 10.1371/journal.pone.0021983 PubMed DOI PMC

Li W., Wang H., Lei C., Ying T., Tan X. (2015). Manganese superoxide dismutase from human pathogen Clostridium difficile . Amino Acids 47 (5), 987–995. doi: 10.1007/s00726-015-1927-z PubMed DOI

Li W., Wang H., Wang Q., Tan X. (2014). Structural, spectroscopic and functional investigation into Fe-substituted MnSOD from human pathogen Clostridium difficile . Metallomics 6 (8), 1540–1548. doi: 10.1039/c4mt00090k PubMed DOI

Loprasert S., Sallabhan R., Whangsuk W., Mongkolsuk S. (2000). Characterization and mutagenesis of fur gene from Burkholderia pseudomallei . Gene 254 (1-2), 129–137. doi: 10.1016/s0378-1119(00)00279-1 PubMed DOI

Machielsen R., van der Oost J. (2006). Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus . FEBS J. 273 (12), 2722–2729. doi: 10.1111/j.1742-4658.2006.05290.x PubMed DOI

Madison A. S., Tebo B. M., Mucci A., Sundby B., Luther G. W., 3rd (2013). Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878. doi: 10.1126/science.1241396 PubMed DOI

Majtan T., Frerman F. E., Kraus J. P. (2011). Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation. Biometals 24 (2), 335–347. doi: 10.1007/s10534-010-9400-7 PubMed DOI PMC

Makhlynets O., Boal A. K., Rhodes D. V., Kitten T., Rosenzweig A. C., Stubbe J. (2014). Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. J. Biol. Chem. 289 (9), 6259–6272. doi: 10.1074/jbc.M113.533554 PubMed DOI PMC

Mancini S., Imlay J. A. (2015). The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress. Mol. Microbiol. 96 (4), 744–763. doi: 10.1111/mmi.12967 PubMed DOI PMC

Manley O. M., Phan H. N., Stewart A. K., Mosley D. A., Xue S., Cha L., et al. . (2022). Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis . Proc. Natl. Acad. Sci. U.S.A. 119 (39), e2210908119. doi: 10.1073/pnas.2210908119 PubMed DOI PMC

Manta B., Raushel F. M., Himo F. (2014). Reaction mechanism of zinc-dependent cytosine deaminase from Escherichia coli: A quantum-chemical study. J. Phys. Chem. B 118 (21), 5644–5652. doi: 10.1021/jp501228s PubMed DOI

Martin J. E., Imlay J. A. (2011). The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol. Microbiol. 80 (2), 319–334. doi: 10.1111/j.1365-2958.2011.07593.x PubMed DOI PMC

Martin J. E., Le M. T., Bhattarai N., Capdevila D. A., Shen J., Winkler M. E., et al. . (2019). A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus . Nucleic Acids Res. 47 (13), 6885–6899. doi: 10.1093/nar/gkz494 PubMed DOI PMC

Martins M. C., Romão C. V., Folgosa F., Borges P. T., Frazão C., Teixeira M. (2019). How superoxide reductases and flavodiiron proteins combat oxidative stress in anaerobes. Free Radical Biol. Med. 140, 36–60. doi: 10.1016/j.freeradbiomed.2019.01.051 PubMed DOI

Masse E., Gottesman S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc. Natl. Acad. Sci. U.S.A. 99 (7), 4620–4625. doi: 10.1073/pnas.032066599 PubMed DOI PMC

Masse E., Vanderpool C. K., Gottesman S. (2005). Effect of RyhB small RNA on global iron use in Escherichia coli . J. Bacteriol 187 (20), 6962–6971. doi: 10.1128/JB.187.20.6962-6971.2005 PubMed DOI PMC

McArthur J. D., West N. P., Cole J. N., Jungnitz H., Guzman C. A., Chin J., et al. . (2003). An aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica is attenuated and immunogenic in a mouse model of infection. FEMS Microbiol. Lett. 221 (1), 7–16. doi: 10.1016/S0378-1097(03)00162-9 PubMed DOI

McGuire A. M., Cuthbert B. J., Ma Z., Grauer-Gray K. D., Brunjes Brophy M., Spear K. A., et al. . (2013). Roles of the A and C sites in the manganese-specific activation of MntR. Biochemistry 52 (4), 701–713. doi: 10.1021/bi301550t PubMed DOI PMC

McLeod M. P., Qin X., Karpathy S. E., Gioia J., Highlander S. K., Fox G. E., et al. . (2004). Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J. Bacteriol 186 (17), 5842–5855. doi: 10.1128/JB.186.17.5842-5855.2004 PubMed DOI PMC

McNaughton R. L., Reddi A. R., Clement M. H., Sharma A., Barnese K., Rosenfeld L., et al. . (2010). Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 107 (35), 15335–15339. doi: 10.1073/pnas.1009648107 PubMed DOI PMC

Medlock A. E., Carter M., Dailey T. A., Dailey H. A., Lanzilotta W. N. (2009). Product release rather than chelation determines metal specificity for ferrochelatase. J. Mol. Biol. 393 (2), 308–319. doi: 10.1016/j.jmb.2009.08.042 PubMed DOI PMC

Meinnel T., Blanquet S. (1993). Evidence that peptide deformylase and methionyl-tRNA(fMet) formyltransferase are encoded within the same operon in Escherichia coli . J. Bacteriol 175 (23), 7737–7740. doi: 10.1128/jb.175.23.7737-7740.1993 PubMed DOI PMC

Mey A. R., Craig S. A., Payne S. M. (2005). Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect. Immun. 73 (9), 5706–5719. doi: 10.1128/IAI.73.9.5706-5719.2005 PubMed DOI PMC

Miller A. F. (2008). Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase. Acc Chem. Res. 41 (4), 501–510. doi: 10.1021/ar700237u PubMed DOI

Miller A. F. (2012). Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586 (5), 585–595. doi: 10.1016/j.febslet.2011.10.048 PubMed DOI PMC

Mizuno K., Whittaker M. M., Bächinger H. P., Whittaker J. W. (2004). Calorimetric studies on the tight binding metal interactions of Escherichia coli manganese superoxide dismutase. J. Biol. Chem. 279 (26), 27339–27344. doi: 10.1074/jbc.M400813200 PubMed DOI

Murphy E. R., Payne S. M. (2007). RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infection Immun. 75 (7), 3470–3477. doi: 10.1128/IAI.00112-07 PubMed DOI PMC

Najmuldeen H., Alghamdi R., Alghofaili F., Yesilkaya H. (2019). Functional assessment of microbial superoxide dismutase isozymes suggests a differential role for each isozyme. Free Radical Biol. Med. 134, 215–228. doi: 10.1016/j.freeradbiomed.2019.01.018 PubMed DOI

Nakashige T. G., Zhang B., Krebs C., Nolan E. M. (2015). Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11 (10), 765–771. doi: 10.1038/nchembio.1891 PubMed DOI PMC

Nakashige T. G., Zygiel E. M., Drennan C. L., Nolan E. M. (2017). Nickel sequestration by the host-defense protein human calprotectin. J. Am. Chem. Soc. 139 (26), 8828–8836. doi: 10.1021/jacs.7b01212 PubMed DOI PMC

Narasimhan J., Letinski S., Jung S. P., Gerasyuto A., Wang J., Arnold M., et al. . (2022). Ribonucleotide reductase, a novel drug target for gonorrhea. Elife 11. doi: 10.7554/eLife.67447 PubMed DOI PMC

Natesha R. K., Natesha R., Victory D., Barnwell S. P., Hoover E. L. (1992). A prognostic role for ceruloplasmin in the diagnosis of indolent and recurrent inflammation. J. Natl. Med. Assoc. 84 (9), 781–784. PubMed PMC

Neville S. L., Sjöhamn J., Watts J. A., MacDermott-Opeskin H., Fairweather S. J., Ganio K., et al. . (2021). The structural basis of bacterial manganese import. Sci. Adv. 7 (32). doi: 10.1126/sciadv.abg3980. PubMed DOI PMC

Oglesby A. G., Murphy E. R., Iyer V. R., Payne S. M. (2005). Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol. Microbiol. 58 (5), 1354–1367. doi: 10.1111/j.1365-2958.2005.04920.x PubMed DOI

Orban K., Finkel S. E., Maupin-Furlow J. A. (2022). Dps is a universally conserved dual-action DNA-binding and ferritin protein. J. Bacteriology 204 (5), e00036–e00022. doi: 10.1128/jb.00036-22 PubMed DOI PMC

Ouyang A., Gasner K. M., Neville S. L., McDevitt C. A., Frawley E. R. (2022). MntP and YiiP contribute to manganese efflux in Salmonella enterica serovar Typhimurium under conditions of manganese overload and nitrosative stress. Microbiol. Spectr. 10 (1), e0131621. doi: 10.1128/spectrum.01316-21 PubMed DOI PMC

Padilla-Benavides T., Long J. E., Raimunda D., Sassetti C. M., Argüello J. M. (2013). A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J. Biol. Chem. 288 (16), 11334–11347. doi: 10.1074/jbc.M112.448175 PubMed DOI PMC

Panosa A., Roca I., Gibert I. (2010). Ribonucleotide reductases of Salmonella Typhimurium: transcriptional regulation and differential role in pathogenesis. PloS One 5 (6), e11328. doi: 10.1371/journal.pone.0011328 PubMed DOI PMC

Paruthiyil S., Pinochet-Barros A., Huang X., Helmann J. D. (2020). Bacillus subtilis TerC family proteins help prevent manganese intoxication. J. Bacteriol 202 (2), e00624–e00619. doi: 10.1128/JB.00624-19 PubMed DOI PMC

Passalacqua K. D., Bergman N. H., Herring-Palmer A., Hanna P. (2006). The superoxide dismutases of Bacillus anthracis do not cooperatively protect against endogenous superoxide stress. J. Bacteriol 188 (11), 3837–3848. doi: 10.1128/JB.00239-06 PubMed DOI PMC

Pearson R. G. (1963). Hard and soft acids and bases. J. Am. Chem. Soc. 85 (22), 3533–3539. doi: 10.1021/ja00905a001 DOI

Peng E. D., Lyman L. R., Schmitt M. P. (2021). Analysis of the manganese and MntR regulon in Corynebacterium diphtheriae . J. Bacteriol 203 (20), e0027421. doi: 10.1128/JB.00274-21 PubMed DOI PMC

Permpoonpattana P., Phetcharaburanin J., Mikelsone A., Dembek M., Tan S., Brisson M. C., et al. . (2013). Functional characterization of Clostridium difficile spore coat proteins. J. Bacteriol 195 (7), 1492–1503. doi: 10.1128/jb.02104-12 PubMed DOI PMC

Persson B., Hedlund J., Jörnvall H. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell. Mol. Life Sci. 65 (24), 3879–3894. doi: 10.1007/s00018-008-8587-z PubMed DOI PMC

Pieper R., Huang S.-T., Parmar P. P., Clark D. J., Alami H., Fleischmann R. D., et al. . (2010). Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiol. 10 (1), 30. doi: 10.1186/1471-2180-10-30 PubMed DOI PMC

Plapp B. V. (2010). Conformational changes and catalysis by alcohol dehydrogenase. Arch. Biochem. Biophys. 493 (1), 3–12. doi: 10.1016/j.abb.2009.07.001 PubMed DOI PMC

Porter D. J., Austin E. A. (1993). Cytosine deaminase. The roles of divalent metal ions in catalysis. J. Biol. Chem. 268 (32), 24005–24011. doi: 10.1016/S0021-9258(20)80485-2 PubMed DOI

Price S. L., Vadyvaloo V., DeMarco J. K., Brady A., Gray P. A., Kehl-Fie T. E., et al. . (2021). Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc. Natl. Acad. Sci. U.S.A. 118 (44). doi: 10.1073/pnas.2104073118 PubMed DOI PMC

Priebe G. P., Brinig M. M., Hatano K., Grout M., Coleman F. T., Pier G. B., et al. . (2002). Construction and characterization of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infect. Immun. 70 (3), 1507–1517. doi: 10.1128/IAI.70.3.1507-1517.2002 PubMed DOI PMC

Rabin O., Hegedus L., Bourre J.-M., Smith Q. R. (1993). Rapid brain uptake of Manganese(II) across the blood-brain barrier. J. Neurochemistry 61 (2), 509–517. doi: 10.1111/j.1471-4159.1993.tb02153.x PubMed DOI

Rada B., Leto T. L. (2008). Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contributions to Microbiol. 15, 164–187. doi: 10.1159/000136357 PubMed DOI PMC

Ragusa S., Blanquet S., Meinnel T. (1998). Control of peptide deformylase activity by metal cations. J. Mol. Biol. 280 (3), 515–523. doi: 10.1006/jmbi.1998.1883 PubMed DOI

Raimunda D., Elso-Berberián G. (2014). Functional characterization of the CDF transporter SMc02724 (SmYiiP) in Sinorhizobium meliloti: Roles in manganese homeostasis and nodulation. Biochim. Biophys. Acta (BBA) - Biomembranes 1838 (12), 3203–3211. doi: 10.1016/j.bbamem.2014.09.005 PubMed DOI

Rajagopalan P. T., Pei D. (1998). Oxygen-mediated inactivation of peptide deformylase. J. Biol. Chem. 273 (35), 22305–22310. doi: 10.1074/jbc.273.35.22305 PubMed DOI

Rajagopalan P. T. R., Yu X. C., Pei D. (1997). Peptide deformylase:  a new type of mononuclear iron protein. J. Am. Chem. Soc. 119 (50), 12418–12419. doi: 10.1021/ja9734096 DOI

Reinhart A. A., Powell D. A., Nguyen A. T., O'Neill M., Djapgne L., Wilks A., et al. . (2015). The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa . Infect. Immun. 83 (3), 863–875. doi: 10.1128/IAI.02707-14 PubMed DOI PMC

Rhodes D. V., Crump K. E., Makhlynets O., Snyder M., Ge X., Xu P., et al. . (2014). Genetic characterization and role in virulence of the ribonucleotide reductases of Streptococcus sanguinis . J. Biol. Chem. 289 (9), 6273–6287. doi: 10.1074/jbc.M113.533620 PubMed DOI PMC

Richardson A. R., Somerville G. A., Sonenshein A. L. (2015). Regulating the intersection of metabolism and pathogenesis in Gram-positive bacteria. Microbiol. Spectr. 3 (3), 3.3.11. doi: 10.1128/microbiolspec.MBP-0004-2014 PubMed DOI PMC

Robinett N. G., Peterson R. L., Culotta V. C. (2018). Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J. Biol. Chem. 293 (13), 4636–4643. doi: 10.1074/jbc.TM117.000182 PubMed DOI PMC

Robinson N. J., Glasfeld A. (2020). Metalation: nature's challenge in bioinorganic chemistry. J. Biol. Inorg Chem. 25 (4), 543–545. doi: 10.1007/s00775-020-01790-3 PubMed DOI PMC

Roca I., Torrents E., Sahlin M., Gibert I., Sjoberg B. M. (2008). NrdI essentiality for class Ib ribonucleotide reduction in Streptococcus pyogenes . J. Bacteriol 190 (14), 4849–4858. doi: 10.1128/JB.00185-08 PubMed DOI PMC

Roeser H. P., Lee G. R., Nacht S., Cartwright G. E. (1970). The role of ceruloplasmin in iron metabolism. J. Clin. Invest. 49 (12), 2408–2417. doi: 10.1172/JCI106460 PubMed DOI PMC

Roos K., Siegbahn P. E. (2009). Density functional theory study of the manganese-containing ribonucleotide reductase from Chlamydia trachomatis: why manganese is needed in the active complex. Biochemistry 48 (9), 1878–1887. doi: 10.1021/bi801695d PubMed DOI

Roos K., Siegbahn P. E. (2011). Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis . J. Biol. Inorg Chem. 16 (4), 553–565. doi: 10.1007/s00775-011-0755-1 PubMed DOI

Rosch J. W., Gao G., Ridout G., Wang Y.-D., Tuomanen E. I. (2009). Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae . Mol. Microbiol. 72 (1), 12–25. doi: 10.1111/j.1365-2958.2009.06638.x PubMed DOI PMC

Rose H. R., Ghosh M. K., Maggiolo A. O., Pollock C. J., Blaesi E. J., Hajj V., et al. . (2018). Structural basis for superoxide activation of Flavobacterium johnsoniae class I ribonucleotide reductase and for radical initiation by its dimanganese cofactor. Biochemistry 57 (18), 2679–2693. doi: 10.1021/acs.biochem.8b00247 PubMed DOI PMC

Rose H. R., Maggiolo A. O., McBride M. J., Palowitch G. M., Pandelia M. E., Davis K. M., et al. . (2019). Structures of class Id ribonucleotide reductase catalytic subunits reveal a minimal architecture for deoxynucleotide biosynthesis. Biochemistry 58 (14), 1845–1860. doi: 10.1021/acs.biochem.8b01252 PubMed DOI PMC

Runyen-Janecky L., Dazenski E., Hawkins S., Warner L. (2006). Role and regulation of the Shigella flexneri Sit and MntH systems. Infect. Immun. 74 (8), 4666–4672. doi: 10.1128/IAI.00562-06 PubMed DOI PMC

Ruskoski T. B., Boal A. K. (2021). The periodic table of ribonucleotide reductases. J. Biol. Chem. 297 (4), 101137. doi: 10.1016/j.jbc.2021.101137 PubMed DOI PMC

Rytter H., Jamet A., Ziveri J., Ramond E., Coureuil M., Lagouge-Roussey P., et al. . (2021). The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella . PloS Pathog. 17 (8), e1009326. doi: 10.1371/journal.ppat.1009326 PubMed DOI PMC

Sadosky A. B., Wilson J. W., Steinman H. M., Shuman H. A. (1994). The iron superoxide dismutase of Legionella pneumophila is essential for viability. J. Bacteriol 176 (12), 3790–3799. doi: 10.1128/jb.176.12.3790-3799.1994 PubMed DOI PMC

Sánchez-Baracaldo P., Cardona T. (2020). On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol. 225 (4), 1440–1446. doi: 10.1111/nph.16249 PubMed DOI

Schmidt F., Donahoe S., Hagens K., Mattow J., Schaible U. E., Kaufmann S. H., et al. . (2004). Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell Proteomics 3 (1), 24–42. doi: 10.1074/mcp.M300074-MCP200 PubMed DOI

Seaver L. C., Imlay J. A. (2001). Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli . J. Bacteriol 183 (24), 7173–7181. doi: 10.1128/JB.183.24.7173-7181.2001 PubMed DOI PMC

Seib K. L., Tseng H. J., McEwan A. G., Apicella M. A., Jennings M. P. (2004). Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J. Infect. Dis. 190 (1), 136–147. doi: 10.1086/421299 PubMed DOI

Sen A., Zhou Y., Imlay J. A. (2020). During oxidative stress the clp proteins of Escherichia coli ensure that iron pools remain sufficient to reactivate oxidized metalloenzymes. J. Bacteriol 202 (18). doi: 10.1128/JB.00235-20 PubMed DOI PMC

Seo S. W., Kim D., Szubin R., Palsson, Bernhard O. (2015). Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep. 12 (8), 1289–1299. doi: 10.1016/j.celrep.2015.07.043 PubMed DOI

Sheng Y., Abreu I. A., Cabelli D. E., Maroney M. J., Miller A. F., Teixeira M., et al. . (2014). Superoxide dismutases and superoxide reductases. Chem. Rev. 114 (7), 3854–3918. doi: 10.1021/cr4005296 PubMed DOI PMC

Shumilin I. A., Bauerle R., Wu J., Woodard R. W., Kretsinger R. H. (2004). Crystal structure of the reaction complex of 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation. J. Mol. Biol. 341 (2), 455–466. doi: 10.1016/j.jmb.2004.05.077 PubMed DOI

Shumilin I. A., Kretsinger R. H., Bauerle R. H. (1999). Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli . Structure 7 (7), 865–875. doi: 10.1016/s0969-2126(99)80109-9 PubMed DOI

Singh P., Ali S. A. (2022). Multifunctional role of S100 protein family in the immune system: An update. Cells 11 (15). doi: 10.3390/cells11152274 PubMed DOI PMC

Skamene E. (1994). The bcg gene story. Immunobiology 191 (4), 451–460. doi: 10.1016/S0171-2985(11)80451-1 PubMed DOI

Skamene E., Schurr E., Gros P. (1998). Infection genomics: Nramp1 as a major determinant of natural resistance to intracellular infections. Annu. Rev. Med. 49 (1), 275–287. doi: 10.1146/annurev.med.49.1.275 PubMed DOI

Sobota J. M., Gu M., Imlay J. A. (2014). Intracellular hydrogen peroxide and superoxide poison 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, the first committed enzyme in the aromatic biosynthetic pathway of Escherichia coli . J. bacteriology 196 (11), 1980–1991. doi: 10.1128/JB.01573-14 PubMed DOI PMC

Sobota J. M., Imlay J. A. (2011). Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc. Natl. Acad. Sci. U.S.A. 108 (13), 5402–5407. doi: 10.1073/pnas.1100410108 PubMed DOI PMC

Springer S. D., Butler A. (2015). Magnetic susceptibility of Mn(III) complexes of hydroxamate siderophores. J. Inorg Biochem. 148, 22–26. doi: 10.1016/j.jinorgbio.2015.04.015 PubMed DOI

Srinivas V., Lebrette H., Lundin D., Kutin Y., Sahlin M., Lerche M., et al. . (2018). Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens. Nature 563 (7731), 416–420. doi: 10.1038/s41586-018-0653-6 PubMed DOI PMC

Sriranganathan N., Boyle S. M., Schurig G., Misra H. (1991). Superoxide dismutases of virulent and avirulent strains of Brucella abortus . Vet. Microbiol. 26 (4), 359–366. doi: 10.1016/0378-1135(91)90029-f PubMed DOI

Stincone A., Prigione A., Cramer T., Wamelink M. M. C., Campbell K., Cheung E., et al. . (2015). The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90 (3), 927–963. doi: 10.1111/brv.12140 PubMed DOI PMC

Sun H., Xu G., Zhan H., Chen H., Sun Z., Tian B., et al. . (2010). Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans . BMC Microbiol. 10 (1), 319. doi: 10.1186/1471-2180-10-319 PubMed DOI PMC

Supek F., Supekova L., Nelson H., Nelson N. (1996). A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 93 (10), 5105–5110. doi: 10.1073/pnas.93.10.5105 PubMed DOI PMC

Sutherland K. M., Ward L. M., Colombero C. R., Johnston D. T. (2021). Inter-domain horizontal gene transfer of nickel-binding superoxide dismutase. Geobiology 19 (5), 450–459. doi: 10.1111/gbi.12448 PubMed DOI

Topolski A. (2011). Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions. Chem. Papers 65 (3), 389–392. doi: 10.2478/s11696-010-0101-z DOI

Touati D., Jacques M., Tardat B., Bouchard L., Despied S. (1995). Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J. Bacteriol 177 (9), 2305–2314. doi: 10.1128/jb.177.9.2305-2314.1995 PubMed DOI PMC

Tribe D. E., Camakaris H., Pittard J. (1976). Constitutive and repressible enzymes of the common pathway of aromatic biosynthesis in Escherichia coli K-12: regulation of enzyme synthesis at different growth rates. J. Bacteriol 127 (3), 1085–1097. doi: 10.1128/jb.127.3.1085-1097.1976 PubMed DOI PMC

Trouwborst R. E., Clement B. G., Tebo B. M., Glazer B. T., Luther G. W., 3rd (2006). Soluble Mn(III) in suboxic zones. Science 313, 1955–1957. doi: 10.1126/science.1132876 PubMed DOI

Tseng H.-J., Srikhanta Y., McEwan A. G., Jennings M. P. (2001). Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol. Microbiol. 40 (5), 1175–1186. doi: 10.1046/j.1365-2958.2001.02460.x PubMed DOI

Tsolis R. M., Baumler A. J., Heffron F. (1995). Role of Salmonella Typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect. Immun. 63 (5), 1739–1744. doi: 10.1128/iai.63.5.1739-1744.1995 PubMed DOI PMC

Tu W. Y., Pohl S., Gray J., Robinson N. J., Harwood C. R., Waldron K. J. (2012). Cellular iron distribution in Bacillus anthracis . J. Bacteriol 194 (5), 932–940. doi: 10.1128/JB.06195-11 PubMed DOI PMC

Turner A. G., Ong C.-L. Y., Gillen C. M., Davies M. R., West N. P., McEwan A. G., et al. . (2015). Manganese homeostasis in group A Streptococcus is critical for resistance to oxidative stress and virulence. mBio 6 (2), e00278–e00215. doi: 10.1128/mBio.00278-15 PubMed DOI PMC

Vance C. K., Miller A.-F. (2001). Novel insights into the basis for Escherichia coli superoxide dismutase's metal ion specificity from Mn-substituted FeSOD and its very high E m . Biochemistry 40 (43), 13079–13087. doi: 10.1021/bi0113317 PubMed DOI

Vasantha N., Freese E. (1979). The role of manganese in growth and sporulation of Bacillus subtilis . Microbiology 112 (2), 329–336. doi: 10.1099/00221287-112-2-329 PubMed DOI

Vecerek B., Moll I., Afonyushkin T., Kaberdin V., Blasi U. (2003). Interaction of the RNA chaperone hfq with mRNAs: direct and indirect roles of hfq in iron metabolism of Escherichia coli . Mol. Microbiol. 50 (3), 897–909. doi: 10.1046/j.1365-2958.2003.03727.x PubMed DOI

Verneuil N., Maze A., Sanguinetti M., Laplace J. M., Benachour A., Auffray Y., et al. . (2006). Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiol. (Reading) 152 (Pt 9), 2579–2589. doi: 10.1099/mic.0.28922-0 PubMed DOI

Veyrier F. J., Boneca I. G., Cellier M. F., Taha M.-K. (2011). A novel metal transporter mediating manganese export (MntX) regulates the Mn to Fe intracellular ratio and Neisseria meningitidis virulence. PloS Pathog. 7 (9), e1002261. doi: 10.1371/journal.ppat.1002261 PubMed DOI PMC

Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. (1993). Natural resistance to infection with intracellular parasites: Isolation of a candidate for bcg. Cell 73 (3), 469–485. doi: 10.1016/0092-8674(93)90135-D PubMed DOI

Voegtli W. C., Sommerhalter M., Saleh L., Baldwin J., Bollinger J. M., Jr., Rosenzweig A. C. (2003). Variable coordination geometries at the diiron(II) active site of ribonucleotide reductase R2. J. Am. Chem. Soc. 125 (51), 15822–15830. doi: 10.1021/ja0370387 PubMed DOI

Wang Y., Mo X., Zhang L., Wang Q. (2011). Four superoxide dismutase (isozymes) genes of Bacillus cereus . Ann. Microbiol. 61 (2), 355–360. doi: 10.1007/s13213-010-0149-6 DOI

Wang Y., Wang H., Yang C. H., Wang Q., Mei R. (2007). Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiol. Lett. 272 (2), 206–213. doi: 10.1111/j.1574-6968.2007.00759.x PubMed DOI

Wan B., Zhang Q., Ni J., Li S., Wen D., Li J., et al. . (2017). Type VI secretion system contributes to enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PloS Pathog. 13 (3), e1006246. doi: 10.1371/journal.ppat.1006246 PubMed DOI PMC

Wasselin V., Staerck C., Rince I., Leger L., Budin-Verneuil A., Hartke A., et al. . (2021). Characterisation of the manganese superoxide dismutase of Enterococcus faecium . Res. Microbiol. 172 (6), 103876. doi: 10.1016/j.resmic.2021.103876 PubMed DOI

Waters L. S., Sandoval M., Storz G. (2011). The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J. Bacteriol 193 (21), 5887–5897. doi: 10.1128/JB.05872-11 PubMed DOI PMC

Weinberg E. D. (1975). Nutritional immunity: Host's attempt to withhold iron from microbial invaders. JAMA 231 (1), 39–41. doi: 10.1001/jama.1975.03240130021018 PubMed DOI

White C., Lee J., Kambe T., Fritsche K., Petris M. J. (2009). A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284 (49), 33949–33956. doi: 10.1074/jbc.M109.070201 PubMed DOI PMC

Whittaker M. M., Mizuno K., Bachinger H. P., Whittaker J. W. (2006). Kinetic analysis of the metal binding mechanism of Escherichia coli manganese superoxide dismutase. Biophys. J. 90 (2), 598–607. doi: 10.1529/biophysj.105.071308 PubMed DOI PMC

Winterbourn C. C. (2020). Biological chemistry of superoxide radicals. ChemTexts 6 (1), 7. doi: 10.1007/s40828-019-0101-8 DOI

Wu X. H., Quan J. M., Wu Y. D. (2007). Theoretical study of the catalytic mechanism and metal-ion dependence of peptide deformylase. J. Phys. Chem. B 111 (22), 6236–6244. doi: 10.1021/jp068611m PubMed DOI

Wu C. H. H., Tsai-Wu J.-J., Huang Y.-T., Lin C.-Y., Lioua G.-G., Lee F.-J. S. (1998). Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis . FEBS Lett. 439 (1), 192–196. doi: 10.1016/S0014-5793(98)01373-8 PubMed DOI

Xu J., Zheng C., Cao M., Zeng T., Zhao X., Shi G., et al. . (2017). The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microbial Pathogenesis 110, 23–30. doi: 10.1016/j.micpath.2017.06.022 PubMed DOI

Yamakura F., Kobayashi K., Tagawa S., Morita A., Imai T., Ohmori D., et al. . (1995). pH-dependent activity change of superoxide dismutase from Mycobacterium smegmatis . Biochem. Mol. Biol. Int. 36 (2), 233–240. PubMed

Yang J., Bitoun J. P., Ding H. (2006). Interplay of IscA and IscU in biogenesis of iron-sulfur clusters. J. Biol. Chem. 281 (38), 27956–27963. doi: 10.1074/jbc.M601356200 PubMed DOI

Yun Y. S., Lee Y. N. (2004). Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium. Extremophiles 8 (3), 237–242. doi: 10.1007/s00792-004-0383-6 PubMed DOI

Yu J., Yu X., Liu J. (2004). A thermostable manganese-containing superoxide dismutase from pathogen Chlamydia pneumoniae . FEBS Lett. 562 (1-3), 22–26. doi: 10.1016/S0014-5793(04)00170-X PubMed DOI

Zeinert R., Martinez E., Schmitz J., Senn K., Usman B., Anantharaman V., et al. . (2018). Structure-function analysis of manganese exporter proteins across bacteria. J. Biol. Chem. 293 (15), 5715–5730. doi: 10.1074/jbc.M117.790717 PubMed DOI PMC

Zhang Y., Stubbe J. (2011). Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme. Biochemistry 50 (25), 5615–5623. doi: 10.1021/bi200348q PubMed DOI PMC

Zhang J., Wang H., Huang Q., Zhang Y., Zhao L., Liu F., et al. . (2020). Four superoxide dismutases of Bacillus cereus 0–9 are non-redundant and perform different functions in diverse living conditions. World J. Microbiol. Biotechnol. 36 (1), 12. doi: 10.1007/s11274-019-2786-7 PubMed DOI

Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T. M., Chiancone E., et al. . (2002). Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. a ferritin-like DNA-binding protein of Escherichia coli . J. Biol. Chem. 277 (31), 27689–27696. doi: 10.1074/jbc.M202094200 PubMed DOI

Zheng H., Chruszcz M., Lasota P., Lebioda L., Minor W. (2008). Data mining of metal ion environments present in protein structures. J. Inorganic Biochem. 102 (9), 1765–1776. doi: 10.1016/j.jinorgbio.2008.05.006 PubMed DOI PMC

Zhu W., Richards N. G. J. (2017). Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem. 61 (2), 259–270. doi: 10.1042/EBC20160070 PubMed DOI

Zygiel E. M., Nolan E. M. (2018). Transition metal sequestration by the host-defense protein calprotectin. Annu. Rev. Biochem. 87, 621–643. doi: 10.1146/annurev-biochem-062917-012312 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...