Green Solvents in the Extraction of Bioactive Compounds from Dried Apple Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1466119
Grant Agency of the Charles University
CZ.02.1.01/0.0/0.0/15_003/0000465
Ministry of Education, Youth and Health of the Czech Republic
SVV 260 548
Faculty of Pharmacy, Charles University
PubMed
36832968
PubMed Central
PMC9957507
DOI
10.3390/foods12040893
PII: foods12040893
Knihovny.cz E-zdroje
- Klíčová slova
- apple cultivars, carbon dioxide, extraction approaches, gas-expanded liquid extraction, greenness evaluation, polyphenols, ultrasound extraction,
- Publikační typ
- časopisecké články MeSH
New extraction protocols, gas-expanded liquid extraction (GXLE), and ultrasound extraction (UE) have been optimized with an emphasis on using green solvents and maximizing the extraction of 14 selected phenolic compounds, including flavonoid-based compounds and phenolic acids from dried apples. The design of the experiments' approach was applied to optimize the main extraction parameters. Fine tuning included optimization of the flow rate in GXLE and the extraction time for GXLE and UE. Optimized GXLE was carried out with CO2-ethanol-water (34/53.8/12.2; v/v/v) at a flow rate of 3 mL/min at a temperature of 75 °C and pressure of 120 bar for 30 min. UE with ethanol-water 26/74 (v/v) lasted for 10 min at 70 °C. Both methods differed in solvent consumption and sample throughput, while providing a comparable total phenolic content of 2442 µg/g with an RSD < 10% and 2226 µg/g with RSD < 6%, for GXLE and UE, respectively. Both methods were used in determining the phenolic compounds in five apple cultivars, 'Angold', 'Artiga', 'Golden Delicious', 'Meteor', and 'Topaz'. Phenolic profiles were plotted with chlorogenic acid, catechin, epicatechin, hirsutrin, phloridzin, and guaiaverin as the main components. Statistical evaluation, including pair t-test, Bland-Altman test, and linear regression did not reveal any differences between UE and GXLE results.
Zobrazit více v PubMed
Silva A.S., Nabavi S.F., Saeedi M., Nabavi S.M. Recent Advances in Natural Products Analysis. 1st ed. Elsevier; Amsterdam, The Netherlands: 2020. p. 878.
Feng S., Yi J., Li X., Wu X., Zhao Y., Ma Y., Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. J. Agric. Food Chem. 2021;69:7–27. doi: 10.1021/acs.jafc.0c05481. PubMed DOI
Da Silva L.C., Vigano J., de Souza Mesquita L.M., Baiao Dias A.L., de Souza M.C., Sanches V.L., Chaves J.O., Pizani R.S., Contieri L.S., Rostagno M.A. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chem. X. 2021;12:100133. doi: 10.1016/j.fochx.2021.100133. PubMed DOI PMC
Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A., Shane F., Jahurul M.H.A., Ghafoor K., Norulaini N.A.N., Omar A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426–436. doi: 10.1016/j.jfoodeng.2013.01.014. DOI
Cvjetko Bubalo M., Vidovic S., Radojčic Redovnikovic I., Jokic S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018;109:52–73. doi: 10.1016/j.fbp.2018.03.001. DOI
Belwal T., Ezzat S.M., Rastrelli L., Bhatt I.D., Daglia M., Baldi A., Devkota H.P., Orhan E.E., Patra J.K., Das G., et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Anal. Chem. 2018;100:82–102. doi: 10.1016/j.trac.2017.12.018. DOI
Weremfo A., Adulley F., Dabie K., Abassah-Oppong S., Peprah-Yamoah E. Optimization of ultrasound-assisted extraction of phenolic antioxidants from turkey berry (Solanum torvum Sw) fruits using response surface methodology. J. Appl. Res. Med. Aromat. Plants. 2022;30:100387. doi: 10.1016/j.jarmap.2022.100387. DOI
Brahmi F., Blando F., Sellami R., Mehdi S., De Bellis L., Negro C., Haddadi-Guemghar H., Madani K., Makhlouf-Boulekbach L. Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Ind. Crops Prod. 2022;184:114977. doi: 10.1016/j.indcrop.2022.114977. DOI
Villamil-Galindo E., Piagentini A.M. Sequential ultrasound-assisted extraction of pectin and phenolic compounds for the valorisation of ‘Granny Smith’ apple peel. Food Biosci. 2022;49:101958. doi: 10.1016/j.fbio.2022.101958. DOI
Mahindrakar K.V., Rathod V.K. Ultrasound-assisted intensified aqueous extraction of phenolics from waste Syzygium cumini leaves: Kinetic studies and evaluation of antioxidant, antidiabetic and anticancer potential. Food Biosci. 2022;46:101547. doi: 10.1016/j.fbio.2022.101547. DOI
Yildiz G., Yildiz G., Khan M.R., Aadil R.M. High-intensity ultrasound treatment to produce and preserve the quality of fresh-cut kiwifruit. J. Food Process Preserv. 2022;46:e16542. doi: 10.1111/jfpp.16542. DOI
Ranjha M.M.A.N., Irfan S., Lorenzo J.M., Shafique B., Kanwal R., Pateiro M., Arshad R.N., Wand L., Nayik G.A., Roobab U., et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes. 2021;9:1406. doi: 10.3390/pr9081406. DOI
Cunico L.P., Turner C. The Application of Green Solvents in Separation Processes. In: Pena-Pereira F., Tobiszewski M., editors. The Application of Green Solvents in Separation Processes. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 155–214.
Da Silva R.P.F.F., Rocha-Santos T.A.P., Duarte A.C. Supercritical fluid extraction of bioactive compounds. Trends Anal. Chem. 2016;76:40–51. doi: 10.1016/j.trac.2015.11.013. DOI
Tyskiewicz K., Konkol M., Rój E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules. 2018;23:2625. doi: 10.3390/molecules23102625. PubMed DOI PMC
Pulok K.M. Extraction and Other Downstream Procedures for Evaluation of Herbal Drugs. In: Pulok K.M., editor. Quality Control and Evaluation of Herbal Drugs. 1st ed. Elsevier; Amsterdam, The Netherlands: 2019. pp. 195–236.
De Melo M.M.R., Silvestre A.J.D., Silva C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids. 2014;92:115–176. doi: 10.1016/j.supflu.2014.04.007. DOI
Liu J., Ji F., Chen F., Guo W., Yang M., Huang S., Zhang F., Liu Y. Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018;159:513–523. doi: 10.1016/j.jpba.2018.07.020. PubMed DOI
Abderrezag N., Suárez Montenegro Z.J., Louaer O., Meniai A.H., Cifuentes A., Ibánez E., Mendiola J.A. One-step sustainable extraction of Silymarin compounds of wild Algerian milk thistle (Silybum marianum) seeds using Gas Expanded Liquids. J. Chromatogr. A. 2022;1675:463147. doi: 10.1016/j.chroma.2022.463147. PubMed DOI
Rodrigues V.H., Portugal I., Silva C.l.M. Experimental optimization of the supercritical fluid extraction of triterpenoids from Acacia dealbata Link. Leaves. Sep. Purif. Technol. 2023;306:122637. doi: 10.1016/j.seppur.2022.122637. DOI
Pilařová V., Kuda L., Kočová Vlčková H., Nováková L., Gupta S., Kulkarni M., Švec F., van Staden J., Doležal K. Carbon dioxide expanded liquid: An effective solvent for the extraction of quercetin from South African medicinal plants. Plant Methods. 2022;18:87. doi: 10.1186/s13007-022-00919-6. PubMed DOI PMC
Bermejo D.V., Ibánez E., Reglero G., Fornari T. Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea. J. Supercrit. Fluids. 2016;107:507–512. doi: 10.1016/j.supflu.2015.07.008. DOI
Pilařová V., Al Hamimi S., Cunico L.P., Nováková L., Turner C. Extending the design space in solvent extraction—From supercritical fluids to pressurized liquids using carbon dioxide, ethanol, ethyl lactate, and water in a wide range of proportions. Green Chem. 2019;21:5427–5436. doi: 10.1039/C9GC02140J. DOI
Naeem U., Arshad M.U., Saeed F., Imran A. Extraction and characterization of polyphenols from fruits and vegetable waste through green extraction technologies with special reference to antioxidant profile. J. Food Process Preserv. 2022;46:16807. doi: 10.1111/jfpp.16807. DOI
Sklenářová H., Bílková A., Pechová M., Chocholouš P. Determination of major phenolic compounds in apples: Part I—Optimization of high-performance liquid chromatography separation with diode array detection. J. Sep. Sci. 2018;41:3042–3050. doi: 10.1002/jssc.201800302. PubMed DOI
Bílková A., Baďurová K., Svobodová P., Vávra R., Jakubec P., Chocholouš P., Švec F., Sklenářová H. Content of major phenolic compounds in apples: Benefits of ultra-low oxygen conditions in long-term storage. J. Food Comp. Anal. 2020;92:103587. doi: 10.1016/j.jfca.2020.103587. DOI
Hollá M., Bílková A., Jakubec P., Košková S., Kočová Vlčková H., Šatínský D., Švec F., Sklenářová H. Benefits and Pitfalls of HPLC Coupled to Diode-Array, Charged Aerosol, and Coulometric Detections: Effect of Detection on Screening of Bioactive Compounds in Apples. Molecules. 2021;26:3246. doi: 10.3390/molecules26113246. PubMed DOI PMC
Lim J.S., Lee J.J., Chun H.S. Phase equilibria for carbon dioxide-ethanol-water system at elevated pressures. J. Supercrit. Fluids. 1994;7:219–230. doi: 10.1016/0896-8446(94)90009-4. DOI
Abrahamsson V. Ph.D. Thesis. Lund University; Lund, Sweden: 2016. Fundamental Research on Supercritical Fluid Extraction Kinetics: From On-Line Measurements to Inverse Modeling.
Pena-Pereira F., Wojnowski W., Tobiszewski M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020;92:10076–10082. doi: 10.1021/acs.analchem.0c01887. PubMed DOI PMC
Wojnowski W., Tobiszewski M., Pena-Pereira F., Psillakis E. AGREEprep—Analytical greenness metric for sample preparation. Trends Anal. Chem. 2022;149:116553. doi: 10.1016/j.trac.2022.116553. DOI
AGREE Analytical Greenness Calculator. [(accessed on 16 January 2023)]. Available online: https://cdn.mostwiedzy.pl/f1/43/4d/a3/0_202006101932080735751_FME/agree-sfx.exe.