Recent Advances in Methods for Circulating Tumor Cell Detection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV18-03-00470
Ministry of Health
BBMRI - LM2018125, NCMG - LM2018132, EATRIS-CZ - LM2018133
Ministry of Education Youth and Sports
ACGT CZ.02.1.01/0.0/0.0/16_026/0008448
European Regional Development Fund
LX22NPO5102
European Union - Next Generation EU
LF 2023_006
Palacký University, Olomouc
PubMed
36835311
PubMed Central
PMC9959336
DOI
10.3390/ijms24043902
PII: ijms24043902
Knihovny.cz E-zdroje
- Klíčová slova
- characterization, circulating tumor cells, detection, enrichment, microfluidic,
- MeSH
- lidé MeSH
- nádorové cirkulující buňky * patologie MeSH
- separace buněk metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Lin D., Shen L., Luo M., Zhang K., Li J., Yang Q., Zhu F., Zhou D., Zheng S., Chen Y., et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021;6:404. doi: 10.1038/s41392-021-00817-8. PubMed DOI PMC
Sai B., Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J. Cell. Mol. Med. 2018;22:5776–5786. doi: 10.1111/jcmm.13867. PubMed DOI PMC
Borriello L., Coste A., Traub B., Sharma V.P., Karagiannis G.S., Lin Y., Wang Y., Ye X., Duran C.L., Chen X., et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat. Commun. 2022;13:626. doi: 10.1038/s41467-022-28076-3. PubMed DOI PMC
Wang W.-C., Zhang X.-F., Peng J., Li X.-F., Wang A.-L., Bie Y.-Q., Shi L.-H., Lin M.-B., Zhang X.-F. Survival Mechanisms and Influence Factors of Circulating Tumor Cells. BioMed Res. Int. 2018;2018:6304701. doi: 10.1155/2018/6304701. PubMed DOI PMC
Castro-Giner F., Aceto N. Tracking cancer progression: From circulating tumor cells to metastasis. Genome Med. 2020;12:31. doi: 10.1186/s13073-020-00728-3. PubMed DOI PMC
Papadaki M.A., Stoupis G., Theodoropoulos P.A., Mavroudis D., Georgoulias V., Agelaki S. Circulating Tumor Cells with Stemness and Epithelial-to-Mesenchymal Transition Features Are Chemoresistant and Predictive of Poor Outcome in Metastatic Breast Cancer. Mol. Cancer Ther. 2019;18:437–447. doi: 10.1158/1535-7163.MCT-18-0584. PubMed DOI
Wang L., Lankhorst L., Bernards R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer. 2022;22:340–355. doi: 10.1038/s41568-022-00450-9. PubMed DOI
Pantel K., Alix-Panabières C. Liquid biopsy and minimal residual disease—Latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019;16:409–424. doi: 10.1038/s41571-019-0187-3. PubMed DOI
Liu Y., Chen X., Zhang Y., Liu J. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst. 2019;144:846–858. doi: 10.1039/C8AN01503A. PubMed DOI
Kaldjian E.P., Ramirez A.B., Costandy L., Ericson N.G., Malkawi W.I., George T.C., Kasi P.M. Beyond Circulating Tumor Cell Enumeration: Cell-Based Liquid Biopsy to Assess Protein Biomarkers and Cancer Genomics Using the RareCyte® Platform. Front. Pharmacol. 2022;13:835727. doi: 10.3389/fphar.2022.835727. PubMed DOI PMC
Liu Y., Li R., Zhang L., Guo S. Nanomaterial-Based Immunocapture Platforms for the Recognition, Isolation, and Detection of Circulating Tumor Cells. Front. Bioeng. Biotechnol. 2022;10:850241. doi: 10.3389/fbioe.2022.850241. PubMed DOI PMC
Bankó P., Lee S.Y., Nagygyörgy V., Zrínyi M., Chae C.H., Cho D.H., Telekes A. Technologies for circulating tumor cell separation from whole blood. J. Hematol. Oncol. 2019;12:48. doi: 10.1186/s13045-019-0735-4. PubMed DOI PMC
Yang C., Xia B.-R., Jin W.-L., Lou G. Circulating tumor cells in precision oncology: Clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int. 2019;19:341. doi: 10.1186/s12935-019-1067-8. PubMed DOI PMC
Ramos-Medina R., López-Tarruella S., del Monte-Millán M., Massarrah T., Martín M. Technical Challenges for CTC Implementation in Breast Cancer. Cancers. 2021;13:4619. doi: 10.3390/cancers13184619. PubMed DOI PMC
Sorolla M.A., Sorolla A., Parisi E., Salud A., Porcel J.M. Diving into the Pleural Fluid: Liquid Biopsy for Metastatic Malignant Pleural Effusions. Cancers. 2021;13:2798. doi: 10.3390/cancers13112798. PubMed DOI PMC
Zhu Z., Li S., Wu D., Ren H., Ni C., Wang C., Xiang N., Ni Z. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics. Lab Chip. 2022;22:2097–2106. doi: 10.1039/D2LC00082B. PubMed DOI
Malani R., Fleisher M., Kumthekar P., Lin X., Omuro A., Groves M.D., Lin N.U., Melisko M., Lassman A.B., Jeyapalan S., et al. Cerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer. J. Neurooncol. 2020;148:599–606. doi: 10.1007/s11060-020-03555-z. PubMed DOI PMC
Eibl R., Schneemann M. Liquid Biopsy and Glioblastoma. Med. Pharmacol. 2022 doi: 10.20944/preprints202212.0363.v1. PubMed DOI PMC
Neoh K.H., Hassan A.A., Chen A., Sun Y., Liu P., Xu K.-F., Wong A.S.T., Han R.P.S. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials. 2018;150:112–124. doi: 10.1016/j.biomaterials.2017.10.006. PubMed DOI
Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Med. J. Aust. 1869;14:146–149.
Tulley S., Zhao Q., Dong H., Pearl M.L., Chen W.-T. Vita-AssayTM Method of Enrichment and Identification of Circulating Cancer Cells/Circulating Tumor Cells (CTCs) In: Cao J., editor. Breast Cancer. Volume 1406. Springer; New York, NY, USA: 2016. pp. 107–119. PubMed
Loeian M.S., Mehdi Aghaei S., Farhadi F., Rai V., Yang H.W., Johnson M.D., Aqil F., Mandadi M., Rai S.N., Panchapakesan B. Liquid biopsy using the nanotube-CTC-chip: Capture of invasive CTCs with high purity using preferential adherence in breast cancer patients. Lab Chip. 2019;19:1899–1915. doi: 10.1039/C9LC00274J. PubMed DOI
Ju J.A., Lee C.J., Thompson K.N., Ory E.C., Lee R.M., Mathias T.J., Pratt S.J.P., Vitolo M.I., Jewell C.M., Martin S.S. Partial thermal imidization of polyelectrolyte multilayer cell tethering surfaces (TetherChip) enables efficient cell capture and microtentacle fixation for circulating tumor cell analysis. Lab Chip. 2020;20:2872–2888. doi: 10.1039/D0LC00207K. PubMed DOI PMC
Kaldjian E.P., Ramirez A.B., Sun Y., Campton D.E., Werbin J.L., Varshavskaya P., Quarre S., George T., Madan A., Blau C.A., et al. The RareCyte® platform for next-generation analysis of circulating tumor cells: RareCyte platform CTC analysis. Cytometry. 2018;93:1220–1225. doi: 10.1002/cyto.a.23619. PubMed DOI PMC
Ranc V., Srovnal J., Kvítek L., Hajduch M. Discrimination of circulating tumor cells of breast cancer and colorectal cancer from normal human mononuclear cells using Raman spectroscopy. Analyst. 2013;138:5983. doi: 10.1039/c3an00855j. PubMed DOI
Vona G., Sabile A., Louha M., Sitruk V., Romana S., Schütze K., Capron F., Franco D., Pazzagli M., Vekemans M., et al. Isolation by Size of Epithelial Tumor Cells. Am. J. Pathol. 2000;156:57–63. doi: 10.1016/S0002-9440(10)64706-2. PubMed DOI PMC
Lu R., Chen Q., Liu X., Shen S., Pan Z., Shi C. Detection of circulating stage III–IV gastric cancer tumor cells based on isolation by size of epithelial tumor: Using the circulating tumor cell biopsy technology. Transl. Cancer Res. 2019;8:1342–1350. doi: 10.21037/tcr.2019.07.32. PubMed DOI PMC
Yang C., Shi D., Wang S., Wei C., Zhang C., Xiong B. Prognostic value of pre- and post-operative circulating tumor cells detection in colorectal cancer patients treated with curative resection: A prospective cohort study based on ISET device. CMAR. 2018;10:4135–4144. doi: 10.2147/CMAR.S176575. PubMed DOI PMC
Zheng S., Lin H., Liu J.-Q., Balic M., Datar R., Cote R.J., Tai Y.-C. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A. 2007;1162:154–161. doi: 10.1016/j.chroma.2007.05.064. PubMed DOI
Laget S., Broncy L., Hormigos K., Dhingra D.M., BenMohamed F., Capiod T., Osteras M., Farinelli L., Jackson S., Paterlini-Bréchot P. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion. PLoS ONE. 2017;12:e0169427. doi: 10.1371/journal.pone.0169427. PubMed DOI PMC
Drucker A., Teh E.M., Kostyleva R., Rayson D., Douglas S., Pinto D.M. Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS ONE. 2020;15:e0237308. doi: 10.1371/journal.pone.0237308. PubMed DOI PMC
Rosenberg R., Gertler R., Friederichs J., Fuehrer K., Dahm M., Phelps R., Thorban S., Nekarda H., Siewert J.R. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–158. doi: 10.1002/cyto.10161. PubMed DOI
Königsberg R., Gneist M., Jahn-Kuch D., Pfeiler G., Hager G., Hudec M., Dittrich C., Zeillinger R. Circulating tumor cells in metastatic colorectal cancer: Efficacy and feasibility of different enrichment methods. Cancer Lett. 2010;293:117–123. doi: 10.1016/j.canlet.2010.01.003. PubMed DOI
Gabriel M.T., Calleja L.R., Chalopin A., Ory B., Heymann D. Circulating Tumor Cells: A Review of Non–EpCAM-Based Approaches for Cell Enrichment and Isolation. Clin. Chem. 2016;62:571–581. doi: 10.1373/clinchem.2015.249706. PubMed DOI
Russo G.I., Musso N., Romano A., Caruso G., Petralia S., Lanzanò L., Broggi G., Camarda M. The Role of Dielectrophoresis for Cancer Diagnosis and Prognosis. Cancers. 2021;14:198. doi: 10.3390/cancers14010198. PubMed DOI PMC
Gascoyne P.R.C., Noshari J., Anderson T.J., Becker F.F. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis. 2009;30:1388–1398. doi: 10.1002/elps.200800373. PubMed DOI PMC
Kwizera E.A., Sun M., White A.M., Li J., He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater. Sci. Eng. 2021;7:2043–2063. doi: 10.1021/acsbiomaterials.1c00083. PubMed DOI PMC
Torres-Castro K., Honrado C., Varhue W.B., Farmehini V., Swami N.S. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. Anal. Bioanal. Chem. 2020;412:3847–3857. doi: 10.1007/s00216-020-02467-1. PubMed DOI PMC
Varmazyari V., Habibiyan H., Ghafoorifard H., Ebrahimi M., Ghafouri-Fard S. A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability. Sci. Rep. 2022;12:12100. doi: 10.1038/s41598-022-16286-0. PubMed DOI PMC
Le Du F., Fujii T., Kida K., Davis D.W., Park M., Liu D.D., Wu W., Chavez-MacGregor M., Barcenas C.H., Valero V., et al. EpCAM-independent isolation of circulating tumor cells with epithelial-to-mesenchymal transition and cancer stem cell phenotypes using ApoStream® in patients with breast cancer treated with primary systemic therapy. PLoS ONE. 2020;15:e0229903. doi: 10.1371/journal.pone.0229903. PubMed DOI PMC
Balasubramanian P., Kinders R.J., Kummar S., Gupta V., Hasegawa D., Menachery A., Lawrence S.M., Wang L., Ferry-Galow K., Davis D., et al. Antibody-independent capture of circulating tumor cells of non-epithelial origin with the ApoStream® system. PLoS ONE. 2017;12:e0175414. doi: 10.1371/journal.pone.0175414. PubMed DOI PMC
Miller M.C., Robinson P.S., Wagner C., O’Shannessy D.J. The ParsortixTM Cell Separation System—A versatile liquid biopsy platform. Cytometry. 2018;93:1234–1239. doi: 10.1002/cyto.a.23571. PubMed DOI PMC
Sollier-Christen E., Renier C., Kaplan T., Kfir E., Crouse S.C. VTX-1 Liquid Biopsy System for Fully-Automated and Label-Free Isolation of Circulating Tumor Cells with Automated Enumeration by BioView Platform. Cytometry. 2018;93:1240–1245. doi: 10.1002/cyto.a.23592. PubMed DOI PMC
Lemaire C.A., Liu S.Z., Wilkerson C.L., Ramani V.C., Barzanian N.A., Huang K.-W., Che J., Chiu M.W., Vuppalapaty M., Dimmick A.M., et al. Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System. SLAS Technol. 2018;23:16–29. doi: 10.1177/2472630317738698. PubMed DOI
Riahi R., Gogoi P., Sepehri S., Zhou Y., Handique K., Godsey J., Wang Y. A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. Int. J. Oncol. 2014;44:1870–1878. doi: 10.3892/ijo.2014.2353. PubMed DOI PMC
Hou H.W., Warkiani M.E., Khoo B.L., Li Z.R., Soo R.A., Tan D.S.-W., Lim W.-T., Han J., Bhagat A.A.S., Lim C.T. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 2013;3:1259. doi: 10.1038/srep01259. PubMed DOI PMC
Lee Y., Guan G., Bhagat A.A. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytometry. 2018;93:1251–1254. doi: 10.1002/cyto.a.23507. PubMed DOI
Nagrath S., Sequist L.V., Maheswaran S., Bell D.W., Irimia D., Ulkus L., Smith M.R., Kwak E.L., Digumarthy S., Muzikansky A., et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–1239. doi: 10.1038/nature06385. PubMed DOI PMC
Lozar T., Jesenko T., Kloboves Prevodnik V., Cemazar M., Hosta V., Jericevic A., Nolde N., Grasic Kuhar C. Preclinical and Clinical Evaluation of Magnetic-Activated Cell Separation Technology for CTC Isolation in Breast Cancer. Front. Oncol. 2020;10:554554. doi: 10.3389/fonc.2020.554554. PubMed DOI PMC
Cardoso V.F., Francesko A., Ribeiro C., Bañobre-López M., Martins P., Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018;7:1700845. doi: 10.1002/adhm.201700845. PubMed DOI
Lu N.-N., Xie M., Wang J., Lv S.-W., Yi J.-S., Dong W.-G., Huang W.-H. Biotin-Triggered Decomposable Immunomagnetic Beads for Capture and Release of Circulating Tumor Cells. ACS Appl. Mater. Interfaces. 2015;7:8817–8826. doi: 10.1021/acsami.5b01397. PubMed DOI
Chen Y., Tyagi D., Lyu M., Carrier A.J., Nganou C., Youden B., Wang W., Cui S., Servos M., Oakes K., et al. Regenerative NanoOctopus Based on Multivalent-Aptamer-Functionalized Magnetic Microparticles for Effective Cell Capture in Whole Blood. Anal. Chem. 2019;91:4017–4022. doi: 10.1021/acs.analchem.8b05432. PubMed DOI
Wang Z., Wu Z., Sun N., Cao Y., Cai X., Yuan F., Zou H., Xing C., Pei R. Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells. J. Mater. Chem. B. 2021;9:677–682. doi: 10.1039/D0TB02380A. PubMed DOI
Fan T., Zhao Q., Chen J.J., Chen W.-T., Pearl M.L. Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. Gynecol. Oncol. 2009;112:185–191. doi: 10.1016/j.ygyno.2008.09.021. PubMed DOI PMC
Paris P.L., Kobayashi Y., Zhao Q., Zeng W., Sridharan S., Fan T., Adler H.L., Yera E.R., Zarrabi M.H., Zucker S., et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett. 2009;277:164–173. doi: 10.1016/j.canlet.2008.12.007. PubMed DOI
Lu J., Fan T., Zhao Q., Zeng W., Zaslavsky E., Chen J.J., Frohman M.A., Golightly M.G., Madajewicz S., Chen W.-T. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int. J. Cancer. 2010;126:669–683. doi: 10.1002/ijc.24814. PubMed DOI PMC
Dong H., Tulley S., Zhao Q., Cho L., Chen D., Pearl M.L., Chen W. The propensity of invasive circulating tumor cells (iCTCs) in metastatic progression and therapeutic responsiveness. Cancer Med. 2019;8:3864–3874. doi: 10.1002/cam4.2218. PubMed DOI PMC
Dirix L., Buys A., Oeyen S., Peeters D., Liègeois V., Prové A., Rondas D., Vervoort L., Mariën V., Laere S.V., et al. Circulating tumor cell detection: A prospective comparison between CellSearch® and RareCyte® platforms in patients with progressive metastatic breast cancer. Breast Cancer Res. Treat. 2022;193:437–444. doi: 10.1007/s10549-022-06585-5. PubMed DOI PMC
Cho H., Chung J.-S., Han K.-H. A Direct Comparison between the Lateral Magnetophoretic Microseparator and AdnaTest for Isolating Prostate Circulating Tumor Cells. Micromachines. 2020;11:870. doi: 10.3390/mi11090870. PubMed DOI PMC
Janku F., Srovnal J., Korinkova G., Novotny J., Petruzelka L., Power D., Matous B., Hajduch M. Molecular detection of disseminated breast cancer cells in the bone marrow of early breast cancer patients using quantitative RT PCR for CEA. Neoplasma. 2008;55:317–322. PubMed
Lianidou E.S. Gene expression profiling and DNA methylation analyses of CTCs. Mol. Oncol. 2016;10:431–442. doi: 10.1016/j.molonc.2016.01.011. PubMed DOI PMC
Havlik R., Srovnal J., Klos D., Benedikova A., Lovecek M., Ghothim M., Cahova D., Neoral C., Hajduch M. Occult tumour cells in peritoneal lavage are a negative prognostic factor in pancreatic cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2013;157:233–238. doi: 10.5507/bp.2012.061. PubMed DOI
Kruse A., Abdel-Azim N., Kim H.N., Ruan Y., Phan V., Ogana H., Wang W., Lee R., Gang E.J., Khazal S., et al. Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia. IJMS. 2020;21:1054. doi: 10.3390/ijms21031054. PubMed DOI PMC
Bustin S.A., Mueller R., Nolan T. Parameters for Successful PCR Primer Design. In: Biassoni R., Raso A., editors. Quantitative Real-Time PCR. Volume 2065. Springer; New York, NY, USA: 2020. pp. 5–22. PubMed DOI
Zhao S., Yang H., Zhang M., Zhang D., Liu Y., Liu Y., Song Y., Zhang X., Li H., Ma W., et al. Circulating Tumor Cells (CTCs) Detected by Triple-Marker EpCAM, CK19, and hMAM RT-PCR and Their Relation to Clinical Outcome in Metastatic Breast Cancer Patients. Cell Biochem. Biophys. 2013;65:263–273. doi: 10.1007/s12013-012-9426-2. PubMed DOI
Ko Y., Grünewald E., Totzke G., Klinz M., Fronhoffs S., Gouni-Berthold I., Sachinidis A., Vetter H. High Percentage of False-Positive Results of Cytokeratin 19 RT-PCR in Blood: A Model for the Analysis of Illegitimate Gene Expression. Oncology. 2000;59:81–88. doi: 10.1159/000012126. PubMed DOI
Hagenbeek A. Minimal residual disease in leukemia: State of the art 1991. Leukemia. 1992;6((Suppl. S2)):12–16. PubMed
Maly V., Maly O., Kolostova K., Bobek V. Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer. In Vivo. 2019;33:1027–1037. doi: 10.21873/invivo.11571. PubMed DOI PMC
Murray N., Villalon R., Hartmann D., Rodriguez P., Aedo S. Improvement in the Neutrophil-Lymphocyte Ratio after Combined Fluorouracil, Leucovorina and Oxaliplatino based (FOLFOX) Chemotherapy for Stage III Colon Cancer is Associated with Improved Minimal Residual Disease and Outcome. Asian Pac. J. Cancer Prev. 2022;23:591–599. doi: 10.31557/APJCP.2022.23.2.591. PubMed DOI PMC
Smith B.M., Slade M.J., English J., Graham H., Lüchtenborg M., Sinnett H.D., Cross N.C.P., Coombes R.C. Response of Circulating Tumor Cells to Systemic Therapy in Patients With Metastatic Breast Cancer: Comparison of Quantitative Polymerase Chain Reaction and Immunocytochemical Techniques. JCO. 2000;18:1432–1439. doi: 10.1200/JCO.2000.18.7.1432. PubMed DOI
Suo Y., Gu Z., Wei X. Advances of In Vivo Flow Cytometry on Cancer Studies. Cytometry. 2020;97:15–23. doi: 10.1002/cyto.a.23851. PubMed DOI
Lopresti A., Malergue F., Bertucci F., Liberatoscioli M.L., Garnier S., DaCosta Q., Finetti P., Gilabert M., Raoul J.L., Birnbaum D., et al. Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight. 2019;4:e128180. doi: 10.1172/jci.insight.128180. PubMed DOI PMC
Hu Y., Fan L., Zheng J., Cui R., Liu W., He Y., Li X., Huang S. Detection of circulating tumor cells in breast cancer patients utilizing multiparameter flow cytometry and assessment of the prognosis of patients in different CTCs levels. Cytometry. 2010;77A:213–219. doi: 10.1002/cyto.a.20838. PubMed DOI
Ao Z., Liu X. Fiber-Optic Array Scanning Technology (FAST) for Detection and Molecular Characterization of Circulating Tumor Cells. In: Magbanua M.J.M., Park J.W., editors. Circulating Tumor Cells. Volume 1634. Springer; New York, NY, USA: 2017. pp. 235–246. PubMed
Kraeft S.-K., Ladanyi A., Galiger K., Herlitz A., Sher A.C., Bergsrud D.E., Even G., Brunelle S., Harris L., Salgia R., et al. Reliable and Sensitive Identification of Occult Tumor Cells Using the Improved Rare Event Imaging System. Clin. Cancer Res. 2004;10:3020–3028. doi: 10.1158/1078-0432.CCR-03-0361. PubMed DOI
Somlo G., Lau S.K., Frankel P., Hsieh H.B., Liu X., Yang L., Krivacic R., Bruce R.H. Multiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technology. Breast Cancer Res. Treat. 2011;128:155–163. doi: 10.1007/s10549-011-1508-0. PubMed DOI PMC
Krivacic R.T., Ladanyi A., Curry D.N., Hsieh H.B., Kuhn P., Bergsrud D.E., Kepros J.F., Barbera T., Ho M.Y., Chen L.B., et al. A rare-cell detector for cancer. Proc. Natl. Acad. Sci. USA. 2004;101:10501–10504. doi: 10.1073/pnas.0404036101. PubMed DOI PMC
Hillig T., Horn P., Nygaard A.-B., Haugaard A.S., Nejlund S., Brandslund I., Sölétormos G. In Vitro detection of circulating tumor cells compared by the CytoTrack and CellSearch methods. Tumor Biol. 2015;36:4597–4601. doi: 10.1007/s13277-015-3105-z. PubMed DOI PMC
Agerbæk M.Ø., Bang-Christensen S.R., Yang M.-H., Clausen T.M., Pereira M.A., Sharma S., Ditlev S.B., Nielsen M.A., Choudhary S., Gustavsson T., et al. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat. Commun. 2018;9:3279. doi: 10.1038/s41467-018-05793-2. PubMed DOI PMC
Alix-Panabières C., Riethdorf S., Pantel K. Circulating Tumor Cells and Bone Marrow Micrometastasis. Clin. Cancer Res. 2008;14:5013–5021. doi: 10.1158/1078-0432.CCR-07-5125. PubMed DOI
Alix-Panabières C., Vendrell J.-P., Slijper M., Pellé O., Barbotte E., Mercier G., Jacot W., Fabbro M., Pantel K. Full-length cytokeratin-19 is released by human tumor cells: A potential role in metastatic progression of breast cancer. Breast Cancer Res. 2009;11:R39. doi: 10.1186/bcr2326. PubMed DOI PMC
Cayrefourcq L., De Roeck A., Garcia C., Stoebner P.-E., Fichel F., Garima F., Perriard F., Daures J.-P., Meunier L., Alix-Panabières C. S100-EPISPOT: A New Tool to Detect Viable Circulating Melanoma Cells. Cells. 2019;8:755. doi: 10.3390/cells8070755. PubMed DOI PMC
Alix-Panabières C., Vendrell J.-P., Pellé O., Rebillard X., Riethdorf S., Müller V., Fabbro M., Pantel K. Detection and Characterization of Putative Metastatic Precursor Cells in Cancer Patients. Clin. Chem. 2007;53:537–539. doi: 10.1373/clinchem.2006.079509. PubMed DOI
Alix-Panabières C., Brouillet J.-P., Fabbro M., Yssel H., Rousset T., Maudelonde T., Choquet-Kastylevsky G., Vendrell J.-P. Characterization and enumeration of cells secreting tumor markers in the peripheral blood of breast cancer patients. J. Immunol. Methods. 2005;299:177–188. doi: 10.1016/j.jim.2005.02.007. PubMed DOI
Zieglschmid V., Hollmann C., Gutierrez B., Albert W., Strothoff D., Gross E., Böcher O. Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Res. 2005;25:1803–1810. PubMed
Danila D.C., Samoila A., Patel C., Schreiber N., Herkal A., Anand A., Bastos D., Heller G., Fleisher M., Scher H.I. Clinical Validity of Detecting Circulating Tumor Cells by AdnaTest Assay Compared With Direct Detection of Tumor mRNA in Stabilized Whole Blood, as a Biomarker Predicting Overall Survival for Metastatic Castration-Resistant Prostate Cancer Patients. Cancer J. 2016;22:315–320. doi: 10.1097/PPO.0000000000000220. PubMed DOI PMC
Aaltonen K.E., Novosadová V., Bendahl P.-O., Graffman C., Larsson A.-M., Rydén L. Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy. Oncotarget. 2017;8:45544–45565. doi: 10.18632/oncotarget.17271. PubMed DOI PMC
Gorges T.M., Stein A., Quidde J., Hauch S., Röck K., Riethdorf S., Joosse S.A., Pantel K. Improved Detection of Circulating Tumor Cells in Metastatic Colorectal Cancer by the Combination of the CellSearch® System and the AdnaTest®. PLoS ONE. 2016;11:e0155126. doi: 10.1371/journal.pone.0155126. PubMed DOI PMC
Darga E.P., Dolce E.M., Fang F., Kidwell K.M., Gersch C.L., Kregel S., Thomas D.G., Gill A., Brown M.E., Gross S., et al. PD-L1 expression on circulating tumor cells and platelets in patients with metastatic breast cancer. PLoS ONE. 2021;16:e0260124. doi: 10.1371/journal.pone.0260124. PubMed DOI PMC
Chikaishi Y., So T., Takenaka M., Oka S., Hirai A., Iwanami T., Shimokawa H., Yoneda K., Nagata Y., Uramoto H., et al. Comparison of CellSearch with polymeric microfluidic devices for CTC isolation using EpCAM-negative tumor cell lines of malignant pleural mesothelioma. Cancer Res. 2014;74:3080. doi: 10.1158/1538-7445.AM2014-3080. DOI
Huebner H., Fasching P.A., Gumbrecht W., Jud S., Rauh C., Matzas M., Paulicka P., Friedrich K., Lux M.P., Volz B., et al. Filtration based assessment of CTCs and CellSearch® based assessment are both powerful predictors of prognosis for metastatic breast cancer patients. BMC Cancer. 2018;18:204.:204. doi: 10.1186/s12885-018-4115-1. PubMed DOI PMC
Nicolazzo C., Gradilone A., Loreni F., Raimondi C., Gazzaniga P. EpCAMlow Circulating Tumor Cells: Gold in the Waste. Dis. Markers. 2019;2019:1718920. doi: 10.1155/2019/1718920. PubMed DOI PMC
Riethdorf S., Fritsche H., Müller V., Rau T., Schindlbeck C., Rack B., Janni W., Coith C., Beck K., Jänicke F., et al. Detection of Circulating Tumor Cells in Peripheral Blood of Patients with Metastatic Breast Cancer: A Validation Study of the CellSearch System. Clin. Cancer Res. 2007;13:920–928. doi: 10.1158/1078-0432.CCR-06-1695. PubMed DOI
Camara O., Jörke C., Hammer U., Egbe A., Rabenstein C., Runnebaum I.B., Hoeffken K., Pachmann K. Monitoring circulating epithelial tumour cells (CETC) to gauge therapy: In patients with disease progression after trastuzumab persisting CETC can be eliminated by combined lapatinib treatment. J. Cancer Res. Clin. Oncol. 2009;135:643–647. doi: 10.1007/s00432-008-0498-8. PubMed DOI
Schott D.S., Pizon M., Pachmann U., Pachmann K. Sensitive detection of PD-L1 expression on circulating epithelial tumor cells (CETCs) could be a potential biomarker to select patients for treatment with PD-1/PD-L1 inhibitors in early and metastatic solid tumors. Oncotarget. 2017;8:72755–72772. doi: 10.18632/oncotarget.20346. PubMed DOI PMC
Gold M., Pachmann K., Kiani A., Schobert R. Monitoring of circulating epithelial tumor cells using the Maintrac® method and its potential benefit for the treatment of patients with colorectal cancer. Mol. Clin. Oncol. 2021;15:201. doi: 10.3892/mco.2021.2363. PubMed DOI PMC
Iwatsuki M., Kurashige J., Ishimoto T., Kosumi K., Baba Y., Sakamoto Y., Miyamoto Y., Yoshida N., Watanabe M., Baba H. The clinical significance of circulating tumor cells in gastrointestinal cancer. J. Cancer Metastasis Treat. 2015;1:130. doi: 10.4103/2394-4722.165534. DOI
Kanayama M., Kuwata T., Mori M., Nemoto Y., Nishizawa N., Oyama R., Matsumiya H., Taira A., Shinohara S., Takenaka M., et al. Prognostic impact of circulating tumor cells detected with the microfluidic “universal CTC-chip” for primary lung cancer. Cancer Sci. 2022;113:1028–1037. doi: 10.1111/cas.15255. PubMed DOI PMC
Stott S.L., Hsu C.-H., Tsukrov D.I., Yu M., Miyamoto D.T., Waltman B.A., Rothenberg S.M., Shah A.M., Smas M.E., Korir G.K., et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA. 2010;107:18392–18397. doi: 10.1073/pnas.1012539107. PubMed DOI PMC
Wang M., Wang Z., Zhang M., Guo W., Li N., Deng Y., Shi Q. A microfluidic chip with double-sided herringbone microstructures for enhanced capture of rare tumor cells. J. Mater. Chem. B. 2017;5:9114–9120. doi: 10.1039/C7TB02318A. PubMed DOI
Ozkumur E., Shah A., Ciciliano J., Emmink B., Miyamoto D., Brachtel E., Yu M., Chen P., Morgan B., Trautwein J., et al. Inertial Focusing for Tumor Antigen-Dependent and -Independent Sorting of Rare Circulating Tumor Cells. Sci. Transl. Med. 2013;5:179ra47. doi: 10.1126/scitranslmed.3005616. PubMed DOI PMC
Mishra A., Dubash T.D., Edd J.F., Jewett M.K., Garre S.G., Karabacak N.M., Rabe D.C., Mutlu B.R., Walsh J.R., Kapur R., et al. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc. Natl. Acad. Sci. USA. 2020;117:16839–16847. doi: 10.1073/pnas.2006388117. PubMed DOI PMC
Fachin F., Spuhler P., Martel-Foley J.M., Edd J.F., Barber T.A., Walsh J., Karabacak M., Pai V., Yu M., Smith K., et al. Monolithic Chip for High-throughput Blood Cell Depletion to Sort Rare Circulating Tumor Cells. Sci. Rep. 2017;7:10936. doi: 10.1038/s41598-017-11119-x. PubMed DOI PMC
Jan Y.J., Chen J.-F., Zhu Y., Lu Y.-T., Chen S.H., Chung H., Smalley M., Huang Y.-W., Dong J., Chen L.-C., et al. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv. Drug Deliv. Rev. 2018;125:78–93. doi: 10.1016/j.addr.2018.03.006. PubMed DOI PMC
Konczalla L., Wöstemeier A., Kemper M., Karstens K.-F., Izbicki J., Reeh M. Clinical Significance of Circulating Tumor Cells in Gastrointestinal Carcinomas. Diagnostics. 2020;10:192. doi: 10.3390/diagnostics10040192. PubMed DOI PMC
Li Y., Wu S., Bai F. Molecular characterization of circulating tumor cells—From bench to bedside. Semin. Cell Dev. Biol. 2018;75:88–97. doi: 10.1016/j.semcdb.2017.09.013. PubMed DOI
Keller L., Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer. 2019;19:553–567. doi: 10.1038/s41568-019-0180-2. PubMed DOI
Zhou X., Xu Y., Zhu L., Su Z., Han X., Zhang Z., Huang Y., Liu Q. Comparison of Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) in Limited DNA Sequencing Based on Tube and Droplet. Micromachines. 2020;11:645. doi: 10.3390/mi11070645. PubMed DOI PMC
Ju S., Chen C., Zhang J., Xu L., Zhang X., Li Z., Chen Y., Zhou J., Ji F., Wang L. Detection of circulating tumor cells: Opportunities and challenges. Biomark. Res. 2022;10:58. doi: 10.1186/s40364-022-00403-2. PubMed DOI PMC
Guo Z., Lin X., Hui Y., Wang J., Zhang Q., Kong F. Circulating Tumor Cell Identification Based on Deep Learning. Front. Oncol. 2022;12:843879. doi: 10.3389/fonc.2022.843879. PubMed DOI PMC
Nasiri R., Shamloo A., Ahadian S., Amirifar L., Akbari J., Goudie M.J., Lee K., Ashammakhi N., Dokmeci M.R., Di Carlo D., et al. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small. 2020;16:2000171. doi: 10.1002/smll.202000171. PubMed DOI
Wang S., Zhou Y., Qin X., Nair S., Huang X., Liu Y. Label-free detection of rare circulating tumor cells by image analysis and machine learning. Sci. Rep. 2020;10:12226. doi: 10.1038/s41598-020-69056-1. PubMed DOI PMC
Lannin T.B., Thege F.I., Kirby B.J. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells: Automated Circulating Tumor Cell Image Classifiers. Cytometry. 2016;89:922–931. doi: 10.1002/cyto.a.22993. PubMed DOI
Deepcell. [(accessed on 15 January 2023)]. Available online: https://deepcell.com.
Saucedo-Zeni N. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 2012;41:1241–1250. doi: 10.3892/ijo.2012.1557. PubMed DOI PMC
Dizdar L., Fluegen G., Dalum G., Honisch E., Neves R.P., Niederacher D., Neubauer H., Fehm T., Rehders A., Krieg A., et al. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: Results from a prospective, single-center study. Mol. Oncol. 2019;13:1548–1558. doi: 10.1002/1878-0261.12507. PubMed DOI PMC
Cheng S.-B., Chen M.-M., Wang Y.-K., Sun Z.-H., Qin Y., Tian S., Dong W.-G., Xie M., Huang W.-H. A Three-Dimensional Conductive Scaffold Microchip for Effective Capture and Recovery of Circulating Tumor Cells with High Purity. Anal. Chem. 2021;93:7102–7109. doi: 10.1021/acs.analchem.1c00785. PubMed DOI
Wu Z., Zhao D., Zhang Y., Huang L., Huang H., Guo Q., Zhang W., Hou C., Wang H., Zhang Q., et al. Facile synthesis of 3D hierarchical micro-/nanostructures in capillaries for efficient capture of circulating tumor cells. J. Colloid Interface Sci. 2020;575:108–118. doi: 10.1016/j.jcis.2020.04.087. PubMed DOI
Chen J., Liu C.-Y., Wang X., Sweet E., Liu N., Gong X., Lin L. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosens. Bioelectron. 2020;150:111900. doi: 10.1016/j.bios.2019.111900. PubMed DOI PMC
Salami S.S., Singhal U., Spratt D.E., Palapattu G.S., Hollenbeck B.K., Schonhoft J.D., Graf R., Louw J., Jendrisak A., Dugan L., et al. Circulating Tumor Cells as a Predictor of Treatment Response in Clinically Localized Prostate Cancer. JCO Precis. Oncol. 2019;3:00352. doi: 10.1200/PO.18.00352. PubMed DOI PMC
Scher H.I., Armstrong A.J., Schonhoft J.D., Gill A., Zhao J.L., Barnett E., Carbone E., Lu J., Antonarakis E.S., Luo J., et al. Development and validation of circulating tumour cell enumeration (Epic Sciences) as a prognostic biomarker in men with metastatic castration-resistant prostate cancer. Eur. J. Cancer. 2021;150:83–94. doi: 10.1016/j.ejca.2021.02.042. PubMed DOI PMC
Werner S.L., Graf R.P., Landers M., Valenta D.T., Schroeder M., Greene S.B., Bales N., Dittamore R., Marrinucci D. Analytical Validation and Capabilities of the Epic CTC Platform: Enrichment-Free Circulating Tumour Cell Detection and Characterization. J. Circ. Biomark. 2015;4:3. doi: 10.5772/60725. PubMed DOI PMC
Epic Sciences. [(accessed on 27 July 2022)]. Available online: https://www.epicsciences.com/technology/
Einoch-Amor R., Broza Y.Y., Haick H. Detection of Single Cancer Cells in Blood with Artificially Intelligent Nanoarray. ACS Nano. 2021;15:7744–7755. doi: 10.1021/acsnano.1c01741. PubMed DOI
Einoch Amor R., Zinger A., Broza Y.Y., Schroeder A., Haick H. Artificially Intelligent Nanoarray Detects Various Cancers by Liquid Biopsy of Volatile Markers. Adv. Healthc. Mater. 2022;11:2200356. doi: 10.1002/adhm.202200356. PubMed DOI PMC
Chu C.-H., Liu R., Ozkaya-Ahmadov T., Boya M., Swain B.E., Owens J.M., Burentugs E., Bilen M.A., McDonald J.F., Sarioglu A.F. Hybrid negative enrichment of circulating tumor cells from whole blood in a 3D-printed monolithic device. Lab Chip. 2019;19:3427–3437. doi: 10.1039/C9LC00575G. PubMed DOI
Fujii T., Reuben J.M., Huo L., Espinosa Fernandez J.R., Gong Y., Krupa R., Suraneni M.V., Graf R.P., Lee J., Greene S., et al. Androgen receptor expression on circulating tumor cells in metastatic breast cancer. PLoS ONE. 2017;12:e0185231. doi: 10.1371/journal.pone.0185231. PubMed DOI PMC
Stiefel J., Freese C., Sriram A., Alebrand S., Srinivas N., Sproll C., Wandrey M., Gül D., Hagemann J., Becker J.C., et al. Characterization of a novel microfluidic platform for the isolation of rare single cells to enable CTC analysis from head and neck squamous cell carcinoma patients. Eng. Life Sci. 2022;22:391–406. doi: 10.1002/elsc.202100133. PubMed DOI PMC
VyCap Technology. [(accessed on 9 January 2023)]. Available online: https://www.vycap.com/technology/ctc-enumeration/
Kitz J., Goodale D., Postenka C., Lowes L.E., Allan A.L. EMT-independent detection of circulating tumor cells in human blood samples and pre-clinical mouse models of metastasis. Clin. Exp. Metastasis. 2021;38:97–108. doi: 10.1007/s10585-020-10070-y. PubMed DOI PMC
Schwab F.D., Scheidmann M.C., Ozimski L.L., Kling A., Armbrecht L., Ryser T., Krol I., Strittmatter K., Nguyen-Sträuli B.D., Jacob F., et al. MyCTC chip: Microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. Microsyst. Nanoeng. 2022;8:130. doi: 10.1038/s41378-022-00467-y. PubMed DOI PMC
Xu X., Lin J., Guo Y., Wu X., Xu Y., Zhang D., Zhang X., Yujiao X., Wang J., Yao C., et al. TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter. Biosens. Bioelectron. 2022;210:114305. doi: 10.1016/j.bios.2022.114305. PubMed DOI
Jia F., Wang Y., Fang Z., Dong J., Shi F., Zhang W., Wang Z., Hu Z. Novel Peptide-Based Magnetic Nanoparticle for Mesenchymal Circulating Tumor Cells Detection. Anal. Chem. 2021;93:5670–5675. doi: 10.1021/acs.analchem.1c00577. PubMed DOI
Yang Y., Pang W., Zhang H., Cui W., Jin K., Sun C., Wang Y., Zhang L., Ren X., Duan X. Manipulation of single cells via a Stereo Acoustic Streaming Tunnel (SteAST) Microsyst. Nanoeng. 2022;8:88. doi: 10.1038/s41378-022-00424-9. PubMed DOI PMC
Biezuner T., Raz O., Amir S., Milo L., Adar R., Fried Y., Ainbinder E., Shapiro E. Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing. Sci. Rep. 2021;11:17171. doi: 10.1038/s41598-021-96045-9. PubMed DOI PMC
Gonzalez-Pena V., Natarajan S., Xia Y., Klein D., Carter R., Pang Y., Shaner B., Annu K., Putnam D., Chen W., et al. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc. Natl. Acad. Sci. USA. 2021;118:e2024176118. doi: 10.1073/pnas.2024176118. PubMed DOI PMC
Chen C., Xing D., Tan L., Li H., Zhou G., Huang L., Xie X.S. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI) Science. 2017;356:189–194. doi: 10.1126/science.aak9787. PubMed DOI PMC
Gkountela S., Castro-Giner F., Szczerba B.M., Vetter M., Landin J., Scherrer R., Krol I., Scheidmann M.C., Beisel C., Stirnimann C.U., et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 2019;176:98–112.e14. doi: 10.1016/j.cell.2018.11.046. PubMed DOI PMC
Carter L., Rothwell D.G., Mesquita B., Smowton C., Leong H.S., Fernandez-Gutierrez F., Li Y., Burt D.J., Antonello J., Morrow C.J., et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat. Med. 2017;23:114–119. doi: 10.1038/nm.4239. PubMed DOI
TRACERx Consortium. Chemi F., Rothwell D.G., McGranahan N., Gulati S., Abbosh C., Pearce S.P., Zhou C., Wilson G.A., Jamal-Hanjani M., et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 2019;25:1534–1539. doi: 10.1038/s41591-019-0593-1. PubMed DOI PMC
Baslan T., Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer. 2017;17:557–569. doi: 10.1038/nrc.2017.58. PubMed DOI
Alles J., Karaiskos N., Praktiknjo S.D., Grosswendt S., Wahle P., Ruffault P.-L., Ayoub S., Schreyer L., Boltengagen A., Birchmeier C., et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 2017;15:44. doi: 10.1186/s12915-017-0383-5. PubMed DOI PMC
Cheng Y.-H., Chen Y.-C., Lin E., Brien R., Jung S., Chen Y.-T., Lee W., Hao Z., Sahoo S., Min Kang H., et al. Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells. Nat. Commun. 2019;10:2163. doi: 10.1038/s41467-019-10122-2. PubMed DOI PMC
Kwan T.T., Bardia A., Spring L.M., Giobbie-Hurder A., Kalinich M., Dubash T., Sundaresan T., Hong X., LiCausi J.A., Ho U., et al. A Digital RNA Signature of Circulating Tumor Cells Predicting Early Therapeutic Response in Localized and Metastatic Breast Cancer. Cancer Discov. 2018;8:1286–1299. doi: 10.1158/2159-8290.CD-18-0432. PubMed DOI PMC
Aya-Bonilla C.A., Morici M., Hong X., McEvoy A.C., Sullivan R.J., Freeman J., Calapre L., Khattak M.A., Meniawy T., Millward M., et al. Detection and prognostic role of heterogeneous populations of melanoma circulating tumour cells. Br. J. Cancer. 2020;122:1059–1067. doi: 10.1038/s41416-020-0750-9. PubMed DOI PMC
Sharma S., Zhuang R., Long M., Pavlovic M., Kang Y., Ilyas A., Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol. Adv. 2018;36:1063–1078. doi: 10.1016/j.biotechadv.2018.03.007. PubMed DOI PMC
Ortiz V., Yu M. Analyzing Circulating Tumor Cells One at a Time. Trends Cell Biol. 2018;28:764–775. doi: 10.1016/j.tcb.2018.05.004. PubMed DOI PMC
Abouleila Y., Onidani K., Ali A., Shoji H., Kawai T., Lim C.T., Kumar V., Okaya S., Kato K., Hiyama E., et al. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci. 2019;110:697–706. doi: 10.1111/cas.13915. PubMed DOI PMC
Sinkala E., Sollier-Christen E., Renier C., Rosàs-Canyelles E., Che J., Heirich K., Duncombe T.A., Vlassakis J., Yamauchi K.A., Huang H., et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun. 2017;8:14622. doi: 10.1038/ncomms14622. PubMed DOI PMC
Li Z.-Y., Huang M., Wang X.-K., Zhu Y., Li J.-S., Wong C.C.L., Fang Q. Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Anal. Chem. 2018;90:5430–5438. doi: 10.1021/acs.analchem.8b00661. PubMed DOI
Terekhov S.S., Smirnov I.V., Stepanova A.V., Bobik T.V., Mokrushina Y.A., Ponomarenko N.A., Belogurov A.A., Rubtsova M.P., Kartseva O.V., Gomzikova M.O., et al. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl. Acad. Sci. USA. 2017;114:2550–2555. doi: 10.1073/pnas.1621226114. PubMed DOI PMC
Liu J., Lian J., Chen Y., Zhao X., Du C., Xu Y., Hu H., Rao H., Hong X. Circulating Tumor Cells (CTCs): A Unique Model of Cancer Metastases and Non-invasive Biomarkers of Therapeutic Response. Front. Genet. 2021;12:734595. doi: 10.3389/fgene.2021.734595. PubMed DOI PMC
Yang Y.-P., Giret T.M., Cote R.J. Circulating Tumor Cells from Enumeration to Analysis: Current Challenges and Future Opportunities. Cancers. 2021;13:2723. doi: 10.3390/cancers13112723. PubMed DOI PMC
Eslami S.Z., Cortés-Hernández L.E., Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells. 2020;9:1836. doi: 10.3390/cells9081836. PubMed DOI PMC
Hyun K.-A., Koo G.-B., Han H., Sohn J., Choi W., Kim S.-I., Jung H.-I., Kim Y.-S. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016;7:24677–24687. doi: 10.18632/oncotarget.8250. PubMed DOI PMC