Co-Pyrolysis of Unsaturated C4 and Saturated C6+ Hydrocarbons-An Experimental Study to Evaluate Steam-Cracking Performance

. 2023 Feb 08 ; 16 (4) : . [epub] 20230208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36837047

Unsaturated C4 hydrocarbons are abundant in various petrochemical streams. They can be considered as a potential feedstock for the steam-cracking process, where they must be co-processed with C6 and higher (C6+) hydrocarbons of primary naphtha fractions. Co-pyrolysis experiments aiming at the comparison of different C4 hydrocarbon performances were carried out in a laboratory micro-pyrolysis reactor under standardized conditions: 820 °C, 400 kPa, and 0.2 s residence time in the reaction zone. C4 hydrocarbons were co-pyrolyzed with different co-pyrolysis partners containing longer hydrocarbon chain to study the influence of the co-pyrolysis partner structure on the behavior of C4 hydrocarbons. The yields of the pyrolysis products and the conversion of C4 hydrocarbons were used as the performance factors. A regression model was developed and used as a valuable tool for quantifying the inhibition or acceleration effect of co-pyrolysis on the conversion of co-pyrolyzed hydrocarbons. It was found that the performance of different C4 hydrocarbons in co-pyrolysis is substantially different from the separate pyrolysis of the individual components.

Zobrazit více v PubMed

You H. C4 Utilization in China. Energy Sources Part A—Recovery Util. Environ. Eff. 2014;36:890–897. doi: 10.1080/15567036.2010.549905. DOI

Meng X.H., Xu C.M., Gao J.S. Secondary cracking of C4 hydrocarbons from heavy oil catalytic pyrolysis. Can. J. Chem. Eng. 2006;84:322–327.

Berezina Z.N., Korzun N.V., Sizova O.A. Improvement of the pyrolysis selectivity by recycling of industrial butene-butadiene and allene-methylacetylene fractions. Russ. J. Appl. Chem. 1996;69:300–302.

Chen C., Zhao R., Ying Y.Y., Liu D. Kinetic Analysis on Pyrolysis Characteristics of Butene Isomer Fuels with CO2 Additions. J. Therm. Sci. 2022;31:1604–1621. doi: 10.1007/s11630-022-1665-y. DOI

Zhang Y.J., Cai J.H., Zhao L., Yang J.Z., Jin H.F., Cheng Z.J., Li Y.Y., Zhang L.D., Qi F. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combust. Flame. 2012;159:905–917. doi: 10.1016/j.combustflame.2011.09.005. DOI

Nagaraja S.S., Kukkadapu G., Panigrahy S., Liang J.H., Lu H.T., Pitz W.J., Curran H.J. A pyrolysis study of allylic hydrocarbon fuels. Int. J. Chem. Kinet. 2020;52:964–978. doi: 10.1002/kin.21414. DOI

Pinkowski N.H., Cassady S.J., Davidson D.F., Hanson R.K. Multi-wavelength speciation of high-temperature 1-butene pyrolysis. Fuel. 2019;244:269–281. doi: 10.1016/j.fuel.2019.01.154. DOI

Wang K., Villano S.M., Dean A.M. Experimental and kinetic modeling study of butene isomer pyrolysis: Part I. 1-and 2-Butene. Combust. Flame. 2016;173:347–369. doi: 10.1016/j.combustflame.2016.07.037. DOI

Gal T., Lakatos B.G. Re-pyrolysis of recycled hydrocarbon gas-mixtures: A simulation study. Chem. Eng. Process. 2008;47:603–612. doi: 10.1016/j.cep.2006.11.014. DOI

Gal T., Lakatos B.G. Thermal cracking of recycled hydrocarbon gas-mixtures for re-pyrolysis: Operational analysis of some industrial furnaces. Appl. Therm. Eng. 2007;28:218–225. doi: 10.1016/j.applthermaleng.2007.03.020. DOI

Petru J., Zamostny P., Kolena J. Study of hydrogenation and co-pyrolysis on steam cracking yields of LPG mixture; Proceedings of the 1st International Conference on Chemical Technology; Mikulov, Czech Republic. 8–10 April 2013; pp. 23–29.

Niaei A., Salari D., Towfighi J., Nabavi R. Investigation the cocracking of C4-cut raffinate and naphtha in industrial cracker- application of the artificial neural network (ANN) & mathematical modeling; Proceedings of the 15th IASTED International Conference on Applied Simulation and Modelling; Rhodes, Greece. 26–28 June 2006; pp. 440–444.

Bridges R.S., Coughenour G.E., Durney R.J. Recycle butenes to cracking. Hydrocarb. Process Int. Ed. 1986;65:71–74.

Karaba A., Patera J., Ruskayova P.D., Carmona H.d.P., Zamostny P. Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process. Process. 2021;9:1504. doi: 10.3390/pr9091504. DOI

Shevel’kova L., Gusel’nikov L., Bach G., Tsimmermann G. Pyrolysis of hydrocarbons: Inhibition-initiation. Usp. Khim. 1992;61:792–814.

Shevel’kova L.V., Vedeneeva L.M., Gusel’nikov L.E., Bach G., Zychlinski W., Zimmermann G. On the mechanism of inhibition-initiation during pyrolysis of hydrocarbon mixtures. J. Anal. Appl. Pyrolysis. 1990;17:201–215. doi: 10.1016/0165-2370(90)85010-k. DOI

Li J.W., Li T., Ma H.F., Sun Q.W., Li C.Z., Ying W.Y., Fang D.Y. Kinetics of coupling cracking of butene and pentene on modified HZSM-5 catalyst. Chem. Eng. J. 2018;346:397–405. doi: 10.1016/j.cej.2018.04.061. DOI

Belohlav Z., Zamostny P., Herink T. The kinetic model of thermal cracking for olefins production. Chem. Eng. Process. 2003;42:461–473. doi: 10.1016/S0255-2701(02)00062-4. DOI

Ranzi E., Faravelli T., Gaffuri P., Garavaglia E., Goldaniga A. Primary Pyrolysis and Oxidation Reactions of Linear and Branched Alkanes. Ind. Eng. Chem. Res. 1997;36:3336–3344. doi: 10.1021/IE960603C. DOI

Savage P.E. Mechanisms and kinetics models for hydrocarbon pyrolysis. J. Anal. Appl. Pyrolysis. 2000;54:109–126.

Towfighi J., Niaei A., Karimzadeh R., Saedi G. Systematics and modelling representations of LPG thermal cracking for olefin production. Korean J. Chem. Eng. 2006;23:8–16. doi: 10.1007/BF02705685. DOI

Karaba A., Dvorakova V., Patera J., Zamostny P. Improving the steam-cracking efficiency of naphtha feedstocks by mixed/separate processing. J. Anal. Appl. Pyrolysis. 2020;146:104786. doi: 10.1016/j.jaap.2019.104768. DOI

Zamostny P., Belohlav Z., Starkbaumova L. A multipurpose micro-pulse reactor for studying gas-phase reactions. Chem. Biochem. Eng. Q. 2007;21:105–113.

Zámostný P., Bělohlav Z., Starkbaumová L., Patera J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products. J. Anal. Appl. Pyrolysis. 2010;87:207–216. doi: 10.1016/j.jaap.2009.12.006. DOI

Karaba A., Zamostny P., Lederer J., Belohlav Z. Generalized model of hydrocarbons pyrolysis using automated reactions network generation. Ind. Eng. Chem. Res. 2013;52:15407–15416. doi: 10.1021/ie4006657. DOI

Zamostny P., Karaba A., Olahova N., Petru J., Patera J., Hajekova E., Bajus M., Belohlav Z. Generalized model of n-heptane pyrolysis and steam cracking kinetics based on automated reaction network generation. J. Anal. Appl. Pyrolysis. 2014;109:159–167. doi: 10.1016/j.jaap.2014.06.017. DOI

Belohlav Z., Herink T., Lederer J., Marek J., Rachova N., Svoboda P., Zamostny P., Vojtova D. Evaluation of pyrolysis feedstock by pyrolysis gas chromatography. Pet. Chem. 2005;45:118–125.

Belohlav Z., Pavlik D., Herink T., Svoboda P., Zamostny P., Marek J. Use of pyrolysis gas chromatography for evaluation of thermal cracking of naphtha. Chem. Listy. 2002;96:325–329.

Hall W.E. Cleaning and validation of cleaning for coated pharmaceutical products. Drug Manuf. Technol. Ser. 1999;3:269–298.

Zamostny P., Belohlav Z. A software for regression analysis of kinetic data. Comput. Chem. 1999;23:479–485. doi: 10.1016/S0097-8485(99)00024-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...