Experimental, Spectroscopic, and Computational Insights into the Reactivity of "Methanal" with 2-Naphthylamines
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
program INTER-EXCELLENCE, project no. LTAUSA19065
Ministry of Education, Youth and Sports of the Czech Republic
grant PIP #11220200103033CO
National Council for Research and Technology, Argentina
PubMed
36838537
PubMed Central
PMC9964406
DOI
10.3390/molecules28041549
PII: molecules28041549
Knihovny.cz E-resources
- Keywords
- DFT, Tröger’s base, mechanisms, methanal, naphthylamine, quinazoline, spiro-Tröger’s base,
- MeSH
- 2-Naphthylamine * MeSH
- Formaldehyde * MeSH
- Imines MeSH
- Spectrum Analysis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 2-Naphthylamine * MeSH
- Formaldehyde * MeSH
- Imines MeSH
The reactions of 2-naphthylamine and methyl 6-amino-2-naphthoate with formalin and paraformaldehyde were studied experimentally, spectrally, and by quantum chemical calculations. It was found that neither the corresponding aminals nor imines were formed under the described conditions but could be prepared and spectrally characterized at least in situ under modified conditions. Several of the previously undescribed intermediates and by-products were isolated or at least spectrally characterized. First principle density functional theory (DFT) calculations were performed to shed light on the key aspects of the thermochemistry of decomposition and further condensation of the corresponding aminals and imines. The calculations also revealed that the electrophilicity of methanal was significantly greater than that of ordinary oxo-compounds, except for perfluorinated ones. In summary, methanal was not behaving as the simplest aldehyde but as a very electron-deficient oxo-compound.
See more in PubMed
Tatar A., Čejka J., Král V., Dolenský B. Spiro Tröger’s Base Derivatives: Another Structural Phoenix? Org. Lett. 2010;12:1872–1875. doi: 10.1021/ol1004774. PubMed DOI
Tröger J. Ueber einige mittelst nascirenden Formaldehydes entstehende Basen. J. Prakt. Chem. 1887;36:225–245. doi: 10.1002/prac.18870360123. DOI
Spielman M.A. The Structure of Troeger’s Base. J. Am. Chem. Soc. 1935;57:583–585. doi: 10.1021/ja01306a060. DOI
Vögtle F. Fascinating Molecules in Organic Chemistry. 1st ed. John Wiley & Sons; Chichester, UK: 1992. Heterocycles and Biologically Active Compounds; pp. 237–290.
Dolenský B., Elguero J., Král V., Pardo C., Valík M. Current Tröger’s Base Chemistry. Adv. Heterocycl. Chem. 2007;93:1–56.
Sergeyev S. Recent Developments in Synthetic Chemistry, Chiral Separations, and Applications of Tröger’s Base Analogues. Helv. Chim. Acta. 2009;92:415–444. doi: 10.1002/hlca.200800329. DOI
Reed J.H. Ueber β-Naphtoacridin. Vorläufige Mittheilung. J. Prakt. Chem. 1886;34:160–161. doi: 10.1002/prac.18860340120. DOI
Reed J.H., VIII Ueber Methylderivate der Naphtochinoline und über β-Naphtoacridin. J. Prakt. Chem. 1887;35:298–322. doi: 10.1002/prac.18870350133. DOI
Morgan G.T. LVI—Action of formaldehyde on amines of the naphthalene series. Part I. J. Chem. Soc., Trans. 1898;73:536–554. doi: 10.1039/CT8987300536. DOI
Farrar W.V. Reactions of formaldehyde with aromatic amines. J. Appl. Chem. 1964;14:389–399. doi: 10.1002/jctb.5010140905. DOI
Tálas E., Margitfalvi J., Machytka D., Czugler M. Synthesis and resolution of naphthyl-Tröger’s base. Tetrahedron Asymmetry. 1998;9:4151–4156. doi: 10.1016/S0957-4166(98)00439-X. DOI
Paleta O., Dolenský B., Paleček J., Kvíčala J. Three-Component (Domino) Reaction Affording Substituted Pyrroloquinazolines: Cyclization Regioselectivity and Stereoselectivity. Eur. J. Org. Chem. 2013;2013:1262–1270. doi: 10.1002/ejoc.201201356. DOI
Valenta P. Oszillographische strom-spannungs-kurven III. Untersuchung des formaldehyds in gepuffertem milieu. Collect. Czech. Chem. Commun. 1960;25:853–861. doi: 10.1135/cccc19600853. DOI
Albert K., Peters B., Bayer E., Treiber U., Zwilling M. Crosslinking of Gelatin with Formaldehyde; a 13C NMR Study. Z. Naturforsch. B J. Chem. Sci. 1986;41b:351–358. doi: 10.1515/znb-1986-0310. DOI
Cluşaru A., Crişan I., Kůta J. Equilibrium constants and rates of dehydration of formaldehyde in buffered solutions of light and heavy water studied at DME. J. Electroanal. Chem. Interfacial Electrochem. 1973;46:51–62. doi: 10.1016/S0022-0728(73)80177-9. DOI
Walker F. Some Properties of Anhydrous Formaldehyde. J. Am. Chem. Soc. 1933;55:2821–2826. doi: 10.1021/ja01334a030. DOI
Lanza P.A., Dusso D., Ramírez C.L., Parise A.R., Chesta C.A., Moyano E.L., Vera D.M.A. Uncovering the mechanism leading to the synthesis of symmetric and asymmetric Tröger’s bases. Eur. J. Org. Chem. 2019;2019:7644–7655. doi: 10.1002/ejoc.201901141. DOI
Parr R.G., Szentpály L.V., Shubin L. Electrophilicity Index. J. Am. Chem. Soc. 1999;121:1922–1924. doi: 10.1021/ja983494x. DOI
Puiatti M., Vera D.M.A., Pierini A.B. In search for an optimal methodology to calculate the valence electron affinities of temporary anions. Phys. Chem. Chem. Phys. 2009;11:9013–9024. doi: 10.1039/b908870a. PubMed DOI
Borioni L., Puiatti M., Vera D.M.A., Pierini A.B. In search of the best DFT functional for dealing with organic anionic species. Phys. Chem. Chem. Phys. 2017;19:9189–9198. doi: 10.1039/C6CP06163J. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16 Revision C.01. Gaussian Inc.; Wallingford, CT, USA: 2019.
Möhlau R., Haase O. Ueber Naphtacrihydridin. Ber. Dtsch. Chem. Ges. 1902;35:4164–4172. doi: 10.1002/cber.19020350459. DOI
Wagner E.C. A rationalization of acid-induced reactions of methylene-bis-amines, methylene-amines, and of formaldehyde and amines. J. Org. Chem. 1954;19:1863–1881. doi: 10.1021/jo01377a002. DOI
Mahon A.B., Craig D.C., Try A.C. Synthesis of 5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocines and a demonstration of their reactivity to afford methano strap-modified Tröger’s base analogues. ARKIVOC. 2008;13:148–163. doi: 10.3998/ark.5550190.0009.c17. DOI
Artacho J., Ascic E., Rantanen T., Karlsson J., Wallentin C.-J., Wang R., Wendt O.F., Harmata M., Snieckus V., Wärnmark K. Twisted Amide Analogues of Tröger’s Base. Chem. Eur. J. 2012;18:1038–1042. doi: 10.1002/chem.201103228. PubMed DOI
Kozlov N.G., Kadutskii A.P. Synthesis of Azaphenanthrene Derivatives by Condensation of 2-Methyleneaminonaphthalene with Cyclic β-Diketones. Russ. J. Org. Chem. 2002;38:129–133. doi: 10.1023/A:1015375313521. DOI
Kadutskii A.P., Kozlov N.G. One-stage synthesis of benzoacridine and benzophenanthroline functionalized derivatives. Russ. J. Org. Chem. 2006;42:748–751. doi: 10.1134/S1070428006050174. DOI
Kozlov N.G., Kadutskii A.P., Baranovskii A.V. Condensation of 2-naphthylamine or N-benzyl-2-naphthylamines with formaldehyde and methyl 2,2-dimethyl-4,6-dioxocyclohexane-3-carboxylate. Russ. J. Org. Chem. 2012;48:1456–1463. doi: 10.1134/S1070428012110085. DOI
Scalmani G., Frisch M.J.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. Chem. Phys. 2010;132:114110–114115. doi: 10.1063/1.3359469. PubMed DOI
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg G. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Colomer J.P., Sciú M.-L., Ramirez C.L., Vera D.M.A., Moyano E.L. Thermal ring opening of pyrazolo[3,4-d][1,2,3]triazin-4-ones: An experimental and theoretical study. Eur. J. Org. Chem. 2018;13:1514–1524. doi: 10.1002/ejoc.201701538. DOI