• This record comes from PubMed

Experimental, Spectroscopic, and Computational Insights into the Reactivity of "Methanal" with 2-Naphthylamines

. 2023 Feb 06 ; 28 (4) : . [epub] 20230206

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
program INTER-EXCELLENCE, project no. LTAUSA19065 Ministry of Education, Youth and Sports of the Czech Republic
grant PIP #11220200103033CO National Council for Research and Technology, Argentina

Links

PubMed 36838537
PubMed Central PMC9964406
DOI 10.3390/molecules28041549
PII: molecules28041549
Knihovny.cz E-resources

The reactions of 2-naphthylamine and methyl 6-amino-2-naphthoate with formalin and paraformaldehyde were studied experimentally, spectrally, and by quantum chemical calculations. It was found that neither the corresponding aminals nor imines were formed under the described conditions but could be prepared and spectrally characterized at least in situ under modified conditions. Several of the previously undescribed intermediates and by-products were isolated or at least spectrally characterized. First principle density functional theory (DFT) calculations were performed to shed light on the key aspects of the thermochemistry of decomposition and further condensation of the corresponding aminals and imines. The calculations also revealed that the electrophilicity of methanal was significantly greater than that of ordinary oxo-compounds, except for perfluorinated ones. In summary, methanal was not behaving as the simplest aldehyde but as a very electron-deficient oxo-compound.

See more in PubMed

Tatar A., Čejka J., Král V., Dolenský B. Spiro Tröger’s Base Derivatives: Another Structural Phoenix? Org. Lett. 2010;12:1872–1875. doi: 10.1021/ol1004774. PubMed DOI

Tröger J. Ueber einige mittelst nascirenden Formaldehydes entstehende Basen. J. Prakt. Chem. 1887;36:225–245. doi: 10.1002/prac.18870360123. DOI

Spielman M.A. The Structure of Troeger’s Base. J. Am. Chem. Soc. 1935;57:583–585. doi: 10.1021/ja01306a060. DOI

Vögtle F. Fascinating Molecules in Organic Chemistry. 1st ed. John Wiley & Sons; Chichester, UK: 1992. Heterocycles and Biologically Active Compounds; pp. 237–290.

Dolenský B., Elguero J., Král V., Pardo C., Valík M. Current Tröger’s Base Chemistry. Adv. Heterocycl. Chem. 2007;93:1–56.

Sergeyev S. Recent Developments in Synthetic Chemistry, Chiral Separations, and Applications of Tröger’s Base Analogues. Helv. Chim. Acta. 2009;92:415–444. doi: 10.1002/hlca.200800329. DOI

Reed J.H. Ueber β-Naphtoacridin. Vorläufige Mittheilung. J. Prakt. Chem. 1886;34:160–161. doi: 10.1002/prac.18860340120. DOI

Reed J.H., VIII Ueber Methylderivate der Naphtochinoline und über β-Naphtoacridin. J. Prakt. Chem. 1887;35:298–322. doi: 10.1002/prac.18870350133. DOI

Morgan G.T. LVI—Action of formaldehyde on amines of the naphthalene series. Part I. J. Chem. Soc., Trans. 1898;73:536–554. doi: 10.1039/CT8987300536. DOI

Farrar W.V. Reactions of formaldehyde with aromatic amines. J. Appl. Chem. 1964;14:389–399. doi: 10.1002/jctb.5010140905. DOI

Tálas E., Margitfalvi J., Machytka D., Czugler M. Synthesis and resolution of naphthyl-Tröger’s base. Tetrahedron Asymmetry. 1998;9:4151–4156. doi: 10.1016/S0957-4166(98)00439-X. DOI

Paleta O., Dolenský B., Paleček J., Kvíčala J. Three-Component (Domino) Reaction Affording Substituted Pyrroloquinazolines: Cyclization Regioselectivity and Stereoselectivity. Eur. J. Org. Chem. 2013;2013:1262–1270. doi: 10.1002/ejoc.201201356. DOI

Valenta P. Oszillographische strom-spannungs-kurven III. Untersuchung des formaldehyds in gepuffertem milieu. Collect. Czech. Chem. Commun. 1960;25:853–861. doi: 10.1135/cccc19600853. DOI

Albert K., Peters B., Bayer E., Treiber U., Zwilling M. Crosslinking of Gelatin with Formaldehyde; a 13C NMR Study. Z. Naturforsch. B J. Chem. Sci. 1986;41b:351–358. doi: 10.1515/znb-1986-0310. DOI

Cluşaru A., Crişan I., Kůta J. Equilibrium constants and rates of dehydration of formaldehyde in buffered solutions of light and heavy water studied at DME. J. Electroanal. Chem. Interfacial Electrochem. 1973;46:51–62. doi: 10.1016/S0022-0728(73)80177-9. DOI

Walker F. Some Properties of Anhydrous Formaldehyde. J. Am. Chem. Soc. 1933;55:2821–2826. doi: 10.1021/ja01334a030. DOI

Lanza P.A., Dusso D., Ramírez C.L., Parise A.R., Chesta C.A., Moyano E.L., Vera D.M.A. Uncovering the mechanism leading to the synthesis of symmetric and asymmetric Tröger’s bases. Eur. J. Org. Chem. 2019;2019:7644–7655. doi: 10.1002/ejoc.201901141. DOI

Parr R.G., Szentpály L.V., Shubin L. Electrophilicity Index. J. Am. Chem. Soc. 1999;121:1922–1924. doi: 10.1021/ja983494x. DOI

Puiatti M., Vera D.M.A., Pierini A.B. In search for an optimal methodology to calculate the valence electron affinities of temporary anions. Phys. Chem. Chem. Phys. 2009;11:9013–9024. doi: 10.1039/b908870a. PubMed DOI

Borioni L., Puiatti M., Vera D.M.A., Pierini A.B. In search of the best DFT functional for dealing with organic anionic species. Phys. Chem. Chem. Phys. 2017;19:9189–9198. doi: 10.1039/C6CP06163J. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16 Revision C.01. Gaussian Inc.; Wallingford, CT, USA: 2019.

Möhlau R., Haase O. Ueber Naphtacrihydridin. Ber. Dtsch. Chem. Ges. 1902;35:4164–4172. doi: 10.1002/cber.19020350459. DOI

Wagner E.C. A rationalization of acid-induced reactions of methylene-bis-amines, methylene-amines, and of formaldehyde and amines. J. Org. Chem. 1954;19:1863–1881. doi: 10.1021/jo01377a002. DOI

Mahon A.B., Craig D.C., Try A.C. Synthesis of 5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocines and a demonstration of their reactivity to afford methano strap-modified Tröger’s base analogues. ARKIVOC. 2008;13:148–163. doi: 10.3998/ark.5550190.0009.c17. DOI

Artacho J., Ascic E., Rantanen T., Karlsson J., Wallentin C.-J., Wang R., Wendt O.F., Harmata M., Snieckus V., Wärnmark K. Twisted Amide Analogues of Tröger’s Base. Chem. Eur. J. 2012;18:1038–1042. doi: 10.1002/chem.201103228. PubMed DOI

Kozlov N.G., Kadutskii A.P. Synthesis of Azaphenanthrene Derivatives by Condensation of 2-Methyleneaminonaphthalene with Cyclic β-Diketones. Russ. J. Org. Chem. 2002;38:129–133. doi: 10.1023/A:1015375313521. DOI

Kadutskii A.P., Kozlov N.G. One-stage synthesis of benzoacridine and benzophenanthroline functionalized derivatives. Russ. J. Org. Chem. 2006;42:748–751. doi: 10.1134/S1070428006050174. DOI

Kozlov N.G., Kadutskii A.P., Baranovskii A.V. Condensation of 2-naphthylamine or N-benzyl-2-naphthylamines with formaldehyde and methyl 2,2-dimethyl-4,6-dioxocyclohexane-3-carboxylate. Russ. J. Org. Chem. 2012;48:1456–1463. doi: 10.1134/S1070428012110085. DOI

Scalmani G., Frisch M.J.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. Chem. Phys. 2010;132:114110–114115. doi: 10.1063/1.3359469. PubMed DOI

Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg G. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Colomer J.P., Sciú M.-L., Ramirez C.L., Vera D.M.A., Moyano E.L. Thermal ring opening of pyrazolo[3,4-d][1,2,3]triazin-4-ones: An experimental and theoretical study. Eur. J. Org. Chem. 2018;13:1514–1524. doi: 10.1002/ejoc.201701538. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...