Estimating Mode of Transport in Daily Mobility during the COVID-19 Pandemic Using a Multinomial Logistic Regression Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36901610
PubMed Central
PMC10002273
DOI
10.3390/ijerph20054600
PII: ijerph20054600
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, mobility, multinomial regression model, transport,
- MeSH
- COVID-19 * MeSH
- cyklistika MeSH
- doprava MeSH
- lidé MeSH
- logistické modely MeSH
- pandemie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
At the beginning of 2020 there was a spinning point in the travel behavior of people around the world because of the pandemic and its consequences. This paper analyzes the specific behavior of travelers commuting to work or school during the COVID-19 pandemic based on a sample of 2000 respondents from two countries. We obtained data from an online survey, applying multinomial regression analysis. The results demonstrate the multinomial model with an accuracy of almost 70% that estimates the most used modes of transport (walking, public transport, car) based on independent variables. The respondents preferred the car as the most frequently used means of transport. However, commuters without car prefer public transport to walking. This prediction model could be a tool for planning and creating transport policy, especially in exceptional cases such as the limitation of public transport activities. Therefore, predicting travel behavior is essential for policymaking based on people's travel needs.
Zobrazit více v PubMed
Barrot J.N., Grassi B., Sauvagnat J. Sectoral effects of social distancing. AEA Pap. Proc. 2021;111:277–281. doi: 10.1257/pandp.20211108. DOI
Courtemanche C., Garuccio J., Le A., Pinkston J., Yelowitz A. Strong Social Distancing Measures in The United States Reduced The COVID-19 Growth Rate: Study evaluates the impact of social distancing measures on the growth rate of confirmed COVID-19 cases across the United States. Health Aff. 2020;39:1237–1246. doi: 10.1377/hlthaff.2020.00608. PubMed DOI
Wilder-Smith A., Freedman D.O. Isolation, quarantine, social distancing, and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 2020;27:taaa02. doi: 10.1093/jtm/taaa020. PubMed DOI PMC
De Bruin Y.B., Lequarre A.S., McCourt J., Clevestig P., Pigazzani F., Jeddi M.Z., Goulart M. Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic. Saf. Sci. 2020;128:104773. doi: 10.1016/j.ssci.2020.104773. PubMed DOI PMC
Transit Center How Transit Agencies Are Responding to the COVID-19 Public Health Threat. Transit Center. 2020. [(accessed on 11 July 2022)]. Available online: https://transitcenter.org/how-transit-agencies-are-responding-to-the-covid-19-public-health-threat/
Shaer A., Haghshenas H. Evaluating the effects of the COVID-19 outbreak on the older adults’ travel mode choices. Transp. Policy. 2021;112:162–172. doi: 10.1016/j.tranpol.2021.08.016. PubMed DOI PMC
Fridrisek P., Janos V. COVID-19, and suburban public transport in the conditions of the Czech Republic. Transp. Res. Interdiscip. Perspect. 2022;13:100523. doi: 10.1016/j.trip.2021.100523. PubMed DOI PMC
Huang X., Li Z., Jiang Y., Li X., Porter D. Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS ONE. 2020;15:e0241957. doi: 10.1371/journal.pone.0241957. PubMed DOI PMC
Benita F. Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain. Cities Soc. 2021;70:102916. doi: 10.1016/j.scs.2021.102916. PubMed DOI PMC
Zhang N., Jia W., Wang P., Dung C.H., Zhao P., Leung K., Li Y. Changes in local travel behaviour before and during the COVID-19 pandemic in Hong Kong. Cities. 2021;112:103139. doi: 10.1016/j.cities.2021.103139. PubMed DOI PMC
Hadjidemetriou G.M., Sasidharan M., Kouyialis G., Parlikad A.K. The impact of government measures and human mobility trend on COVID-19 related deaths in the UK. Transp. Res. Interdiscip. Perspect. 2020;6:100167. doi: 10.1016/j.trip.2020.100167. PubMed DOI PMC
Cieśla M., Kuśnierz S., Modrzik O., Niedośpiał S., Sosna P. Scenarios for the Development of Polish Passenger Transport Services in Pandemic Conditions. Sustainability. 2021;13:10278. doi: 10.3390/su131810278. DOI
Bucsky P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020;8:100141. doi: 10.1016/j.trip.2020.100141. PubMed DOI PMC
Cartenì A., Di Francesco L., Martino M. The role of transport accessibility within the spread of the Coronavirus pandemic in Italy. Saf. Sci. 2021;33:104999. doi: 10.1016/j.ssci.2020.104999. PubMed DOI PMC
Wen L., Sheng M., Sharp B. The impact of COVID-19 on changes in community mobility and variation in transport modes. N. Z. Econ. Pap. 2022;56:98–105. doi: 10.1080/00779954.2020.1870536. DOI
Musselwhite C., Avineri E., Susilo Y. Editorial JTH 16–The Coronavirus Disease COVID-19 and implications for transport and health. J. Transp. Health. 2020;16:100853. doi: 10.1016/j.jth.2020.100853. PubMed DOI PMC
Belik V., Geisel T., Brockmann D. Natural human mobility patterns and spatial spread of infectious diseases. Phys. Rev. X. 2011;1:011001. doi: 10.1103/PhysRevX.1.011001. DOI
Oxley J. Understanding travel patterns to support safe active transport for older adults. J. Transp. Health. 2015;2:79–85. doi: 10.1016/j.jth.2014.09.016. DOI
Pinchoff J., Kraus-Perrotta C., Austrian K., Tidwell J.B., Abuya T., Mwanga D., Kangwana B., Ochako R., Muluve E., Mbushi F., et al. Mobility Patterns During COVID-19 Travel Restrictions in Nairobi Urban Informal Settlements: Who Is Leaving Home and Why. J. Urban Health. 2021;98:211–221. doi: 10.1007/s11524-020-00507-w. PubMed DOI PMC
Cooley P., Brown S., Cajka J., Chasteen B., Ganapathi L., Grefenstette J., Wagener D.K. The role of subway travel in an influenza epidemic: A New York City simulation. J. Urban Health. 2011;88:982–995. doi: 10.1007/s11524-011-9603-4. PubMed DOI PMC
Das S., Boruah A., Banerjee A., Raoniar R., Nama S., Maurya A.K. Impact of COVID-19: A radical modal shift from public to private transport mode. Transp. Policy. 2021;109:1–11. doi: 10.1016/j.tranpol.2021.05.005. PubMed DOI PMC
Jenelius E., Cebecauer M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales, and passenger counts. Transp. Res. Interdiscip. Perspect. 2020;8:100242. doi: 10.1016/j.trip.2020.100242. PubMed DOI PMC
Wang J., Yamamoto T., Liu K. Key determinants and heterogeneous frailties in passenger loyalty toward customized buses: Empirical investigation of subscription termination hazard of users. Transportation Research Part C Emerg. Technol. 2020;115:102636. doi: 10.1016/j.trc.2020.102636. DOI
Paulley N., Balcombe R., Mackett R., Titheridge H., Preston J., Wardman M., White P. The demand for public transport: The effects of fares, quality of service, income and car ownership. Transp. Policy. 2015;13:295–306. doi: 10.1016/j.tranpol.2005.12.004. DOI
Rice J.L., Cohen D.A., Long J., Jurjevich J.R. Contradictions of the climate-friendly city: New perspectives on eco-gentrification and housing justice. Int. J. Urban Reg. Res. 2020;44:145–165. doi: 10.1111/1468-2427.12740. DOI
Mayo F.L., Taboada E.B. Ranking factors affecting public transport mode choice of commuters in an urban city of a developing country using analytic hierarchy process: The case of Metro Cebu, Philippines. Transp. Res. Interdiscip. Perspect. 2020;4:100078. doi: 10.1016/j.trip.2019.100078. DOI
Bosworth G., Price L., Collison M., Fox C. Unequal futures of rural mobility: Challenges for a “Smart Countryside”. Local Econ. 2020;35:586–608. doi: 10.1177/0269094220968231. DOI
Eltarabily S., Elghezanwy D. Post-pandemic cities-the impact of COVID-19 on cities and urban design. Archit. Res. 2020;10:75–84. doi: 10.5923/j.arch.20201003.02. DOI
De Vos J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020;5:100121. doi: 10.1016/j.trip.2020.100121. PubMed DOI PMC
Troko J., Myles P., Gibson J., Hashim A., Enstone J., Kingdon S., Van-Tam J.N. Is public transport a risk factor for acute respiratory infection? BMC Infect. Dis. 2011;11:16. doi: 10.1186/1471-2334-11-16. PubMed DOI PMC
Pawar D.S., Yadav A.K., Akolekar N., Velaga N.R. Impact of physical distancing due to novel coronavirus (SARS-CoV-2) on daily travel for work during transition to lockdown. Transp. Res. Interdiscip. Perspect. 2020;7:100203. doi: 10.1016/j.trip.2020.100203. PubMed DOI PMC
De Haas M., Faber R., Hamersma M. How COVID-19 and the Dutch ‘intelligent lockdown’change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020;6:100150. doi: 10.1016/j.trip.2020.100150. PubMed DOI PMC
Beck M.J., Hensher D.A. Insights into the impact of COVID-19 on household travel and activities in Australia–The early days under restrictions. Transp. Policy. 2020;96:76–93. doi: 10.1016/j.tranpol.2020.07.001. PubMed DOI PMC
Kubaľák S., Kalašová A., Hájnik A. The bike-sharing system in Slovakia and the impact of COVID-19 on this shared mobility service in a selected city. Sustainability. 2021;13:6544. doi: 10.3390/su13126544. DOI
Leppä H., Karavirta L., Rantalainen T., Rantakokko M., Siltanen S., Portegijs E., Rantanen T. Use of walking modifications, perceived walking difficulty and changes in outdoor mobility among community-dwelling older people during COVID-19 restrictions. Aging Clin. Exp. Res. 2021;33:2909–2916. doi: 10.1007/s40520-021-01956-2. PubMed DOI PMC
Paydar M., Kamani Fard A. The hierarchy of walking needs and the COVID-19 pandemic. Int. J. Environ. Res. Public Health. 2021;18:7461. doi: 10.3390/ijerph18147461. PubMed DOI PMC
Štveráková T., Jačisko J., Busch A., Šafářová M., Kolář P., Kobesová A. The impact of COVID-19 on Physical Activity of Czech children. PLoS ONE. 2021;16:e0254244. doi: 10.1371/journal.pone.0254244. PubMed DOI PMC
Jobe J., Griffin G.P. Bike share responses to COVID-19. Transp. Res. Interdiscip. Perspect. 2021;10:100353. doi: 10.1016/j.trip.2021.100353. PubMed DOI PMC
Abdullah M., Ali N., Aslam A.B., Javid M.A., Hussain S.A. Factors affecting the mode choice behavior before and during COVID-19 pandemic in Pakistan. Int. J. Transp. Sci. Technol. 2022;11:174–186. doi: 10.1016/j.ijtst.2021.06.005. DOI
Teixeira J.F., Lopes M. The link between bike sharing and subway use during the COVID-19 pandemic: The case-study of New York’s Citi Bike. Transp. Res. Interdiscip. Perspect. 2020;6:100166. doi: 10.1016/j.trip.2020.100166. PubMed DOI PMC
Costa M., Félix R., Marques M., Moura F. Impact of COVID-19 lockdown on the behavior change of cyclists in Lisbon, using multinomial logit regression analysis. Transp. Res. Interdiscip. Perspect. 2022;14:100609. doi: 10.1016/j.trip.2022.100609. PubMed DOI PMC
Büchel B., Marra A.D., Corman F. COVID-19 as a window of opportunity for cycling: Evidence from the first wave. Transp. Policy. 2022;116:144–156. doi: 10.1016/j.tranpol.2021.12.003. PubMed DOI PMC
Nouvellet P., Bhatia S., Cori A., Ainslie K.E., Baguelin M., Bhatt S., Donnelly C.A. Reduction in mobility and COVID-19 transmission. Nat. Commun. 2021;12:1090. doi: 10.1038/s41467-021-21358-2. PubMed DOI PMC
Aktay A., Bavadekar S., Cossoul G., Davis J., Desfontaines D., Fabrikant A., Wilson R.J. Google COVID-19 community mobility reports: Anonymization process description (version 1.1) arXiv. 2020 doi: 10.48550/arXiv.2004.04145.2004.04145 DOI
Yilmazkuday H. Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. J. Hum. Behav. Soc. Environ. 2021;31:210–220. doi: 10.1080/10911359.2020.1845903. DOI
COVID-19 Community Mobility Reports—Google. [(accessed on 12 July 2022)]. Available online: https://www.google.com/covid19/mobility/
Geldsetzer P. Use of rapid online surveys to assess people’s perceptions during infectious disease outbreaks: A cross-sectional survey on COVID-19. J. Med. Internet Res. 2020;22:e18790. doi: 10.2196/18790. PubMed DOI PMC
Vital-López L., García-García R., Rodríguez-Reséndíz J., Paredes-García W. J., Zamora-Antuñano M. A., Oluyomi-Elufisan T., Cruz-Pérez M. A. The impacts of COVID-19 on technological and polytechnic university teachers. Sustainability. 2022;14:4593. doi: 10.3390/su14084593. DOI
Clark S., Coughenour C., Bumgarner K., De la Fuente-Mella Reynolds C., Abelar J. The impact of pedestrian crossing flags on driver yielding behavior in Las Vegas, NV. Sustainability. 2019;11:4741. doi: 10.3390/su11174741. DOI
Daines R. LibGuides: Statistics Resources: Multinomial Logistic Regression. [(accessed on 22 January 2023)]. Available online: https://resources.nu.edu/statsresources/Multinomiallogistic.
How to Perform a Multinomial Logistic Regression in SPSS Statistics Laerd Statistics. [(accessed on 24 May 2022)]. Available online: https://statistics.laerd.com/spss-tutorials/multinomial-logistic-regression-using-spss-statistics.php.
Sidi P., Mamat M.B., Supian S., Putra A.S. Demand Analysis of Flood Insurance by Using Logistic Regression Model and Genetic Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2018;332:012053. doi: 10.1088/1757-899X/332/1/012053. DOI
Sukono A.S., Mamat M., Prafidya K. Credit Scoring for Cooperative of Financial Services Using Logistic Regression Estimated by Genetic Algorithm. Appl. Math. Sci. 2014;8:45–57. doi: 10.12988/ams.2014.310600. DOI
Sukono S., Riaman R., Herawati T., Saputra J., Hasbullah E.S. Determinant Factors of Fishermen Income and Decision-Making for Providing Welfare Insurance: An Application of Multinomial Logistic Regression. Decis. Sci. Lett. 2021;10:175–184. doi: 10.5267/j.dsl.2020.11.002. DOI
El-Habil A. An Application on Multinomial Logistic Regression Model. Pak. J. Stat. Oper. Res. 2012;8:271–291. doi: 10.18187/pjsor.v8i2.234. DOI
Umaña-Hermosilla B., de la Fuente-Mella H., Elórtegui-Gómez C., Fonseca-Fuentes M. Multinomial logistic regression to estimate and predict the perceptions of individuals and companies in the face of the COVID-19 pandemic in the ñuble region, Chile. Sustainability. 2020;12:9553. doi: 10.3390/su12229553. DOI
Coughenour C., Paz A., de la Fuente-Mella H., Singh A. Multinomial logistic regression to estimate and predict perceptions of bicycle and transportation infrastructure in a sprawling metropolitan area. J. Public Health. 2016;38:e401–e408. doi: 10.1093/pubmed/fdv179. PubMed DOI
Mansilla Domínguez J.M., Font Jiménez I., Belzunegui Eraso A., Peña Otero D., Díaz Pérez D., Recio Vivas A.M. Risk perception of COVID-19 community transmission among the Spanish population. Int. J. Environ. Res. Public Health. 2020;17:8967. doi: 10.3390/ijerph17238967. PubMed DOI PMC
Beckman K.L., Monsey L.M., Archer M.M., Errett N.A., Bostrom A., Baker M.G. Health and safety risk perceptions and needs of app-based drivers during COVID-19. Am. J. Ind. Med. 2021;64:941–951. doi: 10.1002/ajim.23295. PubMed DOI PMC
Suryadari R.T. Understanding changes in perceptions and behaviour of train passengers during the COVID-19 pandemic. IOP Conf. Ser. Earth Environ. Sci. 2021;824:12107. doi: 10.1088/1755-1315/824/1/012107. DOI
Tan L., Ma C. Choice behavior of commuters’ rail transit mode during the COVID-19 pandemic based on logistic model. J. Traffic Transp. Eng. 2021;8:186–195. doi: 10.1016/j.jtte.2020.07.002. DOI
Olde Kalter M., Geurs K.T., Wismans L. Post COVID-19 teleworking and car use intentions. evidence from large scale GPS-tracking and survey data in The Netherlands. Transp. Res. Interdiscip. Perspect. 2021;12:100498. doi: 10.1016/j.trip.2021.100498. PubMed DOI PMC
El Zein A., Beziat A., Pochet P., Klein O., Vincent S. What drives the changes in public transport use in the context of the COVID-19 pandemic? highlights from lyon metropolitan area. Reg. Sci. Policy Pract. 2022;14:122–141. doi: 10.1111/rsp3.12519. DOI
Abdullah M., Ali N., Javid M.A., Dias C., Campisi T. Public transport versus solo travel mode choices during the COVID-19 pandemic: Self-reported evidence from a developing country. Transp. Eng. 2021;5:100078. doi: 10.1016/j.treng.2021.100078. DOI
Ceccato R., Rossi R., Gastaldi M. Travel demand prediction during COVID-19 pandemic: Educational and working trips at the university of Padova. Sustainability. 2021;13:6596. doi: 10.3390/su13126596. DOI
Kamelifar M.J., Ranjbarnia B., Masoumi H. The determinants of walking behavior before and during COVID-19 in middle-east and north Africa: Evidence from Tabriz, Iran. Sustainability. 2022;14:3923. doi: 10.3390/su14073923. DOI
Zafri N.M., Khan A., Jamal S., Alam B.M. Impacts of the COVID-19 pandemic on active travel mode choice in Bangladesh: A study from the perspective of sustainability and new normal situation. Sustainability. 2021;13:6975. doi: 10.3390/su13126975. DOI
Cusack M. Individual, social, and environmental factors associated with active transportation commuting during the COVID-19 pandemic. J. Transp. Health. 2021;22:101089. doi: 10.1016/j.jth.2021.101089. PubMed DOI PMC
Zafri N.M., Khan A., Jamal S., Alam B.M. Risk perceptions of COVID-19 transmission in different travel modes. Transp. Res. Interdiscip. Perspect. 2022;13:100548. doi: 10.1016/j.trip.2022.100548. PubMed DOI PMC
Séjournet A., Macharis C., Tori S., Vanhaverbeke L. Evolution of urban mobility behaviour in Brussels as a result of the COVID-19 pandemic. Reg. Sci. Policy Pract. 2022;14:107–121. doi: 10.1111/rsp3.12525. DOI
Szaruga E., Zaloga E. Sustainable development programming of airports by identification of non-efficient units. Energies. 2022;15:932. doi: 10.3390/en15030932. DOI
Koehler J. Globalization and sustainable development: A case study on international transport and sustainable development. J. Environ. Dev. 2014;23:66–100. doi: 10.1177/1070496513507260. DOI
Załoga E., Wojan W. Political and Market Challenges in Relation to Services Using Intelligent Transport Systems; Proceedings of the Smart Solutions in Today’s Transport: 17th International Conference on Transport Systems Telematics; Katowice, Poland. 5–8 April 2017; pp. 271–281. DOI