Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RVO: 68081715
Czech Academy of Sciences Institutional Support
PubMed
36902123
PubMed Central
PMC10003354
DOI
10.3390/ijms24054692
PII: ijms24054692
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular disease, mitochondrial dysfunction, mitochondrial proteins, post-translational modifications, proteomics,
- MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- lidé MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteom metabolismus MeSH
- proteomika * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- proteom MeSH
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Zobrazit více v PubMed
Nunes J.P.S., Andrieux P., Brochet P., Almeida R.R., Kitano E., Honda A.K., Iwai L.K., Andrade-Silva D., Goudenège D., Alcântara Silva K.D., et al. Co-exposure of cardiomyocytes to IFN-γ and TNF-α induces mitochondrial dysfunction and nitro-oxidative stress: Implication for the pathogenesis of chronic Chagas disease cardiomyopathy. Front. Immunol. 2021;12:755862. doi: 10.3389/fimmu.2021.755862. PubMed DOI PMC
Kumar V., Kumar A.A., Sanawar R., Jaleel A., Kumar T.R.S., Kartha C.C. Chronic pressure overload results in deficiency of mitochondrial membrane transporter ABCB7 which contributes to iron overload, mitochondrial dysfunction, metabolic shift and worsens cardiac function. Sci. Rep. 2019;9:13170. doi: 10.1038/s41598-019-49666-0. PubMed DOI PMC
Wang Y., Zhang J., Li B., He Q. Proteomic analysis of mitochondria: Biological and clinical progresses in cancer. Expert Rev. Proteom. 2017;14:891–903. doi: 10.1080/14789450.2017.1374180. PubMed DOI
Natarajan V., Chawla R., Mah T., Vivekanandan R., Tan S.Y., Sato P.Y., Mallilankaraman K. Mitochondrial dysfunction in age-related metabolic disorders. Proteomics. 2020;20:e1800404. doi: 10.1002/pmic.201800404. PubMed DOI
Bornstein R., Gonzales B., Johnson S.C. Mitochondrial pathways in human health and aging. Mitochondrion. 2020;54:72–84. doi: 10.1016/j.mito.2020.07.007. PubMed DOI PMC
Chen Q., Samidurai A., Thompson J., Hu Y., Das A., Willard B., Lesnefsky E.J. Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165899. doi: 10.1016/j.bbadis.2020.165899. PubMed DOI
Wang L., Yang Z., He X., Pu S., Yang C., Wu Q., Zhou Z., Cen X., Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front. Mol. Neurosci. 2022;15:974480. doi: 10.3389/fnmol.2022.974480. PubMed DOI PMC
Gomes K.P., Jadli A.S., de Almeida L.G.N., Ballasy N.N., Edalat P., Shandilya R., Young D., Belke D., Shearer J., Dufour A., et al. Proteomic analysis suggests altered mitochondrial metabolic profile associated with diabetic cardiomyopathy. Front. Cardiovasc. Med. 2022;9:791700. doi: 10.3389/fcvm.2022.791700. PubMed DOI PMC
Sadhukhan S., Liu X., Ryu D., Nelson O.D., Stupinski J.A., Li Z., Chen W., Zhang S., Weiss R.S., Locasale J.W., et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl. Acad. Sci. USA. 2016;113:4320–4325. doi: 10.1073/pnas.1519858113. PubMed DOI PMC
Hirschey M.D., Zhao Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell Proteom. 2015;14:2308–2315. doi: 10.1074/mcp.R114.046664. PubMed DOI PMC
Davidson M.T., Grimsrud P.A., Lai L., Draper J.A., Fisher-Wellman K.H., Narowski T.M., Abraham D.A., Koves T.R., Kelly D.P., Muoio D.M. Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circ. Res. 2020;127:1094–1108. doi: 10.1161/CIRCRESAHA.120.317293. PubMed DOI PMC
Li L., Zhang J., Zhang Q., Huang Y., Hu J. Cardiac proteomics reveals the potential mechanism of microtubule associated protein 4 phosphorylation-induced mitochondrial dysfunction. Burn. Trauma. 2019;7:8. doi: 10.1186/s41038-019-0146-3. PubMed DOI PMC
Peoples J.N., Ghazal N., Duong D.M., Hardin K.R., Manning J.R., Seyfried N.T., Faundez V., Kwong J.Q. Loss of the mitochondrial phosphate carrier SLC25A3 induces remodeling of the cardiac mitochondrial protein acylome. Am. J. Physiol. Cell Physiol. 2021;321:C519–C534. doi: 10.1152/ajpcell.00156.2021. PubMed DOI PMC
Tomczyk M.M., Cheung K.G., Xiang B., Tamanna N., Teixeira A.L.F., Agarwal P., Kereliuk S.M., Spicer V., Lin L., Treberg J., et al. Mitochondrial sirtuin-3 (SIRT3) prevents doxorubicin-induced dilated cardiomyopathy by modulating protein acetylation and oxidative stress. Circ. Heart Fail. 2022;15:e008547. doi: 10.1161/CIRCHEARTFAILURE.121.008547. PubMed DOI PMC
Hu Q., Zhang H., Gutierrez Cortes N., Wu D., Wang P., Zhang J., Mattison J.A., Smith E., Bettcher L.F., Wang M., et al. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ. Res. 2020;126:456–470. doi: 10.1161/CIRCRESAHA.119.315252. PubMed DOI PMC
Calvo S.E., Mootha V.K. The mitochondrial proteome and human disease. Annu. Rev. Genom. Hum. Genet. 2010;11:25–44. doi: 10.1146/annurev-genom-082509-141720. PubMed DOI PMC
Gregersen N., Hansen J., Palmfeldt J. Mitochondrial proteomics-a tool for the study of metabolic disorders. J. Inherit. Metab. Dis. 2012;35:715–726. doi: 10.1007/s10545-012-9480-3. PubMed DOI
Rahman J., Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018;391:2560–2574. doi: 10.1016/S0140-6736(18)30727-X. PubMed DOI
Chistiakov D.A., Shkurat T.P., Melnichenko A.A., Grechko A.V., Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018;50:121–127. doi: 10.1080/07853890.2017.1417631. PubMed DOI
Rosca M.G., Hoppel C.L. Mitochondrial dysfunction in heart failure. Heart Fail. Rev. 2013;18:607–622. doi: 10.1007/s10741-012-9340-0. PubMed DOI PMC
Gallinat A., Vilahur G., Padro T., Badimon L. Network-assisted systems biology analysis of the mitochochndrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. Int. J. Mol. Sci. 2022;23:2087. doi: 10.3390/ijms23042087. PubMed DOI PMC
Pan Y., Wang Y., Shi W., Liu Y., Cao S., Yu T. Mitochondrial proteomics alterations in rat hearts following ischemia/reperfusion and diazoxide post-conditioning. Mol. Med. Rep. 2021;23:161. doi: 10.3892/mmr.2020.11800. PubMed DOI PMC
Wang J., He J., Fan Y., Xu F., Liu Q., He R., Yan R. Extensive mitochondrial proteome disturbance occurs during the early stages of acute myocardial ischemia. Exp. Ther. Med. 2022;23:85. doi: 10.3892/etm.2021.11008. PubMed DOI PMC
Palmfeldt J., Bross P. Proteomics of human mitochondria. Mitochondrion. 2017;33:2–14. doi: 10.1016/j.mito.2016.07.006. PubMed DOI
Marra F., Lunetti P., Curcio R., Lasorca F.M., Capobianco L., Porcelli V., Dolce V., Fiermonte G., Scarcia P. An overview of mitochondrial protein defects in neuromuscular diseases. Biomolecules. 2021;11:1633. doi: 10.3390/biom11111633. PubMed DOI PMC
Manolis A.S., Manolis A.A., Manolis T.A., Apostolaki N.E., Apostolopoulos E.J., Melita H., Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 2021;41:275–313. doi: 10.1002/med.21732. PubMed DOI
Alves-Figueiredo H., Silva-Platas C., Lozano O., Vazques-Garza E., Guerrero-Beltran C.E., Herzberg-Zarain A., Garcia-Rivas G. A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867:165992. doi: 10.1016/j.bbadis.2020.165992. PubMed DOI
Kruse R., Hojlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion. 2017;33:45–57. doi: 10.1016/j.mito.2016.08.004. PubMed DOI
Niemi N.M., Pagliarini D.J. The extensive and functionally uncharacterized mitochondrial phosphoproteome. J. Biol. Chem. 2021;297:100880. doi: 10.1016/j.jbc.2021.100880. PubMed DOI PMC
Santo-Domingo J., Dayon L., Wiederkehr A. Protein lysine acetylation: Grease or sand in the gears of β-cell mitochondria? J. Mol. Biol. 2020;432:1446–1460. doi: 10.1016/j.jmb.2019.09.011. PubMed DOI
Kerner J., Lee K., Hoppel C.L. Post-translational modifications of mitochondrial outer membrane proteins. Free Radic. Res. 2011;45:16–28. doi: 10.3109/10715762.2010.515218. PubMed DOI
Hosp F., Lassowskat I., Santoro V., De Vleesschauwer D., Fliegner D., Redestig H., Mann M., Christian S., Hannah M.A., Finkemeier I. Lysine acetylation in mitochondria: From inventory to function. Mitochondrion. 2017;33:58–71. doi: 10.1016/j.mito.2016.07.012. PubMed DOI
Ringel A.E., Tucker S.A., Haigis M.C. Chemical and physiological features of mitochondrial acylation. Mol. Cell. 2018;72:610–624. doi: 10.1016/j.molcel.2018.10.023. PubMed DOI PMC
Carrico C., Meyer J.G., He W., Gibson B.W., Verdin E. The mitochondrial acylome emerges: Proreomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab. 2018;27:497–512. doi: 10.1016/j.cmet.2018.01.016. PubMed DOI PMC
Gu H., Yang K., Wu Q., Shen Z., Li X., Sun C. A link between protein acetylation and mitochondrial dynamics under energy metabolism: Comprehensive overview. J. Cell Physiol. 2021;236:7926–7937. doi: 10.1002/jcp.30461. PubMed DOI
Alleyn M., Breitzig M., Lockey R., Kolliputi N. The dawn of succinylation: A posttranslational modification. Am. J. Physiol. Cell Physiol. 2018;314:C228–C232. doi: 10.1152/ajpcell.00148.2017. PubMed DOI PMC
Lesnefsky E.J., Chen Q., Hoppel C.L. Mitochondrial metabolism in aging heart. Circ. Res. 2016;118:1593–1611. doi: 10.1161/CIRCRESAHA.116.307505. PubMed DOI PMC
McBride H.M., Neuspiel M., Wasiak S. Mitochondria: More than just a powerhouse. Curr. Biol. 2006;16:R551–R560. doi: 10.1016/j.cub.2006.06.054. PubMed DOI
Ashrafi G., Schwarz T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42. doi: 10.1038/cdd.2012.81. PubMed DOI PMC
Dasgupta S. Mitochondrion: I am more than a fuel server. Ann. Transl. Med. 2019;7:594. doi: 10.21037/atm.2019.08.22. PubMed DOI PMC
Akbari M., Kikwood T.B.L., Bohr V.A. Mitochondria in the signaling pathways that control longevity and health. Ageing Res. Rev. 2019;54:100940. doi: 10.1016/j.arr.2019.100940. PubMed DOI PMC
Chen L., Knowlton A.A. Mitochondria and heart failure: New insights into an energetic problem. Minerva Cardioangiol. 2010;58:213–229. PubMed PMC
Choudhary C., Weinert B.T., Nishida Y., Verdin E., Mann M. The growing landscape of lysine acetylation links metabolism and cell signaling. Nat. Rev. Mol. Cell Biol. 2014;15:536–550. doi: 10.1038/nrm3841. PubMed DOI
Pougovkina O., Te Brinke H., Ofman R., van Cruchten A.G., Kulik W., Wanders R.J., Houten S.M., de Boer V.C. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 2014;23:3513–3522. doi: 10.1093/hmg/ddu059. PubMed DOI
Brown D.A., Perry J.B., Allen M.E., Sabbah H.N., Stauffer B.L., Shaikh S.R., Cleland J.G.F., Colucci W.S., Butler J., Voors A.A., et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 2017;14:238–250. doi: 10.1038/nrcardio.2016.203. PubMed DOI PMC
Umbrasas D., Jokubka R., Kaupinis A., Valius M., Arandarcikaite O., Borutaite V. Nitric oxide donor NOC-18-induced changes of mitochondrial phosphoproteome in rat cardiac ischemia model. Medicina. 2019;55:631. doi: 10.3390/medicina55100631. PubMed DOI PMC
Frangogiannis N.G. Pathophysiology of myocardial infarction. Compr. Physiol. 2015;5:1841–1875. doi: 10.1002/cphy.c150006. PubMed DOI
Houten S.M., Violante S., Ventura F.V., Wanders R.J.A. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Ann. Rev. Physiol. 2016;78:23–44. doi: 10.1146/annurev-physiol-021115-105045. PubMed DOI
Chaban Y., Boekema E.J., Dudkina N.V. Structures of mitochondrial oxidative phosphorylation supercomplexes and machanisms for their stabilization. Biochim. Biophys. Acta. 2014;1837:418–426. doi: 10.1016/j.bbabio.2013.10.004. PubMed DOI
Letts J.A., Fiedorczuk K., Sazanov L.A. The architecture the respiratory supercomplexes. Nature. 2016;537:644–648. doi: 10.1038/nature19774. PubMed DOI
Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89. doi: 10.1186/s12915-015-0201-x. PubMed DOI PMC
Wirth C., Brandt U., Hunte C., Zickermann V. Structure and function of mitochondrial complex I. Biochim. Biophys. Acta. 2016;1857:902–914. doi: 10.1016/j.bbabio.2016.02.013. PubMed DOI
Gold V.A.M., Brandt T., Cavellini L., Cohen M.M., Ieva R., van der Laan M. Analyisis of mitochondrial membrane protein complexes by electron cryo-tomography. Methods Mol. Biol. 2017;1567:315–336. doi: 10.1007/978-1-4939-6824-4_19. PubMed DOI
Ott M., Herrmann M. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta. 2010;1803:767–775. doi: 10.1016/j.bbamcr.2009.11.010. PubMed DOI
Claros M.G., Perea J., Shu Y.M., Samatey F.A., Popot J.L., Jacq C. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria—The case of a cytoplasmically synthesized apocytochrome b. Eur. J. Biochem. 1995;228:762–771. doi: 10.1111/j.1432-1033.1995.0762m.x. PubMed DOI
Mick D.U., Wagner K., van der Laan M., Frazier A.E., Perschil I., Pawlas M., Meyer H.E., Wascheid B., Rehling P. Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly. EMBO J. 2007;26:4347–4358. doi: 10.1038/sj.emboj.7601862. PubMed DOI PMC
Robinson D.R.L., Hock D.H., Muellner-Wong L., Kugapreethan R., Reljic B., Surgenor E.E., Rodriques C.H.M., Caruana N.J., Stroud D.A. Applying sodium carbonate extraction mass spectrometry to investigate defects in the mitochondrial respiratory chain. Front. Cell Dev. Biol. 2022;10:786268. doi: 10.3389/fcell.2022.786268. PubMed DOI PMC
Kmita K., Zickermann V. Accessory subunits of mitochondrial complex I. Biochem. Soc. Trans. 2013;41:1272–1279. doi: 10.1042/BST20130091. PubMed DOI
Ndi M., Marin-Buera I., Salvatori R., Singh A.P., Ott M. Biogenesis of the bc1 complex of the mitochondria respiratory chain. J. Mol. Biol. 2018;430:3892–3905. doi: 10.1016/j.jmb.2018.04.036. PubMed DOI
Craven I., Alston C.I., Taylor R.W., Turnbull D.M. Recent advances in mitochondrial disease. Annu. Rev. Genom. Hum. Genet. 2017;18:257–275. doi: 10.1146/annurev-genom-091416-035426. PubMed DOI
Ke B., Pepe S., Grubb D.R., Komen J.C., Laskowski A., Rodda F.A., Hardman B.M., Pitt J.J., Ryan M.T., Lazarou M., et al. Tissue-specific splicing of an Ndufs6 gene-trap insertion generates a mitochondrial complex I deficiency-specific cardiomyopathy. Proc. Natl. Acad. Sci. USA. 2012;109:6165–6170. doi: 10.1073/pnas.1113987109. PubMed DOI PMC
Schulte U., Arretz M., Schneider H., Tropschug M., Wachter E., Neupert W., Weiss H. A family of mitochondrial proteins involved in bioenergetics and biogenesis. Nature. 1989;339:147–149. doi: 10.1038/339147a0. PubMed DOI
Ide T., Tsutsui H., Hayashidani S., Kang D., Suematsu N., Nakamura K., Utsumi H., Hamasaki N., Takeshita A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infection. Circ. Res. 2001;88:529–535. doi: 10.1161/01.RES.88.5.529. PubMed DOI
Forner F., Foster L.J., Campanaro S., Valle G., Mann M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell Proteom. 2006;5:608–619. doi: 10.1074/mcp.M500298-MCP200. PubMed DOI
Johnson D.T., Harris R.A., French S., Blair P.V., You J., Bemis K.G., Wang M., Balaban R.S. Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell Physiol. 2007;292:C689–C697. doi: 10.1152/ajpcell.00108.2006. PubMed DOI
Taylor S.W., Fahy E., Zhang B., Glenn G.M., Warnock D.E., Wiley S., Murphy A.N., Gaucher S.P., Capaldi R.A., Gibson B.W., et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 2003;21:281–286. doi: 10.1038/nbt793. PubMed DOI
Pagliarini D.J., Calvo S.E., Chang B., Sheth S.A., Vafai S.B., Ong S., Walford G.A., Sugiana C., Boneh A., Chen W.K., et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:112–123. doi: 10.1016/j.cell.2008.06.016. PubMed DOI PMC
Rath S., Sharma R., Gupta R., Ast T., Chan C., Durham T.J., Goodman R.P., Grabarek Z., Haas M.E., Hung W.H.W., et al. MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49:D1541–D1547. doi: 10.1093/nar/gkaa1011. PubMed DOI PMC
Prokisch H., Andreoli C., Ahting U., Heiss K., Ruepp A., Scharfe C., Meitinger T. MitoP2: The mitochondrial proteome database—Now including mouse data. Nucleic Acids Res. 2006;34:D705–D711. doi: 10.1093/nar/gkj127. PubMed DOI PMC
Cotter D., Guda P., Fahy E., Subramaniam S. MitoProteome: Mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 2004;32:D463–D467. doi: 10.1093/nar/gkh048. PubMed DOI PMC
Smith A.C., Robinson A.J. MitoMiner, an integrated database for the storage and analysis of mitochondrial proteomics data. Mol. Cell Proteom. 2009;8:1324–1337. doi: 10.1074/mcp.M800373-MCP200. PubMed DOI PMC
Smith A.C., Robinson A.J. MitoMiner v4.0: An updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res. 2019;47:D1225–D1228. doi: 10.1093/nar/gky1072. PubMed DOI PMC
Morgenstern M., Peikert C., Lubbert P., Suppanz I., Klemm C., Alka O., Steiert C., Naumenko N., Schendzielorz A., Melchionda L., et al. Qantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 2021;33:2464–2483. doi: 10.1016/j.cmet.2021.11.001. PubMed DOI PMC
Huttlin E.L., Jedrychowski M.P., Elias J.E., Goswami T., Rad R., Beausoleil S.A., Vilen J., Haas W., Sowa M.E., Gygi S.P. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010;143:1174–1189. doi: 10.1016/j.cell.2010.12.001. PubMed DOI PMC
Liao P., Bergamini C., Fato R., Pon L.A., Pallotti F. Isolation of mitochondria from cells and tissues. Methods Cell Biol. 2020;155:3–31. doi: 10.1016/bs.mcb.2019.10.002. PubMed DOI PMC
Afanasyeva M.A., Ustiugova A.S., Golyshev S.A., Kopylov A.T., Bogolyubova A.V., Demin D.E., Belousov P.V., Schwartz A.M. Isolation of large amounts of highly pure mitochondria for “omics” studies. Biochem. (Mosc.) 2018;83:76–85. doi: 10.1134/S0006297918010108. PubMed DOI
Morgenstern M., Stiller S.B., Lubbert P., Peikert C.D., Dannenmaier S., Drepper F., Weill U., Hoss P., Feuerstein R., Gebert M., et al. Definition of high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 2017;19:2836–2852. doi: 10.1016/j.celrep.2017.06.014. PubMed DOI PMC
Murphy S. Subcellular fractionation for DIGE-based proteomics. Methods Mol. Biol. 2023;2596:351–362. doi: 10.1007/978-1-0716-2831-7_24. PubMed DOI
Sandin M., Chawade A., Levander F. Is label-free LC-MS/MS ready for biomarker discovery? Proteom. Clin. Appl. 2015;9:289–294. doi: 10.1002/prca.201400202. PubMed DOI
Ross P.L., Huang Y.N., Marchese J.N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., et al. Multiplexed protein quantitation in Sacharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteom. 2004;3:1154–1169. doi: 10.1074/mcp.M400129-MCP200. PubMed DOI
Ong S., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteom. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. PubMed DOI
Dieterich D.C., Link A.J., Graumann J., Tirrell D.A., Schuman E.M. Selective identification of newly synthesized proteins in mammalian cells using biorthogonal noncanonical amino acid tagging (BONCAT) Proc. Natl. Acad. Sci. USA. 2006;103:9482–9487. doi: 10.1073/pnas.0601637103. PubMed DOI PMC
Stastna M., Gottlieb R.A., Van Eyk J.E. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Expert Rev. Proteom. 2017;14:529–543. doi: 10.1080/14789450.2017.1333424. PubMed DOI PMC
Ma Y., McClatchy D.B., Barkallah S., Wood W.W., Yates J.R., 3rd Quantitative analysis of newly synthesized proteins. Nat. Protoc. 2018;13:1744–1762. doi: 10.1038/s41596-018-0012-y. PubMed DOI PMC
Gillet L.C., Navarro P., Tate S., Rost H., Selevsek N., Reiter L., Bonner R., Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 2012;11:O111.016717. doi: 10.1074/mcp.O111.016717. PubMed DOI PMC
Ludwig C., Gillet L., Rosenberger G., Amon S., Collins B.C., Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018;14:e8126. doi: 10.15252/msb.20178126. PubMed DOI PMC
Lange V., Picotti P., Domon B., Aebersold R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008;4:222. doi: 10.1038/msb.2008.61. PubMed DOI PMC
Rosello-Lleti E., Tarazon E., Barderas M.G., Ortega A., Otero M., Molina-Navarro M.M., Lago F., Gonzalez-Juanatey J.R., Salvador A., Portoles M., et al. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy. PLoS ONE. 2014;9:e112971. doi: 10.1371/journal.pone.0112971. PubMed DOI PMC
Lam M.P.Y., Scruggs S.B., Kim T., Zong C., Lau E., Wang D., Ryan C.M., Faull K.F., Ping P. An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue. J. Proteom. 2012;75:4602–4609. doi: 10.1016/j.jprot.2012.02.014. PubMed DOI PMC
Lombard D.B., Alt F.W., Cheng H., Bunkenborg J., Streeper R.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., Murphy A., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 2007;27:8807–8814. doi: 10.1128/MCB.01636-07. PubMed DOI PMC
Koentges C., Pfeil K., Schnick T., Wiese S., Dahlbock R., Cimolai M.C., Meyer-Steenbuck M., Cenkerova K., Hoffmann M.M., Jaeger C., et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res. Cardiol. 2015;110:36. doi: 10.1007/s00395-015-0493-6. PubMed DOI
Hershberger K.A., Abraham D.M., Martin A.S., Mao L., Liu J., Gu H., Locasale J.W., Hirschey M.D. Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. J. Biol. Chem. 2017;292:19767–19781. doi: 10.1074/jbc.M117.809897. PubMed DOI PMC
Boylston J.A., Sun J., Chen Y., Gucek M., Sack M.N., Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion. J. Mol. Cell Cardiol. 2015;88:73–81. doi: 10.1016/j.yjmcc.2015.09.005. PubMed DOI PMC
Fukushima A., Alrob O.A., Zhang I., Wagg C.S., Altamimi T., Rawat S., Rebeyka I.M., Kantor P.F., Lopaschuk G.D. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am. J. Physiol. Heart Circ. Physiol. 2016;311:H347–H363. doi: 10.1152/ajpheart.00900.2015. PubMed DOI
Bai F., Ma Y., Liu Q. Succinylation as a novel mode of energy metabolism regulation during atrial fibrillation. Med. Hypotheses. 2018;121:54–55. doi: 10.1016/j.mehy.2018.09.018. PubMed DOI
Horton J.L., Martin O.J., Lai L., Riley N.M., Richards A.L., Vega R.B., Leone T.C., Pagliarini D.J., Muoio D.M., Bedi K.C., et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight. 2016;2:e84897. doi: 10.1172/jci.insight.84897. PubMed DOI PMC
Baeza J., Smallegan M.J., Denu J.M. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 2016;41:231–244. doi: 10.1016/j.tibs.2015.12.006. PubMed DOI PMC
Fisher-Wellman K.H., Draper J.A., Davidson M.T., Williams A.S., Narowski T.M., Slenz D.H., Ilkayeva O.R., Stevens R.D., Wagner G.R., Najjar R., et al. Respiratory phenomics across multiple models of protein hyperacylation in cardiac mitochondria reveals a marginal impact on bioenergetics. Cell Rep. 2019;26:1557–1572. doi: 10.1016/j.celrep.2019.01.057. PubMed DOI PMC
Zhou Y., Chung A.C.K., Fan R., Lee H.M., Xu G., Tomlinson B., Vhan J.C.N., Kong A.P.S. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxid. Redox Signal. 2017;27:962–976. doi: 10.1089/ars.2016.6859. PubMed DOI
Peterson B.S., Campbell J.E., Ilkayeva O., Grimsud P.A., Hirschey M.D., Newgard C.B. Remodeling of the acetylproteome by SIRT3 manipulation fails to affect insulin secretion or β cell metabolism in the absence of overnutrition. Cell Rep. 2018;24:209–223. doi: 10.1016/j.celrep.2018.05.088. PubMed DOI PMC
Cheung K.G., Cole L.K., Xiang B., Chen K., Ma X., Myal Y., Hatch G.M., Tong Q., Dolinsky V.W. Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J. Biol. Chem. 2015;290:10981–10993. doi: 10.1074/jbc.M114.607960. PubMed DOI PMC
Wang M., Lin H. Understanding the function of mammalian sirtuins and protein lysine acylation. Annu. Rev. Biochem. 2021;90:245–285. doi: 10.1146/annurev-biochem-082520-125411. PubMed DOI
Betsinger C.N., Cristea I.M. Mitochondrial function, metabolic regulation, and human disease viewed through the prism of sirtuin 4 (SIRT4) functions. J. Proteome Res. 2019;18:1929–1938. doi: 10.1021/acs.jproteome.9b00086. PubMed DOI PMC
Zhao X., Leon I.R., Bak S., Mogensen M., Wrzesinski K., Hojlund K., Jensen O.N. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol. Cell Proteom. 2011;10:M110.000299. doi: 10.1074/mcp.M110.000299. PubMed DOI PMC
Niemi N.M., Wilson G.M., Overmyer K.A., Vogtle F.N., Myketin L., Lohman D.C., Schueler K.L., Attie A.D., Meisinger C., Coon J.J., et al. Pptc7 is an essential phosphatase for promoting mammalian mitochondrial metabolism and biogenesis. Nat. Commun. 2019;10:3197. doi: 10.1038/s41467-019-11047-6. PubMed DOI PMC
Aponte A.M., Phillips D., Hopper R.K., Johnson D.T., Harris R.A., Blinova K., Boja E.S., French S., Balaban R.S. Use of (32)P to study dynamics of the mitochondrial phosphoproteome. J. Proteome Res. 2009;8:2679–2695. doi: 10.1021/pr800913j. PubMed DOI PMC
Ebneth A., Drewes G., Mandelkow E.M., Mandelkow E. Phosphorylation of MAP2 and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil. Cytoskelet. 1999;44:209–224. doi: 10.1002/(SICI)1097-0169(199911)44:3<209::AID-CM6>3.0.CO;2-4. PubMed DOI
Hu J., Chu Z., Han J., Zhang Q., Zhang D., Dang Y., Ren J., Chan H.C., Zhang J., Huang Y. Phosphorylation-dependent mitochondrial translocation of MAP4 is an early step in hypoxia-induced apoptosis in cardiomyocytes. Cell Death Dis. 2014;5:e1424. doi: 10.1038/cddis.2014.369. PubMed DOI PMC
Geiger T., Wisniewski J.R., Cox J., Zanivan S., Kruger M., Ishihama Y., Mann M. Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat. Protoc. 2011;6:147–157. doi: 10.1038/nprot.2010.192. PubMed DOI
Aravamudhan S., Turk C., Bock T., Keufgens L., Nolte H., Lang F., Krishnan R.K., Konig T., Hammerschmidt P., Schindler N., et al. Phosphoproteomics of the developing heart identifies PERM1- An outer mitochondrial membrane protein. J. Mol. Cell Cardiol. 2021;154:41–59. doi: 10.1016/j.yjmcc.2021.01.010. PubMed DOI
Park N., Marquez J., Garcia M.V.F., Shimizu I., Lee S.R., Kim H.K., Han J. Phosphorylation in novel mitochondrial creatine kinase tyrosine residues render cardioprotection against hypoxia/reoxygenation injury. J. Lipid Atheroscler. 2021;10:223–239. doi: 10.12997/jla.2021.10.2.223. PubMed DOI PMC
Zervou S., Whittington H.J., Ostrowski P.J., Cao F., Tyler J., Lake H.A., Neubauer S., Lygate C.A. Increasing creatine kinase activity protects against hypoxia/reoxygenation injury but not against anthracycline toxicity in vitro. PLoS ONE. 2017;12:e0182994. doi: 10.1371/journal.pone.0182994. PubMed DOI PMC
Borutaite V., Morkuniene R., Arandarcikaite O., Jekabsone A., Barauskaite J., Brown G.C. Nitric oxide protects the heart from ischemia-induced apoptosis and mitochondrial damage via protein kinase G mediated blockage of permeability transition and cytochrome c release. J. Biomed. Sci. 2009;16:70. doi: 10.1186/1423-0127-16-70. PubMed DOI PMC
Thongboonkerd V., Chaiyarit S. Gel-based and gel-free phosphoproteomics to measure and characterized mitochondrial phosphoproteins. Curr. Protoc. 2022;2:e390. doi: 10.1002/cpz1.390. PubMed DOI
Distler A.M., Kerner J., Lee K., Hoppel C.L. Post-translational modifications of mitochondrial outer membrane proteins. Methods Enzymol. 2009;457:97–115. doi: 10.1016/S0076-6879(09)05006-X. PubMed DOI
Garcia-Dorado D., Ruisz-Meana M., Piper H.M. Lethal reperfusion injury in acute myocardial infarction: Facts and unresolved issues. Cardiovasc. Res. 2009;83:165–168. doi: 10.1093/cvr/cvp185. PubMed DOI
Lesnefsky E.J., Chen Q., Tandler B., Hoppel C.L. Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies. Annu Rev. Pharmacol. Toxicol. 2017;57:535–565. doi: 10.1146/annurev-pharmtox-010715-103335. PubMed DOI PMC
Chen Q., Paillard M., Gomez L., Ross T., Hu Y., Xu A., Lesnefsky E.J. Activation of mitochondrial µ-calpain increases AIF cleavage in cardiac mitochondria during ischemia-reperfusion. Biochem. Biophys. Res. Commun. 2011;415:533–538. doi: 10.1016/j.bbrc.2011.10.037. PubMed DOI PMC
Li L., Thompson J., Hu Y., Lesnefsky E.J., Willard B., Chen Q. Calpain-mediated protein targets in cardiac mitochondria following ischemia-reperfusion. Sci. Rep. 2022;12:138. doi: 10.1038/s41598-021-03947-9. PubMed DOI PMC
Chen Q., Younus M., Thompson J., Hu Y., Hollander J.M., Lesnefsky E.J. Intermediary metabolism and fatty acid oxidation: Novel targets of electron transport chain-driven injury during ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2018;314:H787–H795. doi: 10.1152/ajpheart.00531.2017. PubMed DOI PMC
Chen Q., Thompson J., Hu Y., Dean J., Lesnefsky E.J. Inhibition of ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. Am. J. Physiol. Cell Physiol. 2019;317:C910–C921. doi: 10.1152/ajpcell.00190.2019. PubMed DOI PMC
Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: Underlying mechanisms and clinical application. Atherosclerosis. 2009;204:334–341. doi: 10.1016/j.atherosclerosis.2008.10.029. PubMed DOI
Vinten-Johansen J., Shi W. Preconditioning and postconditioning: Current knowledge, knowledge gaps, barriers to adoption, and future directions. J. Cardiovasc. Pharmacol. Ther. 2011;16:260–266. doi: 10.1177/1074248411415270. PubMed DOI
Zhao Z., Corvera J.S., Halkos M.E., Kerendi F., Wang N., Guyton R.A., Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H579–H588. doi: 10.1152/ajpheart.01064.2002. PubMed DOI
Chen Q., Lesnefsky E.J. Heart mitochondria and calpain 1: Location, function, and targets. Biochim. Biophys. Acta. 2015;1852:2372–2378. doi: 10.1016/j.bbadis.2015.08.004. PubMed DOI
Ozaki T., Tomita H., Tamai M., Ishiguro S. Characteristics of mitochondrial calpains. J. Biochem. 2007;142:365–376. doi: 10.1093/jb/mvm143. PubMed DOI
Chen Q., Thompson J., Hu Y., Lesnefsky E.J. Reversing mitochondrial defects in aged hearts: Role of mitochondrial calpain activation. Am. J. Physiol. Cell Physiol. 2022;322:C296–C310. doi: 10.1152/ajpcell.00279.2021. PubMed DOI PMC
Shintani-Ishida K., Yoshida K. Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia-reperfusion. Int. J. Cardiol. 2015;197:26–31. doi: 10.1016/j.ijcard.2015.06.010. PubMed DOI
Tan Y., Dourdin N., Wu C., De Veyra T., Elce J.S., Greer P.A. Conditional disruption of ubiquitous calpains in the mouse. Genesis. 2006;44:297–303. doi: 10.1002/dvg.20216. PubMed DOI
Valdez L.B., Zaobornyj T., Bombicino S., Iglesia D.E., Boveris A., Donato M., D’Annunzio V., Buchholz B., Gelpi R.J. Complex I syndrome in myocardial stunning and the effect of adenosine. Free Radic. Biol. Med. 2011;51:1203–1212. doi: 10.1016/j.freeradbiomed.2011.06.007. PubMed DOI
Tatarkova Z., Kovalska M., Sivonova M.K., Racay P., Lehotsky J., Kaplan P. Tyrosin nitration of mitochondrial proteins during myocardial ischemia and reperfusion. J. Physiol. Biochem. 2019;75:217–227. doi: 10.1007/s13105-019-00683-7. PubMed DOI
Liu B., Tewari A.K., Zhang L., Green-Church K.B., Zweier J.L., Chen Y., He G. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: Mitochondria as the major target. Biochim. Biophys. Acta. 2009;1794:476–485. doi: 10.1016/j.bbapap.2008.12.008. PubMed DOI PMC
Yang M., Camara A.K.S., Wakim B.T., Zhou Y., Gadicherla A.K., Kwok W., Stowe D.F. Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: Reduction by peroxynitrite scavenging. Biochim. Biophys. Acta. 2012;1817:2049–2059. doi: 10.1016/j.bbabio.2012.06.004. PubMed DOI PMC
Zhang J., Yao L., Li S., Ferdous M., Zhao P. ER stress induces myocardial dysfunction and cardiac autophagy in Sestrin2 knockout mice. Am. J. Transl. Res. 2022;14:5800–5811. PubMed PMC
Ren D., He Z., Fedorova J., Zhang J., Wood E., Zhang X., Kang D.E., Li J. Sestrin2 maintains OXPHOS integrity to modulate cardiac substrate metabolism during ischemia and reperfusion. Redox Biol. 2021;38:101824. doi: 10.1016/j.redox.2020.101824. PubMed DOI PMC
Garlid K.D., Paucek P., Yarov-Yarovoy V., Murray H.N., Darbenzio R.B., D’Alonzo A.J., Lodge N.J., Smith M.A., Grover G.J. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ. Res. 1997;81:1072–1082. doi: 10.1161/01.RES.81.6.1072. PubMed DOI
Liu Y., Sato T., O’Rourke B., Marban E. Mitochondrial ATP-dependent potassium channels: Novel effectors of cardiac protection? Circulation. 1998;97:2463–2469. doi: 10.1161/01.CIR.97.24.2463. PubMed DOI
Li J., Zhou W., Chen W., Wang H., Zhang Y., Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning. Mol. Med. Rep. 2020;21:1527–1536. doi: 10.3892/mmr.2020.10966. PubMed DOI PMC
Chen C., Kang P.T., Zhang L., Xiao K., Zweier J.L., Chilian W.M., Chen Y. Reperfusion mediated heme impairment with increased protein cysteine sulfonation of mitochondrial complex III in the post-ischemic heart. J. Mol. Cell Cardiol. 2021;161:23–38. doi: 10.1016/j.yjmcc.2021.07.008. PubMed DOI PMC
Bavry A.A., Bhatt D.L. Managing Acute Coronary Syndromes in Clinical Practice. Springer Healthcare; Tarporley, UK: 2008. Revascularization and reperfusion therapy. Chapter 8; pp. 61–68. DOI
Shimada B.K., Boyman L., Huang W., Zhu J., Yang Y., Chen F., Kane M.A., Yadava N., Zou L., Lederer W.J., et al. Pyruvate-driven oxidative phosphorylation is downregulated in sepsis-induced cardiomyopathy: A study of mitochondrial proteome. Shock. 2022;57:553–564. doi: 10.1097/SHK.0000000000001858. PubMed DOI PMC
Carbone F., Liberale L., Preda A., Schindler T.H., Montecucco F. Septic cardiomyopathy: From pathophysiology to the clinical setting. Cells. 2022;11:2833. doi: 10.3390/cells11182833. PubMed DOI PMC
McCall C.E., Zabalawi M., Liu T., Martin A., Long D.L., Buechler N.L., Arts R.J.W., Netea M., Yoza B.K., Stacpoole P.W., et al. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI Insight. 2018;3:e99292. doi: 10.1172/jci.insight.99292. PubMed DOI PMC
Bowker-Kinley M.M., Davis W.I., Wu P., Harris R.A., Popov K.M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 1998;329:191–196. doi: 10.1042/bj3290191. PubMed DOI PMC
Song S., Ding Y., Dai G., Zhang Y., Xu M., Shen J., Chen T., Chen Y., Meng G. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol. Sin. 2021;42:230–241. doi: 10.1038/s41401-020-0490-7. PubMed DOI PMC
Denu R.A. SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid. Med. Cell Longev. 2017;2017:5841716. doi: 10.1155/2017/5841716. PubMed DOI PMC