Antimicrobial Activity of Gelatin Nanofibers Enriched by Essential Oils against Cutibacterium acnes and Staphylococcus epidermidis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FCH-S-23-8330
Brno University of Technology
PubMed
36903722
PubMed Central
PMC10005654
DOI
10.3390/nano13050844
PII: nano13050844
Knihovny.cz E-zdroje
- Klíčová slova
- Lavandula angustifolia, Mentha piperita, acne vulgaris, antimicrobial activity, essential oils, local treatment, nanofibers,
- Publikační typ
- časopisecké články MeSH
Acne vulgaris is a prevalent skin condition that is caused by an imbalance in skin microbiomes mainly by the overgrowth of strains such as Cutibacterium acnes and Staphylococcus epidermidis which affect both teenagers and adults. Drug resistance, dosing, mood alteration, and other issues hinder traditional therapy. This study aimed to create a novel dissolvable nanofiber patch containing essential oils (EOs) from Lavandula angustifolia and Mentha piperita for acne vulgaris treatment. The EOs were characterized based on antioxidant activity and chemical composition using HPLC and GC/MS analysis. The antimicrobial activity against C. acnes and S. epidermidis was observed by the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The MICs were in the range of 5.7-9.4 μL/mL, and MBCs 9.4-25.0 μL/mL. The EOs were integrated into gelatin nanofibers by electrospinning and SEM images of the fibers were taken. Only the addition of 20% of pure essential oil led to minor diameter and morphology alteration. The agar diffusion tests were performed. Pure and diluted Eos in almond oil exhibited a strong antibacterial effect on C. acnes and S. epidermidis. After incorporation into nanofibers, we were able to focus the antimicrobial effect only on the spot of application with no effect on the surrounding microorganisms. Lastly, for cytotoxicity evaluation, and MTT assay was performed with promising results that samples in the tested range had a low impact on HaCaT cell line viability. In conclusion, our gelatin nanofibers containing EOs are suitable for further investigation as prospective antimicrobial patches for acne vulgaris local treatment.
Zobrazit více v PubMed
Woo T.E., Sibley C.D. The Emerging Utility of the Cutaneous Microbiome in the Treatment of Acne and Atopic Dermatitis. J. Am. Acad. Derm. 2020;82:222–228. doi: 10.1016/j.jaad.2019.08.078. PubMed DOI
Chiller K., Selkin B.A., Murakawa G.J. Skin Microflora and Bacterial Infections of the Skin. J. Investig. Dermatol. Symp. Proc. 2001;6:170–174. doi: 10.1046/j.0022-202x.2001.00043.x. PubMed DOI
Sarkar S., Patra P., Mridha K., Ghosh S., Mukhopadhyay A., Thakurta R. Personality Disorders and Its Association with Anxiety and Depression among Patients of Severe Acne: A Cross-Sectional Study from Eastern India. Indian J. Psychiatry. 2016;58:378–382. doi: 10.4103/0019-5545.196720. PubMed DOI PMC
Castellanos Lorduy H.J., Pérez Cely H.C., Casadiego Rincón E.J., Henao Riveros S.C., Colorado C.L. Cutibacterium Acnes Tetracycline Resistance Profile in Patients with Acne Vulgaris, in a Colombian Dermatologic Center. Actas Dermo-Sifiliográficas (Engl. Ed.) 2021;112:873–880. doi: 10.1016/j.adengl.2021.09.003. PubMed DOI
Penso L., Touvier M., Deschasaux M., Szabo De Edelenyi F., Hercberg S., Ezzedine K., Sbidian E. Association between Adult Acne and Dietary Behaviors: Findings from the NutriNet-Santé Prospective Cohort Study. JAMA Derm. 2020;156:854–862. doi: 10.1001/jamadermatol.2020.1602. PubMed DOI PMC
Burkhart C., Burkhart C., Lehmann P. Acne: A Review of Immunologic and Microbiologic Factors. Postgrad. Med. J. 1999;75:328. doi: 10.1136/pgmj.75.884.328. PubMed DOI PMC
Fitz-Gibbon S., Tomida S., Chiu B.H., Nguyen L., Du C., Liu M., Elashoff D., Erfe M.C., Loncaric A., Kim J., et al. Propionibacterium Acnes Strain Populations in the Human Skin Microbiome Associated with Acne. J. Investig. Dermatol. 2013;133:2152–2160. doi: 10.1038/jid.2013.21. PubMed DOI PMC
Scholz C.F.P., Kilian M. The Natural History of Cutaneous Propionibacteria, and Reclassification of Selected Species within the Genus Propionibacterium to the Proposed Novel Genera Acidipropionibacterium Gen. Nov., Cutibacterium Gen. Nov. and Pseudopropionibacterium Gen. Nov. Int. J. Syst. Evol. Microbiol. 2016;66:4422–4432. doi: 10.1099/ijsem.0.001367. PubMed DOI
Dréno B. What Is New in the Pathophysiology of Acne, an Overview. J. Eur. Acad. Derm. Venereol. 2017;31((Suppl. 5)):8–12. doi: 10.1111/jdv.14374. PubMed DOI
Dalgard F., Gieler U., Holm J.Ø., Bjertness E., Hauser S. Self-Esteem and Body Satisfaction among Late Adolescents with Acne: Results from a Population Survey. J. Am. Acad. Derm. 2008;59:746–751. doi: 10.1016/j.jaad.2008.07.013. PubMed DOI
Dréno B., Pécastaings S., Corvec S., Veraldi S., Khammari A., Roques C. Cutibacterium Acnes (Propionibacterium acnes) and Acne Vulgaris: A Brief Look at the Latest Updates. J. Eur. Acad. Dermatol. Venereol. 2018;32:5–14. doi: 10.1111/jdv.15043. PubMed DOI
Aubin G.G., Portillo M.E., Trampuz A., Corvec S. Propionibacterium Acnes, an Emerging Pathogen: From Acne to Implant-Infections, from Phylotype to Resistance. Med. Mal. Infect. 2014;44:241–250. doi: 10.1016/j.medmal.2014.02.004. PubMed DOI
Pineau R.M., Hanson S.E., Lyles J.T., Quave C.L. Growth Inhibitory Activity of Callicarpa Americana Leaf Extracts against Cutibacterium acnes. Front. Pharm. 2019;10:1206. doi: 10.3389/fphar.2019.01206. PubMed DOI PMC
Eichenfield L.F., del Rosso J.Q., Mancini A.J., Cook-Bolden F., Gold L.S., Desai S., Weiss J., Pariser D., Zeichner J., Bhatia N., et al. Evolving Perspectives on the Etiology and Pathogenesis of Acne Vulgaris. J. Drugs Derm. 2015;14:263–272. PubMed
Thiboutot D., Gollnick H., Bettoli V., Dréno B., Kang S., Leyden J.J., Shalita A.R., Lozada V.T., Berson D., Finlay A., et al. New Insights into the Management of Acne: An Update from the Global Alliance to Improve Outcomes in Acne Group. J. Am. Acad. Derm. 2009;60:S1–S50. doi: 10.1016/j.jaad.2009.01.019. PubMed DOI
Sardana K., Gupta T., Garg V.K., Ghunawat S. Antibiotic Resistance to Propionobacterium acnes: Worldwide Scenario, Diagnosis and Management. Expert Rev. Anti-Infect. Ther. 2015;13:883–896. doi: 10.1586/14787210.2015.1040765. PubMed DOI
Esmael A., Hassan M.G., Amer M.M., Abdelrahman S., Hamed A.M., Abd-raboh H.A., Foda M.F. Antimicrobial Activity of Certain Natural-Based Plant Oils against the Antibiotic-Resistant Acne Bacteria. Saudi J. Biol. Sci. 2020;27:448–455. doi: 10.1016/j.sjbs.2019.11.006. PubMed DOI PMC
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
El Asbahani A., Miladi K., Badri W., Sala M., Addi E.H.A., Casabianca H., El Mousadik A., Hartmann D., Jilale A., Renaud F.N.R., et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015;483:220–243. doi: 10.1016/j.ijpharm.2014.12.069. PubMed DOI
Cossetin L.F., Garlet Q.I., Velho M.C., Gündel S., Ourique A.F., Heinzmann B.M., Monteiro S.G. Development of Nanoemulsions Containing Lavandula dentata or Myristica fragrans Essential Oils: Influence of Temperature and Storage Period on Physical-Chemical Properties and Chemical Stability. Ind. Crops Prod. 2021;160:113115. doi: 10.1016/j.indcrop.2020.113115. DOI
Angioni A., Barra A., Coroneo V., Dessi S., Cabras P. Chemical Composition, Seasonal Variability, and Antifungal Activity of Lavandula stoechas L. Ssp. Stoechas Essential Oils from Stem/Leaves and Flowers. J. Agric. Food Chem. 2006;54:4364–4370. doi: 10.1021/jf0603329. PubMed DOI
Smith R.L., Cohen S.M., Doull J., Feron V.J., Goodman J.I., Marnett L.J., Portoghese P.S., Waddell W.J., Wagner B.M., Hall R.L., et al. A Procedure for the Safety Evaluation of Natural Flavor Complexes Used as Ingredients in Food: Essential Oils. Food Chem. Toxicol. 2005;43:345–363. doi: 10.1016/j.fct.2004.11.007. PubMed DOI
Rather A.H., Wani T.U., Khan R.S., Pant B., Park M., Sheikh F.A. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int. J. Mol. Sci. 2021;22:4017. doi: 10.3390/ijms22084017. PubMed DOI PMC
Lin L., Gu Y., Cui H. Moringa Oil/Chitosan Nanoparticles Embedded Gelatin Nanofibers for Food Packaging against Listeria monocytogenes and Staphylococcus aureus on Cheese. Food Packag. Shelf. Life. 2019;19:86–93. doi: 10.1016/j.fpsl.2018.12.005. DOI
Hadipour-Goudarzi E., Montazer M., Latifi M., Aghaji A.A.G. Electrospinning of Chitosan/Sericin/PVA Nanofibers Incorporated with in Situ Synthesis of Nano Silver. Carbohydr. Polym. 2014;113:231–239. doi: 10.1016/j.carbpol.2014.06.082. PubMed DOI
Meziani J., Li Z., Harish V., Tewari D., Gaur M., Yadav A.B., Swaroop S., Bechelany M., Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials. 2022;12:457. doi: 10.3390/NANO12030457. PubMed DOI PMC
Tsai R.Y., Hung S.C., Lai J.Y., Wang D.M., Hsieh H.J. Electrospun Chitosan–Gelatin–Polyvinyl Alcohol Hybrid Nanofibrous Mats: Production and Characterization. J. Taiwan Inst. Chem. Eng. 2014;45:1975–1981. doi: 10.1016/j.jtice.2013.11.003. DOI
Bhattarai R.S., Bachu R.D., Boddu S.H.S., Bhaduri S. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics. 2018;11:5. doi: 10.3390/pharmaceutics11010005. PubMed DOI PMC
Ebrahimi S., Fathi M., Kadivar M. Production and Characterization of Chitosan-Gelatin Nanofibers by Nozzle-Less Electrospinning and Their Application to Enhance Edible Film’s Properties. Food Packag. Shelf. Life. 2019;22:100387. doi: 10.1016/j.fpsl.2019.100387. DOI
Qi Y., Wang C., Wang Q., Zhou F., Li T., Wang B., Su W., Shang D., Wu S. A Simple, Quick, and Cost-Effective Strategy to Fabricate Polycaprolactone/Silk Fibroin Nanofiber Yarns for Biotextile-Based Tissue Scaffold Application. Eur. Polym. J. 2023;186:111863. doi: 10.1016/j.eurpolymj.2023.111863. DOI
Li M., Qiu W., Wang Q., Li N., Liu L., Wang X., Yu J., Li X., Li F., Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(Ester Urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS Appl. Mater. Interfaces. 2022;14:15911–15926. doi: 10.1021/acsami.1c24131. PubMed DOI
Medeiros E.S., Glenn G.M., Klamczynski A.P., Orts W.J., Mattoso L.H.C. Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J. Appl. Polym. Sci. 2009;113:2322–2330. doi: 10.1002/app.30275. DOI
Li M., Yu H., Xie Y., Guo Y., Cheng Y., Qian H., Yao W. Fabrication of Eugenol Loaded Gelatin Nanofibers by Electrospinning Technique as Active Packaging Material. LWT. 2021;139:110800. doi: 10.1016/j.lwt.2020.110800. DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Villa C., Gambaro R., Mariani E., Dorato S. High-Performance Liquid Chromatographic Method for the Simultaneous Determination of 24 Fragrance Allergens to Study Scented Products. J. Pharm. Biomed. Anal. 2007;44:755–762. doi: 10.1016/j.jpba.2007.03.020. PubMed DOI
Murray C.K., Hospenthal D.R. Broth Microdilution Susceptibility Testing for Leptospira Spp. Antimicrob. Agents Chemother. 2004;48:1548. doi: 10.1128/AAC.48.5.1548-1552.2004. PubMed DOI PMC
Lavogina D., Lust H., Tahk M.J., Laasfeld T., Vellama H., Nasirova N., Vardja M., Eskla K.L., Salumets A., Rinken A., et al. Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. Biosensors. 2022;12:196. doi: 10.3390/bios12040196. PubMed DOI PMC
Palomino J.C., Martin A., Camacho M., Guerra H., Swings J., Portaels F. Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46:2720. doi: 10.1128/AAC.46.8.2720-2722.2002. PubMed DOI PMC
Blažeković B., Yang W., Wang Y., Li C., Kindl M., Pepeljnjak S., Vladimir-Knežević S. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils of Lavandula × intermedia ‘Budrovka’ and L. Angustifolia Cultivated in Croatia. Ind. Crops Prod. 2018;123:173–182. doi: 10.1016/j.indcrop.2018.06.041. DOI
Yuan C., Wang Y., Liu Y., Cui B. Physicochemical Characterization and Antibacterial Activity Assessment of Lavender Essential Oil Encapsulated in Hydroxypropyl-Beta-Cyclodextrin. Ind. Crops Prod. 2019;130:104–110. doi: 10.1016/j.indcrop.2018.12.067. DOI
Wang P., Li Y., Zhang C., Feng F., Zhang H. Sequential Electrospinning of Multilayer Ethylcellulose/Gelatin/Ethylcellulose Nanofibrous Film for Sustained Release of Curcumin. Food Chem. 2020;308:125599. doi: 10.1016/j.foodchem.2019.125599. PubMed DOI
Bokrova J., Marova I., Matouskova P., Pavelkova R. Fabrication of Novel PHB-Liposome Nanoparticles and Study of Their Toxicity in Vitro. J. Nanoparticle Res. 2019;21:1–12. doi: 10.1007/s11051-019-4484-7. DOI
Li X., Turánek J., Knötigová P., Kudláčková H., Mašek J., Parkin S., Rankin S.E., Knutson B.L., Lehmler H.J. Hydrophobic Tail Length, Degree of Fluorination and Headgroup Stereochemistry Are Determinants of the Biocompatibility of (Fluorinated) Carbohydrate Surfactants. Colloids Surf. Biointerfaces. 2009;73:65–74. doi: 10.1016/j.colsurfb.2009.04.023. PubMed DOI PMC
Gülçin Ì., Şat I.G., Beydemir Ş., Elmastaş M., Küfrevioǧlu Ö.I. Comparison of Antioxidant Activity of Clove (Eugenia caryophylata Thunb) Buds and Lavender (Lavandula stoechas L.) Food Chem. 2004;87:393–400. doi: 10.1016/j.foodchem.2003.12.008. DOI
Hou T., Sana S.S., Li H., Xing Y., Nanda A., Netala V.R., Zhang Z. Essential Oils and Its Antibacterial, Antifungal and Anti-Oxidant Activity Applications: A Review. Food Biosci. 2022:101716. doi: 10.1016/j.fbio.2022.101716. DOI
Badr M.M., Badawy M.E.I., Taktak N.E.M. Characterization, Antimicrobial Activity, and Antioxidant Activity of the Nanoemulsions of Lavandula spica Essential Oil and Its Main Monoterpenes. J. Drug Deliv. Sci. Technol. 2021;65:102732. doi: 10.1016/j.jddst.2021.102732. DOI
Kıvrak Ş. Essential Oil Composition and Antioxidant Activities of Eight Cultivars of Lavender and Lavandin from Western Anatolia. Ind. Crops Prod. 2018;117:88–96. doi: 10.1016/j.indcrop.2018.02.089. DOI
Al-Ansari M.M., Andeejani A.M.I., Alnahmi E., AlMalki R.H., Masood A., Vijayaraghavan P., Rahman A.A., Choi K.C. Insecticidal, Antimicrobial and Antioxidant Activities of Essential Oil from Lavandula latifolia L. and Its Deterrent Effects on Euphoria leucographa. Ind. Crops Prod. 2021;170:113740. doi: 10.1016/j.indcrop.2021.113740. DOI
Dammak I., Hamdi Z., Kammoun El Euch S., Zemni H., Mliki A., Hassouna M., Lasram S. Evaluation of Antifungal and Anti-Ochratoxigenic Activities of Salvia Officinalis, Lavandula Dentata and Laurus Nobilis Essential Oils and a Major Monoterpene Constituent 1,8-Cineole against Aspergillus carbonarius. Ind. Crops Prod. 2019;128:85–93. doi: 10.1016/j.indcrop.2018.11.006. DOI
El Hamdaoui A., Msanda F., Boubaker H., Leach D., Bombarda I., Vanloot P., El Aouad N., Abbad A., Boudyach E.H., Achemchem F., et al. Essential Oil Composition, Antioxidant and Antibacterial Activities of Wild and Cultivated Lavandula mairei Humbert. Biochem. Syst. Ecol. 2018;76:1–7. doi: 10.1016/j.bse.2017.11.004. DOI
Cherrat L., Espina L., Bakkali M., Pagán R., Laglaoui A. Chemical Composition, Antioxidant and Antimicrobial Properties of Mentha pulegium, Lavandula stoechas and Satureja calamintha Scheele Essential Oils and an Evaluation of Their Bactericidal Effect in Combined Processes. Innov. Food Sci. Emerg. Technol. 2014;22:221–229. doi: 10.1016/j.ifset.2013.12.016. DOI
Mollaei S., Ebadi M., Hazrati S., Habibi B., Gholami F., Sourestani M.M. Essential Oil Variation and Antioxidant Capacity of Mentha pulegium Populations and Their Relation to Ecological Factors. Biochem. Syst. Ecol. 2020;91:104084. doi: 10.1016/j.bse.2020.104084. DOI
Marincaş O., Feher I. A New Cost-Effective Approach for Lavender Essential Oils Quality Assessment. Ind. Crops Prod. 2018;125:241–247. doi: 10.1016/j.indcrop.2018.09.010. DOI
Martucci J.F., Gende L.B., Neira L.M., Ruseckaite R.A. Oregano and Lavender Essential Oils as Antioxidant and Antimicrobial Additives of Biogenic Gelatin Films. Ind. Crops Prod. 2015;71:205–213. doi: 10.1016/j.indcrop.2015.03.079. DOI
Virgiliou C., Zisi C., Kontogiannopoulos K.N., Nakas A., Iakovakis A., Varsamis V., Gika H.G., Assimopoulou A.N. Headspace Gas Chromatography-Mass Spectrometry in the Analysis of Lavender’s Essential Oil: Optimization by Response Surface Methodology. J. Chromatogr. 2021;1179:122852. doi: 10.1016/j.jchromb.2021.122852. PubMed DOI
Ilić Z.S., Milenković L., Tmušić N., Stanojević L., Stanojević J., Cvetković D. Essential Oils Content, Composition and Antioxidant Activity of Lemon Balm, Mint and Sweet Basil from Serbia. LWT. 2022;153:112210. doi: 10.1016/j.lwt.2021.112210. DOI
Desam N.R., Al-Rajab A.J., Sharma M., Mylabathula M.M., Gowkanapalli R.R., Albratty M. Chemical Constituents, in Vitro Antibacterial and Antifungal Activity of Mentha × piperita L. (Peppermint) Essential Oils. J. King Saud. Univ. Sci. 2019;31:528–533. doi: 10.1016/j.jksus.2017.07.013. DOI
Calo J.R., Crandall P.G., O’Bryan C.A., Ricke S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control. 2015;54:111–119. doi: 10.1016/j.foodcont.2014.12.040. DOI
Chrysargyris A., Xylia P., Botsaris G., Tzortzakis N. Antioxidant and Antibacterial Activities, Mineral and Essential Oil Composition of Spearmint (Mentha spicata L.) Affected by the Potassium Levels. Ind. Crops Prod. 2017;103:202–212. doi: 10.1016/j.indcrop.2017.04.010. DOI
Jamróz E., Juszczak L., Kucharek M. Investigation of the Physical Properties, Antioxidant and Antimicrobial Activity of Ternary Potato Starch-Furcellaran-Gelatin Films Incorporated with Lavender Essential Oil. Int. J. Biol. Macromol. 2018;114:1094–1101. doi: 10.1016/j.ijbiomac.2018.04.014. PubMed DOI
Man A., Santacroce L., Jacob R., Mare A., Man L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens. 2019;8:15. doi: 10.3390/pathogens8010015. PubMed DOI PMC
Bajpai V.K., Sharma A., Baek K.H. Antibacterial Mode of Action of Cudrania tricuspidata Fruit Essential Oil, Affecting Membrane Permeability and Surface Characteristics of Food-Borne Pathogens. Food Control. 2013;32:582–590. doi: 10.1016/j.foodcont.2013.01.032. DOI
Xiang F., Bai J., Tan X., Chen T., Yang W., He F. Antimicrobial Activities and Mechanism of the Essential Oil from Artemisia argyi Levl. et Van. Var. Argyi Cv. Qiai. Ind. Crops Prod. 2018;125:582–587. doi: 10.1016/j.indcrop.2018.09.048. DOI
Maddheshiya S., Ahmad A., Ahmad W., Zakir F., Aggarwal G. Essential Oils for the Treatment of Skin Anomalies: Scope and Potential. S. Afr. J. Bot. 2022;151:187–197. doi: 10.1016/j.sajb.2021.12.034. DOI
Zu Y., Yu H., Liang L., Fu Y., Efferth T., Liu X., Wu N. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells. Molecules. 2010;15:3200–3210. doi: 10.3390/molecules15053200. PubMed DOI PMC
Kozics K., Bučková M., Puškárová A., Kalászová V., Cabicarová T., Pangallo D. The Effect of Ten Essential Oils on Several Cutaneous Drug-Resistant Microorganisms and Their Cyto/Genotoxic and Antioxidant Properties. Molecules. 2019;24:4570. doi: 10.3390/molecules24244570. PubMed DOI PMC
Alexa V.T., Galuscan A., Soica C.M., Cozma A., Coricovac D., Borcan F., Popescu I., Mioc A., Szuhanek C., Dehelean C.A., et al. In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils. Molecules. 2022;27:990. doi: 10.3390/molecules27030990. PubMed DOI PMC