Comparative ultrastructure of the antennae and sensory hairs in six species of crayfish
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36908819
PubMed Central
PMC10000303
DOI
10.7717/peerj.15006
PII: 15006
Knihovny.cz E-resources
- Keywords
- Antenna, Arthropods, Biometry, Crustaceans, Electron microscopy, Morphology,
- MeSH
- Ecosystem * MeSH
- Seafood MeSH
- Astacoidea * MeSH
- Hair MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Antennae in crayfish are essential for gaining information about the local topography and localising food, chemicals, conspecifics or predator. There are still gaps in the research on the morphology of antennae in decapods compared to other arthropods. METHODOLOGY: Biometrical and ultrastructural methods were applied using light and cryo-scanning electron microscopies to study the morphology of antennae in six different crayfish species, including marbled crayfish Procambarus virginalis, Mexican dwarf crayfish Cambarellus patzcuarensis, red swamp crayfish Procambarus clarkii, signal crayfish Pacifastacus leniusculus, common yabby Cherax destructor, and spiny-cheek crayfish Faxonius limosus to find their potential morphological differences. RESULTS: Significant differences in the antenna length, length and width of each segment to carapace length ratios, and the number of segments were found in the six crayfish species. The ultrastructure revealed differences in the distribution of sensory hairs on the antenna and the morphology of the antennal surface. CONCLUSIONS: The different morphology of antennae might reflect adaptation to the conditions of their specific habitats. In addition, results showed that a combination of differences in the morphological features and biometrical measurements of antennae could be used for the distinguishment of different studied crayfish species.
See more in PubMed
Basil J, Sandeman D. Crayfish (Cherax destructor) use tactile cues to detect and learn topographical changes in their environment. Ethology. 2000;106:247–259. doi: 10.1046/j.1439-0310.2000.00524.x. DOI
Belanger R, Ren X, McDowell K, Chang S, Moore P, Zielinski B. Sensory setae on the major chelae of male crayfish, Orconectes rusticus (Decapoda: Astacidae)—impact of reproductive state on function and distribution. Journal of Crustacean Biology. 2008;28(1):27–36. doi: 10.1651/07-2828r.1. DOI
Bender M, Gnatzy W, Tautz J. The antennal feathered hairs in the crayfish—a non-innervated stimulus transmitting system. Journal of Comparative Physiology. 1984;154(1):45–47. doi: 10.1007/Bf00605388. DOI
Breithaupt T, Eger P. Urine makes the difference: chemical communication in fighting crayfish made visible. Journal of Experimental Biology. 2002;205(9):1221–1231. doi: 10.1242/jeb.205.9.1221. PubMed DOI
Crandall KA, De Grave S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology. 2017;37(5):615–653. doi: 10.1093/jcbiol/rux070. DOI
Dong ZS, Dou FG, Yang YB, Wickham JD, Tang R, Zhang YJ, Huang ZY, Zheng XL, Wang XY, Lu W. First description and comparison of the morphological and ultramicro characteristics of the antennal sensilla of two fir longhorn beetles. PLOS ONE. 2020;15(10):e0241115. doi: 10.1371/journal.pone.0241115. PubMed DOI PMC
Fedotov VP. Systems of chemoperception in Decapod crayfish. Journal of Evolutionary Biochemistry and Physiology. 2009;45(1):1–26. doi: 10.1134/S0022093009010013. PubMed DOI
Hallberg E, Johansson KUI, Wallen R. Olfactory sensilla in crustaceans: morphology, sexual dimorphism, and distribution patterns. International Journal of Insect Morphology and Embryology. 1997;26(3–4):173–180. doi: 10.1016/S0020-7322(97)00019-6. DOI
Hao YN, Sun YX, Liu CZ. Functional morphology of antennae and sensilla of Hippodamia variegata (Coleoptera: Coccinellidae) PLOS ONE. 2020;15(8):e0237452. doi: 10.1371/journal.pone.0237452. PubMed DOI PMC
Hobbs HH., Jr . Synopsis of the families and genera of crayfishes (Cruatacea: Decapoda) Washington, D.C.: Smithsonian Institution Press; 1974.
Holdich DM, Lowery RS. Freshwater crayfish: biology, management and exploitation. Kent: Croom Helm Ltd; 1988.
Hopkins C. Breeding in the freshwater crayfish Paranephrops planifrons White. New Zealand Journal of Marine and Freshwater Research. 1967;1:51–58. doi: 10.1080/00288330.1967.9515191. DOI
Kouyama N, Shimozawa T. The structure of a hair mechanoreceptor in the antennule of crayfish (Crustacea) Cell and Tissue Research. 1982;226:565–578. doi: 10.1007/BF00214785. PubMed DOI
Limberger GM, Brugnera R, da Fonseca DB. Antennal morphology and sensilla ultrastructure of Ascia monuste (Linnaeus) (Lepidoptera: Pieridae) Micron. 2021;142:103000. doi: 10.1016/j.micron.2020.103000. PubMed DOI
Masters WM, Aicher B, Tautz J, Markl H. A new type of water vibration receptor on the crayfish antenna. 2. Model of receptor function. Journal of Comparative Physiology. 1982;149(3):409–422. doi: 10.1007/Bf00619156. DOI
Mead KS. Do antennule and aesthetasc structure in the crayfish Orconectes virilis correlate with flow habitat? Integrative and Comparative Biology. 2008;48(6):823–833. doi: 10.1093/icb/icn067. PubMed DOI
Mellon D. Smelling, feeling, tasting and touching: behavioral and neural integration of antennular chemosensory and mechanosensory inputs in the crayfish. Journal of Experimental Biology. 2012;215(13):2163–2172. doi: 10.1242/jeb.069492. PubMed DOI
Niksirat H, Kouba A, Kozak P. Ultrastructure of egg activation and cortical reaction in the noble crayfish Astacus astacus. Micron. 2015;68:115–121. doi: 10.1016/j.micron.2014.09.010. PubMed DOI
Patoka J, Blaha M, Kouba A. Cherax acherontis (Decapoda: parastacidae), the first cave crayfish from the Southern Hemisphere (Papua Province, Indonesia) Zootaxa. 2017;4363(1):137–144. doi: 10.11646/zootaxa.4363.1.7. PubMed DOI
Patoka J, Kalous L, Kopecký O. Risk assessment of the crayfish pet trade based on data from the Czech Republic. Biological Invasions. 2014;16(12):2489–2494. doi: 10.1007/s10530-014-0682-5. DOI
Patoka J, Kocánová B, Kalous L. Crayfish in Czech cultural space: the longest documented relationship between humans and crayfish in Europe. Knowledge and Management of Aquatic Ecosystems. 2016;417:5. doi: 10.1051/kmae/2015038. DOI
Pravin S, Mellon D, Berger EJ, Reidenbach MA. Effects of sensilla morphology on mechanosensory sensitivity in the crayfish. Bioinspiration & Biomimetics. 2015;10(3):36006. doi: 10.1088/1748-3190/10/3/036006. PubMed DOI
Sandeman DC. Crayfish antennae as tactile organs—their mobility and the responses of their proprioceptors to displacement. Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology. 1985;157(3):363–373. doi: 10.1007/Bf00618126. PubMed DOI
Sandeman DC. Physical-properties, sensory receptors and tactile reflexes of the antenna of the Australian fresh-water crayfish Cherax destructor. Journal of Experimental Biology. 1989;141:197–217. doi: 10.1242/jeb.141.1.197. DOI
Tautz J, Masters WM, Aicher B, Markl H. A new type of water vibration receptor on the crayfish antenna. 1. Sensory physiology. Journal of Comparative Physiology. 1981;144:533–541. doi: 10.1007/BF01326838. DOI
Tierney AJ, Thompson CS, Dunham DW. Fine-structure of aesthetasc chemoreceptors in the crayfish Orconectes propinquus. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 1986;64(2):392–399. doi: 10.1139/z86-061. DOI
Varjú D. Prey attack in crayfish: conditions for success and kinematics of body motion. Journal of Comparative Physiology A. 1989;165:99–107. doi: 10.1007/BF00613803. DOI
Vogt G. Functional anatomy. In: Holdich DM, editor. Biology of Freshwater Crayfish. Blackwell Science: Oxford; 2002. pp. 53–151.
Weiss M, Thatje S, Heilmayer O. Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab Cancer setosus across latitude. Helgoland Marine Research. 2010;64(2):125–133. doi: 10.1007/s10152-009-0173-8. DOI
Yang SZ, Yang MH, Xu Y, Zhang JT. Antennal sensilla of Chrysis shanghalensis (Hymenoptera: Chrysididae), a larval ectoparasite of Monema flavescens (Lepidoptera: Limacodidae) Journal of Entomological Science. 2021;56:1–11. doi: 10.18474/0749-8004-56.1.1. DOI
Zeil J, Sandeman R, Sandeman D. Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. Journal of Comparative Physiology A. 1985;157:607–617. doi: 10.1007/BF01351355. PubMed DOI
Zhang F, Chen J, Ma M, Lu PF, Liu S, Guo K, Xu R, Qiao HL, Xu CQ. Morphology and distribution of antennal sensilla in the gall midge Gephyraulus lycantha (Diptera: Cecidomyiidae) Micron. 2021;145:103061. doi: 10.1016/j.micron.2021.103061. PubMed DOI
Ziemba RE, Simpson A, Hopper R, Cooper RL. A comparison of antennule structure in a surface- and a cave-dwelling crayfish, genus Orconectes (Decapoda, Astacidae) Crustaceana. 2003;76(7):859–869. doi: 10.1163/15685400360730633. DOI