Contaminated disposable rubber gloves as evidence samples after a chemical attack with nerve agents
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36912582
DOI
10.1002/dta.3468
Knihovny.cz E-zdroje
- Klíčová slova
- G-agents, chemical warfare agents, deployable laboratory, polymer sample, sarin,
- MeSH
- guma * chemie MeSH
- latex MeSH
- nervová bojová látka * MeSH
- ochranné rukavice MeSH
- retrospektivní studie MeSH
- rozpouštědla MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guma * MeSH
- latex MeSH
- nervová bojová látka * MeSH
- rozpouštědla MeSH
Nerve agents have been used recently in the Syrian civil war. Collecting relevant samples for retrospective identification of an attack is often problematic. The article deals with the possibility of using contaminated gloves as an analytical sample for evidence of the chemical weapons use. There have not yet been published studies dealing with the identification of chemical warfare agents in this type of matrix, where the diversity of chemical properties of gloves and the lifetime of the contaminated sample would be considered. Sarin, soman, and cyclosarin were used as contaminants in the study. Nitrile, latex, and vinyl disposable gloves were chosen as matrices. The identification method was gas chromatography. Six solvents commonly used in military laboratories were tested as extractants. The extraction procedure was optimized in terms of the appropriate method (vortex) and the required extraction time (1 min) and resulted in significant reduction in sample preparation time. The chromatographic background of the extracts was also monitored in order to find a method with the least number of peaks interfering in the identification. Suitable solvents were hexane and acetonitrile. The lifetime of the sample was also investigated. The worst result was recorded for latex. For individual contaminants, the time varied depending on the volatility. The developed procedures were successfully validated within a sample handling effects scenario. The results demonstrate that in the event of an ongoing military risk at the site of an attack, even discarded disposable rubber glove type samples can be used as evidence.
Zobrazit více v PubMed
Rosman Y, Eisenkraft A, Milk N, et al. Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann Intern Med. 2014;160(9):644-648. doi:10.7326/M13-2799
Ort H, Florus S. Protective properties of laboratory gloves against chemical warfare agents. Adv Mil Technol. 2007;2(2):85-102.
Dubey V, Gupta AK, Maiti SN. Mechanism of the diffusion of sulfur mustard, a chemical warfare agent, in butyl and nitrile rubbers. J Polym Sci B. 2002;40(17):1821-1827. doi:10.1002/polb.10235
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, de Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: history, mechanisms of action, and medical countermeasures. Neuropharmacology. 2020;181:108298. doi:10.1016/j.neuropharm.2020.108298
Tu AT. Aum Shinrikyo's chemical and biological weapons: more than sarin. Forensic Sci Rev. 2014;26(2):115-120.
Chao LL, Zhang Y. Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans. Neurotoxicol Teratol. 2018;68:36-46. doi:10.1016/j.ntt.2018.05.001
John H, van der Schans MJ, Koller M, et al. Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol. 2018;36(1):61-71. doi:10.1007/s11419-017-0376-7
Costanzi S, Machado JH, Mitchell M. Nerve agents: what they are, how they work, how to counter them. ACS Chem Nerosci. 2018;9(5):873-885. doi:10.1021/acschemneuro.8b00148
Hoenig SL. Compendium of Chemical Warfare Agents. New York, NY: Springer; 2007.
Watson A, Opresko D, Young RA, Hauschild V, King J, Bakshi K. Organophosphate nerve agents. In: Gupta RC, ed. Handbook of toxicology of chemical warfare agents. 2nd ed. Amsterdam: Elsevier; 2015:87-109. doi:10.1016/B978-0-12-800159-2.00009-9
Black RM, Clarke RJ, Read RW, Reid MTJ. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J Chromatogr A. 1994;662(2):301-321. doi:10.1016/0021-9673(94)80518-0
D'Agostino PA, Hancock JR, Provost LR. Determination of sarin, soman and their hydrolysis products in soil by packed capillary liquid chromatography-electrospray mass spectrometry. J Chromatogr. 2001;912(2):291-299. doi:10.1016/S0021-9673(00)01275-9
Zhang M, Liu Y, Chen J, et al. Sensitive untargeted screening of nerve agents and their degradation products using liquid chromatography-high resolution mass spectrometry. Anal Chem. 2020;92(15):10578-10587. doi:10.1021/acs.analchem.0c01508
Valdez CA, Leif RN, Hok S, Vu AK, Salazar EP, Alcaraz A. Methylation protocol for the retrospective detection of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, indicative markers for the nerve agents sarin, soman and cyclosarin, at low levels in soils using EI-GC-MS. Sci Total Environ. 2019;683:175-184. doi:10.1016/j.scitotenv.2019.05.205
Richardson DD, Caruso JA. Screening organophosphorus nerve agent degradation products in pesticide mixtures by GC-ICPMS. Anal Bioanal Chem. 2007;389(3):679-682. doi:10.1007/s00216-007-1408-7
Kanaujia PK, Pardasani D, Gupta AK, Dubey DK. Extraction of chemical warfare agents from water with hydrophilic-lipophilic balance and C18 cartridges: comparative study. J Chromatogr A. 2007;1139(2):185-190. doi:10.1016/j.chroma.2006.11.028
Weissberg A, Madmon M, Elgarisi M, Dagan S. Determination of trace amounts of G-type nerve agents in aqueous samples utilizing “in vial” instantaneous derivatization and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2017;1512:71-77. doi:10.1016/j.chroma.2017.07.002
Kubáň P, Seiman A, Makarotševa N, Vaher M, Kaljurand M. In situ determination of nerve agents in various matrices by portable capillary electropherograph with contactless conductivity detection. J Chromatogr A. 2011;1218(18):2618-2625. doi:10.1016/j.chroma.2011.03.006
Pardasani D, Palit M, Gupta AK, Shakya P, Sekhar K, Dubey DK. Sample preparation of organic liquid for off-site analysis of chemical weapons convention related compounds. Anal Chem. 2005;77(4):1172-1176. doi:10.1021/ac0486138
Nagashima H, Kondo T, Nagoya T, et al. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with tri-bed concentrator. J Chromatogr a. 2015;1406:279-290. doi:10.1016/j.chroma.2015.06.011
Kanamori-Kataoka M, Seto Y. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. J Chromatogr A. 2015;1410:19-27. doi:10.1016/j.chroma.2015.07.077
Primera-Pedrozo OM, Fraga CG, Breton-Vega A, et al. Sorption and desorption study of a nerve-agent simulant from office materials for forensic applications. Forensic Chem. 2020;20:100260. doi:10.1016/j.forc.2020.100260
D'Agostino PA, Hancock JR, Chenier CL, Lepage CRJ. Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation. J Chromatogr A. 2006;1110(1-2):86-94. doi:10.1016/j.chroma.2006.01.083
Weissberg A, Madmon M, Elgarisi M, Dagan S. Aqueous extraction followed by derivatization and liquid chromatography-mass spectrometry analysis: a unique strategy for trace detection and identification of G-nerve agents in environmental matrices. J Chromatogr A. 2018;1577:24-30. doi:10.1016/j.chroma.2018.09.052
Willison SA. Investigation of the persistence of nerve agent degradation analytes on surfaces through wipe sampling and detection with ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal Chem. 2015;87(2):1034-1041. doi:10.1021/ac503777z
Wils ERJ, Hulst AG, De Jong AL. Determination of mustard gas and related vesicants in rubber and paint by gas chromatography-mass spectrometry. J Chromatogr A. 1992;625(2):382-386. doi:10.1016/0021-9673(92)85226-J
Mesilaakso M, Tolppa EL. Detection of trace amounts of chemical warfare agents and related compounds in rubber, paint, and soil samples by 1H and 31P{1H} NMR spectroscopy. Anal Chem. 1996;68(14):2313-2318. doi:10.1021/ac960085f
T⊘rnes JA, Opstad AM, Johnsen BA. Use of solid-phase extraction in determination of chemical warfare agents. Int J Environ Anal Chem. 1991;44(4):227-231. doi:10.1080/03067319108027555
Kuitunen ML, Nygren Y. Paint, rubber and other polymeric samples. In: Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament. Vol.2017. 2nd ed. Helsinki, Finland: The Ministry of Foreign Affairs of Finland; 2017:237-244.
Rivin D, Lindsay RS, Shuely WJ, Rodriguez A. Liquid permeation through nonporous barrier materials. J Membr Sci. 2005;246(1):39-47. doi:10.1016/j.memsci.2004.06.057
Rozsypal T. Development of a method for the derivatization of ethanolamines and its application to sand samples. J Serb Chem Soc. 2022;87(2):233-245. doi:10.2298/JSC210312047R
Rozsypal T, Kobliha Z. Identification of nitrogen mustard chemical warfare agents in sand by gas chromatography-mass spectrometry (GC-MS) in a military deployable laboratory. Anal Lett. 2023;56(1):1-13. doi:10.1080/00032719.2022.2081336
Florus S. Základy izolační ochrany povrchu těla [Basics of insulation protection of the body surface]. Brno: University of Defence; 2022.
Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Model. 1989;29(3):163-172. doi:10.1021/ci00063a006
Brown BC, Dubrovskiy A, Gvetadze AR, Phalen RN. Chemical permeation of similar disposable nitrile gloves exposed to volatile organic compounds with different polarities: part 1. J OccupEnviron Hyg. 2020;17(4):165-171. doi:10.1080/15459624.2020.1721510