Global Protected Areas as refuges for amphibians and reptiles under climate change
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36914628
PubMed Central
PMC10011414
DOI
10.1038/s41467-023-36987-y
PII: 10.1038/s41467-023-36987-y
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Ecosystem * MeSH
- Climate Change * MeSH
- Amphibians MeSH
- Reptiles MeSH
- Conservation of Natural Resources MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.
Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
Departamento de Ecologia Instituto de Biociências Universidade de São Paulo São Paulo Brazil
Department of Biology La Sierra University Riverside CA USA
Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
Department of Zoology Comenius University in Bratislava Bratislava Slovakia
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Department of Zoology National Museum Prague Prague Czech Republic
Department of Zoology Tel Aviv University Tel Aviv Israel
Grupo Herpetología Patagónica Puerto Madryn Argentina
Independent researcher Berlin Germany
Institute of Biology Freie Universität Berlin Berlin Germany
Laboratory of Zoology University of Yaoundé Yaoundé Cameroon
Leibniz Institute of Freshwater Ecology and Inland Fisheries Müggelseedamm Berlin Germany
Multipurpose Research Station Institute of Agricultural Research for development Bangangté Cameroon
National Museum of Kenya Herpetology Section Nairobi Kenya
Otago Regional Council Dunedin 9016 Aotearoa New Zealand
Princeton School of Public and International Affairs Princeton University Princeton USA
Royal Museum for Central Africa Tervuren Belgium
School of Biological Sciences Monash University Clayton VIC Australia
School of Biological Sciences Queen's University Belfast Belfast UK
School of Ecology Shenzhen Campus of Sun Yat sen University Shenzhen China
School of Science and Technology Nottingham Trent University Clifton Campus Nottingham UK
School of Zoology and Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
UN Environment Programme World Conservation Monitoring Centre Cambridge UK
University of Chinese Academy of Sciences Beijing China
Westlake University Hangzhou China
Zagros Herpetological Institute Somayyeh Avenue Qom Iran
See more in PubMed
Barnosky AD, et al. Has the Earth’s sixth mass extinction already arrived? Nature. 2011;471:51–57. doi: 10.1038/nature09678. PubMed DOI
Ceballos G, Ehrlich PR, Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA. 2017;114:E6089–E6096. doi: 10.1073/pnas.1704949114. PubMed DOI PMC
Cowie RH, Bouchet P, Fontaine B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 2022;97:640–663. doi: 10.1111/brv.12816. PubMed DOI PMC
Dirzo R, et al. Defaunation in the anthropocene. Science. 2014;345:401–406. doi: 10.1126/science.1251817. PubMed DOI
Ceballos G, et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 2015;1:e1400253. doi: 10.1126/sciadv.1400253. PubMed DOI PMC
Pimm SL, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344:1246752. doi: 10.1126/science.1246752. PubMed DOI
Urban M, et al. Accelerating extinction risk from climate change. Science. 2015;348:571–573. doi: 10.1126/science.aaa4984. PubMed DOI
Pincheira-Donoso, D. et al. Temporal and spatial patterns of vertebrate extinctions during the Anthropocene. Preprint at bioRxiv10.1101/2022.05.05.490605 (2022).
Brook BW, Sodhi NS, Bradshaw CJA. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008;23:453–460. doi: 10.1016/j.tree.2008.03.011. PubMed DOI
Pacifici M, et al. Assessing species vulnerability to climate change. Nat. Clim. Change. 2015;5:215–224. doi: 10.1038/nclimate2448. DOI
Thomas CD, et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI
Warren R, et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change. 2013;3:678–682. doi: 10.1038/nclimate1887. DOI
Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC
Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008;39:93–113. doi: 10.1146/annurev.ecolsys.39.110707.173529. DOI
Saout SL, et al. Protected areas and effective biodiversity conservation. Science. 2013;342:803–805. doi: 10.1126/science.1239268. PubMed DOI
Watson JEM, Dudley N, Segan DB, Hockings M. The performance and potential of protected areas. Nature. 2014;515:67–73. doi: 10.1038/nature13947. PubMed DOI
Araújo MB, Alagador D, Cabeza M, Noguésbravo D, Thuiller W. Climate change threatens European conservation areas. Ecol. Lett. 2011;14:484–492. doi: 10.1111/j.1461-0248.2011.01610.x. PubMed DOI PMC
Chen Y, Zhang J, Jiang J, Nielsen S, He F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 2017;23:146–157. doi: 10.1111/ddi.12508. DOI
Jenkins CN, Joppa L. Expansion of the global terrestrial protected area system. Biol. Conserv. 2009;142:2166–2174. doi: 10.1016/j.biocon.2009.04.016. DOI
Johnston A, et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change. 2013;3:1055–1061. doi: 10.1038/nclimate2035. DOI
Lehikoinen P, Santangeli A, Jaatinen K, Rajasärkkä A, Lehikoinen A. Protected areas act as a buffer against detrimental effects of climate change-evidence from large-scale, long-term abundance data. Glob. Change Biol. 2018;25:304–313. doi: 10.1111/gcb.14461. PubMed DOI
Coetzee BWT, Robertson MP, Erasmus BFN, Rensburg BJV, Thuiller W. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 2009;18:701–710. doi: 10.1111/j.1466-8238.2009.00485.x. DOI
Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Glob. Change Biol. 2004;10:1618–1626. doi: 10.1111/j.1365-2486.2004.00828.x. DOI
Pouzols FM, et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature. 2014;516:383–386. doi: 10.1038/nature14032. PubMed DOI
Monzn J, Moyer-Horner L, Palamar MB. Climate change and species range dynamics in protected areas. Bioscience. 2011;61:752–761. doi: 10.1525/bio.2011.61.10.5. DOI
Newbold T, Oppenheimer P, Etard A, Williams JJ. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 2020;4:1630–1638. doi: 10.1038/s41559-020-01303-0. PubMed DOI
Liu X, et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 2020;11:2892. doi: 10.1038/s41467-020-16719-2. PubMed DOI PMC
Carlson CJ, et al. Climate change increases cross-species viral transmission risk. Nature. 2022;607:555–562. doi: 10.1038/s41586-022-04788-w. PubMed DOI
Mi C, Huettmann F, Guo Y. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century. Peerj. 2016;4:e1630–e1630. doi: 10.7717/peerj.1630. PubMed DOI PMC
Guisan A, et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013;16:1424–1435. doi: 10.1111/ele.12189. PubMed DOI PMC
Zhu G, Papeş M, Giam X, Cho S-H, Armsworth PR. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States? Biol. Conserv. 2021;255:108982. doi: 10.1016/j.biocon.2021.108982. DOI
Gutiérrez JA, Duivenvoorden JF. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mexicana Biodivers. 2010;81:875–882.
Velásquez-Tibatá J, Salaman P, Graham CH. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change. 2013;13:235–248. doi: 10.1007/s10113-012-0329-y. DOI
Riquelme C, et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. Peerj. 2018;6:e5222. doi: 10.7717/peerj.5222. PubMed DOI PMC
Bazzichetto M, et al. Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 2018;95:311–319. doi: 10.1016/j.ecolind.2018.07.046. DOI
Hannah L, et al. Protected area needs in a changing climate. Front. Ecol. Environ. 2007;5:131–138. doi: 10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2. DOI
Cox N, et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature. 2022;695:285–290. doi: 10.1038/s41586-022-04664-7. PubMed DOI PMC
IUCN. The IUCN red list of threatened species. http://www.iucnredlist.org/ (2021).
Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA. 2008;105:11466–11473. doi: 10.1073/pnas.0801921105. PubMed DOI PMC
Cordier JM, et al. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv. 2021;253:108863. doi: 10.1016/j.biocon.2020.108863. DOI
Powers RP, Jetz W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change. 2019;9:323–329. doi: 10.1038/s41558-019-0406-z. DOI
Pounds JA, et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature. 2006;439:161–167. doi: 10.1038/nature04246. PubMed DOI
Scheele BC, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363:1459–1463. doi: 10.1126/science.aav0379. PubMed DOI
Blaustein AR, Kiesecker JM. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 2002;5:597–608. doi: 10.1046/j.1461-0248.2002.00352.x. DOI
Kraus F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 2015;46:75–97. doi: 10.1146/annurev-ecolsys-112414-054450. DOI
Alford RA, Bradfield KS, Richards SJ. Global warming and amphibian losses. Nature. 2007;447:E3–E4. doi: 10.1038/nature05940. PubMed DOI
Hof C, Araújo MB, Jetz W, Rahbek C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature. 2011;480:516–519. doi: 10.1038/nature10650. PubMed DOI
Rohr JR, Raffel TR. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA. 2008;107:8269–8274. doi: 10.1073/pnas.0912883107. PubMed DOI PMC
Pincheira‐Donoso D, et al. The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Glob. Ecol. Biogeogr. 2021;30:1299–1310. doi: 10.1111/geb.13287. DOI
Smith MA, Green DM. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography. 2005;28:110–128. doi: 10.1111/j.0906-7590.2005.04042.x. DOI
Borzée A, et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 2019;9:11838. doi: 10.1038/s41598-019-48310-1. PubMed DOI PMC
Heller NE, Zavaleta ES. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 2009;142:14–32. doi: 10.1016/j.biocon.2008.10.006. DOI
Haight J, Hammill E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 2020;241:108258. doi: 10.1016/j.biocon.2019.108258. DOI
Thomas CD, et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA. 2012;109:14063–14068. doi: 10.1073/pnas.1210251109. PubMed DOI PMC
Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ. Active management of protected areas enhances metapopulation expansion under climate change. Conserv. Lett. 2014;7:111–118. doi: 10.1111/conl.12036. DOI
Beale CM, Baker NE, Brewer MJ, Lennon JJ. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 2013;16:1061–1068. doi: 10.1111/ele.12139. PubMed DOI
D’Amen M, et al. Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol. Conserv. 2011;144:989–997. doi: 10.1016/j.biocon.2010.11.004. DOI
Singh M. Evaluating the impact of future climate and forest cover change on the ability of Southeast (SE) Asia’s protected areas to provide coverage to the habitats of threatened avian species. Ecol. Indic. 2020;114:106307. doi: 10.1016/j.ecolind.2020.106307. DOI
Hole DG, et al. Projected impacts of climate change on a continent‐wide protected area network. Ecol. Lett. 2009;12:420–431. doi: 10.1111/j.1461-0248.2009.01297.x. PubMed DOI
Lehikoinen P, et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Conserv. 2021;253:108892. doi: 10.1016/j.biocon.2020.108892. DOI
Araújo MB, Thuiller W, Pearson RG. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 2006;33:1712–1728. doi: 10.1111/j.1365-2699.2006.01482.x. DOI
Girardello M, Griggio M, Whittingham MJ, Rushton SP. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 2010;25:103–111. doi: 10.1007/s11284-009-0636-z. DOI
McMenamin SK, Hadly EA, Wright CK. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA. 2008;105:16988–16993. doi: 10.1073/pnas.0809090105. PubMed DOI PMC
Ficetola GF, Maiorano L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia. 2016;181:683–693. doi: 10.1007/s00442-016-3610-9. PubMed DOI
Bickford D, Howard SD, Ng DJJ, Sheridan JA. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 2010;19:1043–1062. doi: 10.1007/s10531-010-9782-4. DOI
Manne LL, Brooks TM, Pimm SL. Relative risk of extinction of passerine birds on continents and islands. Nature. 1999;399:258–261. doi: 10.1038/20436. DOI
Jenkins CN, Pimm SL, Joppa LN. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA. 2013;110:E2602–E2610. doi: 10.1073/pnas.1302251110. PubMed DOI PMC
Pearson RG, et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change. 2014;4:217–221. doi: 10.1038/nclimate2113. DOI
Wauchope HS, et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature. 2022;605:103–107. doi: 10.1038/s41586-022-04617-0. PubMed DOI
WWF. Tropical and Subtropical Moist Broadleaf Forest Ecoregions (World Wide Fund for Nature, 2019).
Rodrigues ASL, et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience. 2004;54:1092–1100. doi: 10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2. DOI
Hidasi‐Neto J, Loyola R, Cianciaruso MV. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers. Distrib. 2015;21:548–559. doi: 10.1111/ddi.12320. DOI
Martin J-L, Maris V, Simberloff DS. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA. 2016;113:6105–6112. doi: 10.1073/pnas.1525003113. PubMed DOI PMC
Czech B, Krausman P, Devers P. Economic associations among causes of species endangerment in the United States. Bioscience. 2000;50:593–601. doi: 10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO;2. DOI
CBD. First draft of the post-2020 global biodiversity framework. https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021).
Roll U, et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 2017;1:1677–1682. doi: 10.1038/s41559-017-0332-2. PubMed DOI
Ficetola GF, et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 2014;41:211–221. doi: 10.1111/jbi.12206. DOI
Aiello‐Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38:541–545. doi: 10.1111/ecog.01132. DOI
Erfanian MB, Sagharyan M, Memariani F, Ejtehadi H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 2021;11:9159. doi: 10.1038/s41598-021-88577-x. PubMed DOI PMC
Brown JL, Cameron A, Yoder AD, Vences M. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. Nat. Commun. 2014;5:5046. doi: 10.1038/ncomms6046. PubMed DOI
Gaston KJ. Rarity as double jeopardy. Nature. 1998;394:229–230. doi: 10.1038/28288. DOI
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Li X, Liu X, Kraus F, Tingley R, Li Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 2016;14:411–417. doi: 10.1002/fee.1321. DOI
Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling? Ecography. 2014;37:191–203. doi: 10.1111/j.1600-0587.2013.00205.x. DOI
Xin X, Wu T, Zhang J. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 2013;4:41–49. doi: 10.3724/SP.J.1248.2013.00041. DOI
Voldoire A, et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 2013;40:2091–2121. doi: 10.1007/s00382-011-1259-y. DOI
Watanabe S, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011;4:845–872. doi: 10.5194/gmd-4-845-2011. DOI
Mi C, et al. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc. R. Soc. Lond. B. Biol. Sci. 2022;289:20221074. PubMed PMC
Naimi B, Araújo M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography. 2016;39:368–375. doi: 10.1111/ecog.01881. DOI
Holt BG, et al. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–78. doi: 10.1126/science.1228282. PubMed DOI
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 2012;3:327–338. doi: 10.1111/j.2041-210X.2011.00172.x. DOI
Andrade AFA, de, Velazco SJE, Júnior PDM. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Modell. Softw. 2020;125:104615. doi: 10.1016/j.envsoft.2019.104615. DOI
Senay SD, Worner SP, Ikeda T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLos ONE. 2013;8:e71218. doi: 10.1371/journal.pone.0071218. PubMed DOI PMC
Thuiller W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 2003;9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x. PubMed DOI PMC
Williams JN, et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 2009;15:565–576. doi: 10.1111/j.1472-4642.2009.00567.x. DOI
Graham CH, et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008;45:239–247. doi: 10.1111/j.1365-2664.2007.01408.x. DOI
Elith J, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Mi C, Huettmann F, Guo Y, Han X, Wen L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj. 2017;5:e2849. doi: 10.7717/peerj.2849. PubMed DOI PMC
Drake JM, Randin C, Guisan A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 2006;43:424–432. doi: 10.1111/j.1365-2664.2006.01141.x. DOI
Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) J. Appl. Ecol. 2006;43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x. DOI
McPherson J, Jetz W, Rogers DJ. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 2004;41:811–823. doi: 10.1111/j.0021-8901.2004.00943.x. DOI
Wang B, et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 2017;24:2403–2415. doi: 10.1111/gcb.14034. PubMed DOI
Gallardo B, et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 2017;23:5331–5343. doi: 10.1111/gcb.13798. PubMed DOI
Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography. 2009;32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x. DOI
UNEP-WCMC, I. and. The world database on protected areas (WDPA). https://www.protectedplanet.net/en#4_43.25_111_0 (2014).
Asamoah EF, Beaumont LJ, Maina JM. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change. 2021;11:1105–1110. doi: 10.1038/s41558-021-01223-2. DOI
Brennan, A. et al. Functional connectivity of the world’s protected areas. Science376, 1101–1104 (2022). PubMed
You Z, et al. Pitfall of big databases. Proc. Natl Acad. Sci. USA. 2018;115:201813323. doi: 10.1073/pnas.1813323115. PubMed DOI PMC
Nelson A, Chomitz KM. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE. 2011;6:e22722. doi: 10.1371/journal.pone.0022722. PubMed DOI PMC
Albuquerque F, Beier P. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE. 2015;10:e0119905. doi: 10.1371/journal.pone.0119905. PubMed DOI PMC
Tang CQ, et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 2018;9:4488. doi: 10.1038/s41467-018-06837-3. PubMed DOI PMC
Kier G, Barthlott W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 2001;10:1513–1529. doi: 10.1023/A:1011812528849. DOI
Albuquerque F, Gregory A. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE. 2017;12:e0174179. doi: 10.1371/journal.pone.0174179. PubMed DOI PMC
Jennings MD. Gap analysis: concepts, methods, and recent results. Landsc. Ecol. 2000;15:5–20. doi: 10.1023/A:1008184408300. DOI
Romero‐Muñoz A, et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography. 2020;43:954–966. doi: 10.1111/ecog.05053. DOI
Brooks TM, et al. Global biodiversity conservation priorities. Science. 2006;313:58–61. doi: 10.1126/science.1127609. PubMed DOI
figshare
10.6084/m9.figshare.20958190.v1