• This record comes from PubMed

Global Protected Areas as refuges for amphibians and reptiles under climate change

. 2023 Mar 13 ; 14 (1) : 1389. [epub] 20230313

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 36914628
PubMed Central PMC10011414
DOI 10.1038/s41467-023-36987-y
PII: 10.1038/s41467-023-36987-y
Knihovny.cz E-resources

Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.

Allwetterzoo Münster Germany

Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China

Departamento de Ecologia Instituto de Biociências Universidade de São Paulo São Paulo Brazil

Department of Biology and Center for Biodiversity and Ecosystem Stewardship Villanova University Villanova PA USA

Department of Biology La Sierra University Riverside CA USA

Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA

Department of Environmental Sciences Faculty of Natural Resources University of Kurdistan Sanandaj Iran

Department of Zoology Comenius University in Bratislava Bratislava Slovakia

Department of Zoology Faculty of Science Charles University Prague Czech Republic

Department of Zoology National Museum Prague Prague Czech Republic

Department of Zoology Tel Aviv University Tel Aviv Israel

Educational and Scientific Center Institute of Biology and Medicine Taras Shevchenko national University of Kyiv Kyiv Ukraine

Grupo Herpetología Patagónica Puerto Madryn Argentina

Independent researcher Berlin Germany

Institute of Biodiversity and Environmental Conservation Universiti Malaysia Sarawak Sarawak Malaysia

Institute of Biology Freie Universität Berlin Berlin Germany

Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China

Laboratory of Zoology University of Yaoundé Yaoundé Cameroon

Leibniz Institute of Freshwater Ecology and Inland Fisheries Müggelseedamm Berlin Germany

Mitrani Department of Desert Ecology The Jacob Blaustein Institutes for Desert Research Ben Gurion University of the Negev Midreshet Ben Gurion Israel

Multipurpose Research Station Institute of Agricultural Research for development Bangangté Cameroon

Museo de Zoología Escuela de Biología Facultad de Ciencias Exactas y Naturales Pontificia Universidad Católica del Ecuador Quito Ecuador

Museo de Zoología Escuela de Ciencias Biológicas Pontificia Universidad Católica del Ecuador Quito Ecuador

National Museum of Kenya Herpetology Section Nairobi Kenya

Otago Regional Council Dunedin 9016 Aotearoa New Zealand

Pars Herpetologists Institute Corner of third Jahad alley Arash Str Jalal e Ale Ahmad Boulevard Tehran Iran

Princeton School of Public and International Affairs Princeton University Princeton USA

Royal Museum for Central Africa Tervuren Belgium

School of Biological Sciences Monash University Clayton VIC Australia

School of Biological Sciences Queen's University Belfast Belfast UK

School of Ecology Shenzhen Campus of Sun Yat sen University Shenzhen China

School of Science and Technology Nottingham Trent University Clifton Campus Nottingham UK

School of Zoology and Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel

UN Environment Programme World Conservation Monitoring Centre Cambridge UK

University of Chinese Academy of Sciences Beijing China

Westlake University Hangzhou China

Zagros Herpetological Institute Somayyeh Avenue Qom Iran

Zhejiiang University Hangzhou China

Zoological Sciences Division Pakistan Museum of Natural History Garden Avenue Shakarparian Islamabad Pakistan

See more in PubMed

Barnosky AD, et al. Has the Earth’s sixth mass extinction already arrived? Nature. 2011;471:51–57. doi: 10.1038/nature09678. PubMed DOI

Ceballos G, Ehrlich PR, Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA. 2017;114:E6089–E6096. doi: 10.1073/pnas.1704949114. PubMed DOI PMC

Cowie RH, Bouchet P, Fontaine B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 2022;97:640–663. doi: 10.1111/brv.12816. PubMed DOI PMC

Dirzo R, et al. Defaunation in the anthropocene. Science. 2014;345:401–406. doi: 10.1126/science.1251817. PubMed DOI

Ceballos G, et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 2015;1:e1400253. doi: 10.1126/sciadv.1400253. PubMed DOI PMC

Pimm SL, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344:1246752. doi: 10.1126/science.1246752. PubMed DOI

Urban M, et al. Accelerating extinction risk from climate change. Science. 2015;348:571–573. doi: 10.1126/science.aaa4984. PubMed DOI

Pincheira-Donoso, D. et al. Temporal and spatial patterns of vertebrate extinctions during the Anthropocene. Preprint at bioRxiv10.1101/2022.05.05.490605 (2022).

Brook BW, Sodhi NS, Bradshaw CJA. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008;23:453–460. doi: 10.1016/j.tree.2008.03.011. PubMed DOI

Pacifici M, et al. Assessing species vulnerability to climate change. Nat. Clim. Change. 2015;5:215–224. doi: 10.1038/nclimate2448. DOI

Thomas CD, et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI

Warren R, et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change. 2013;3:678–682. doi: 10.1038/nclimate1887. DOI

Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC

Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008;39:93–113. doi: 10.1146/annurev.ecolsys.39.110707.173529. DOI

Saout SL, et al. Protected areas and effective biodiversity conservation. Science. 2013;342:803–805. doi: 10.1126/science.1239268. PubMed DOI

Watson JEM, Dudley N, Segan DB, Hockings M. The performance and potential of protected areas. Nature. 2014;515:67–73. doi: 10.1038/nature13947. PubMed DOI

Araújo MB, Alagador D, Cabeza M, Noguésbravo D, Thuiller W. Climate change threatens European conservation areas. Ecol. Lett. 2011;14:484–492. doi: 10.1111/j.1461-0248.2011.01610.x. PubMed DOI PMC

Chen Y, Zhang J, Jiang J, Nielsen S, He F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 2017;23:146–157. doi: 10.1111/ddi.12508. DOI

Jenkins CN, Joppa L. Expansion of the global terrestrial protected area system. Biol. Conserv. 2009;142:2166–2174. doi: 10.1016/j.biocon.2009.04.016. DOI

Johnston A, et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change. 2013;3:1055–1061. doi: 10.1038/nclimate2035. DOI

Lehikoinen P, Santangeli A, Jaatinen K, Rajasärkkä A, Lehikoinen A. Protected areas act as a buffer against detrimental effects of climate change-evidence from large-scale, long-term abundance data. Glob. Change Biol. 2018;25:304–313. doi: 10.1111/gcb.14461. PubMed DOI

Coetzee BWT, Robertson MP, Erasmus BFN, Rensburg BJV, Thuiller W. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 2009;18:701–710. doi: 10.1111/j.1466-8238.2009.00485.x. DOI

Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Glob. Change Biol. 2004;10:1618–1626. doi: 10.1111/j.1365-2486.2004.00828.x. DOI

Pouzols FM, et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature. 2014;516:383–386. doi: 10.1038/nature14032. PubMed DOI

Monzn J, Moyer-Horner L, Palamar MB. Climate change and species range dynamics in protected areas. Bioscience. 2011;61:752–761. doi: 10.1525/bio.2011.61.10.5. DOI

Newbold T, Oppenheimer P, Etard A, Williams JJ. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 2020;4:1630–1638. doi: 10.1038/s41559-020-01303-0. PubMed DOI

Liu X, et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 2020;11:2892. doi: 10.1038/s41467-020-16719-2. PubMed DOI PMC

Carlson CJ, et al. Climate change increases cross-species viral transmission risk. Nature. 2022;607:555–562. doi: 10.1038/s41586-022-04788-w. PubMed DOI

Mi C, Huettmann F, Guo Y. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century. Peerj. 2016;4:e1630–e1630. doi: 10.7717/peerj.1630. PubMed DOI PMC

Guisan A, et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013;16:1424–1435. doi: 10.1111/ele.12189. PubMed DOI PMC

Zhu G, Papeş M, Giam X, Cho S-H, Armsworth PR. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States? Biol. Conserv. 2021;255:108982. doi: 10.1016/j.biocon.2021.108982. DOI

Gutiérrez JA, Duivenvoorden JF. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mexicana Biodivers. 2010;81:875–882.

Velásquez-Tibatá J, Salaman P, Graham CH. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change. 2013;13:235–248. doi: 10.1007/s10113-012-0329-y. DOI

Riquelme C, et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. Peerj. 2018;6:e5222. doi: 10.7717/peerj.5222. PubMed DOI PMC

Bazzichetto M, et al. Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 2018;95:311–319. doi: 10.1016/j.ecolind.2018.07.046. DOI

Hannah L, et al. Protected area needs in a changing climate. Front. Ecol. Environ. 2007;5:131–138. doi: 10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2. DOI

Cox N, et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature. 2022;695:285–290. doi: 10.1038/s41586-022-04664-7. PubMed DOI PMC

IUCN. The IUCN red list of threatened species. http://www.iucnredlist.org/ (2021).

Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA. 2008;105:11466–11473. doi: 10.1073/pnas.0801921105. PubMed DOI PMC

Cordier JM, et al. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv. 2021;253:108863. doi: 10.1016/j.biocon.2020.108863. DOI

Powers RP, Jetz W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change. 2019;9:323–329. doi: 10.1038/s41558-019-0406-z. DOI

Pounds JA, et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature. 2006;439:161–167. doi: 10.1038/nature04246. PubMed DOI

Scheele BC, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363:1459–1463. doi: 10.1126/science.aav0379. PubMed DOI

Blaustein AR, Kiesecker JM. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 2002;5:597–608. doi: 10.1046/j.1461-0248.2002.00352.x. DOI

Kraus F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 2015;46:75–97. doi: 10.1146/annurev-ecolsys-112414-054450. DOI

Alford RA, Bradfield KS, Richards SJ. Global warming and amphibian losses. Nature. 2007;447:E3–E4. doi: 10.1038/nature05940. PubMed DOI

Hof C, Araújo MB, Jetz W, Rahbek C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature. 2011;480:516–519. doi: 10.1038/nature10650. PubMed DOI

Rohr JR, Raffel TR. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA. 2008;107:8269–8274. doi: 10.1073/pnas.0912883107. PubMed DOI PMC

Pincheira‐Donoso D, et al. The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Glob. Ecol. Biogeogr. 2021;30:1299–1310. doi: 10.1111/geb.13287. DOI

Smith MA, Green DM. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography. 2005;28:110–128. doi: 10.1111/j.0906-7590.2005.04042.x. DOI

Borzée A, et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 2019;9:11838. doi: 10.1038/s41598-019-48310-1. PubMed DOI PMC

Heller NE, Zavaleta ES. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 2009;142:14–32. doi: 10.1016/j.biocon.2008.10.006. DOI

Haight J, Hammill E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 2020;241:108258. doi: 10.1016/j.biocon.2019.108258. DOI

Thomas CD, et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA. 2012;109:14063–14068. doi: 10.1073/pnas.1210251109. PubMed DOI PMC

Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ. Active management of protected areas enhances metapopulation expansion under climate change. Conserv. Lett. 2014;7:111–118. doi: 10.1111/conl.12036. DOI

Beale CM, Baker NE, Brewer MJ, Lennon JJ. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 2013;16:1061–1068. doi: 10.1111/ele.12139. PubMed DOI

D’Amen M, et al. Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol. Conserv. 2011;144:989–997. doi: 10.1016/j.biocon.2010.11.004. DOI

Singh M. Evaluating the impact of future climate and forest cover change on the ability of Southeast (SE) Asia’s protected areas to provide coverage to the habitats of threatened avian species. Ecol. Indic. 2020;114:106307. doi: 10.1016/j.ecolind.2020.106307. DOI

Hole DG, et al. Projected impacts of climate change on a continent‐wide protected area network. Ecol. Lett. 2009;12:420–431. doi: 10.1111/j.1461-0248.2009.01297.x. PubMed DOI

Lehikoinen P, et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Conserv. 2021;253:108892. doi: 10.1016/j.biocon.2020.108892. DOI

Araújo MB, Thuiller W, Pearson RG. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 2006;33:1712–1728. doi: 10.1111/j.1365-2699.2006.01482.x. DOI

Girardello M, Griggio M, Whittingham MJ, Rushton SP. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 2010;25:103–111. doi: 10.1007/s11284-009-0636-z. DOI

McMenamin SK, Hadly EA, Wright CK. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA. 2008;105:16988–16993. doi: 10.1073/pnas.0809090105. PubMed DOI PMC

Ficetola GF, Maiorano L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia. 2016;181:683–693. doi: 10.1007/s00442-016-3610-9. PubMed DOI

Bickford D, Howard SD, Ng DJJ, Sheridan JA. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 2010;19:1043–1062. doi: 10.1007/s10531-010-9782-4. DOI

Manne LL, Brooks TM, Pimm SL. Relative risk of extinction of passerine birds on continents and islands. Nature. 1999;399:258–261. doi: 10.1038/20436. DOI

Jenkins CN, Pimm SL, Joppa LN. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA. 2013;110:E2602–E2610. doi: 10.1073/pnas.1302251110. PubMed DOI PMC

Pearson RG, et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change. 2014;4:217–221. doi: 10.1038/nclimate2113. DOI

Wauchope HS, et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature. 2022;605:103–107. doi: 10.1038/s41586-022-04617-0. PubMed DOI

WWF. Tropical and Subtropical Moist Broadleaf Forest Ecoregions (World Wide Fund for Nature, 2019).

Rodrigues ASL, et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience. 2004;54:1092–1100. doi: 10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2. DOI

Hidasi‐Neto J, Loyola R, Cianciaruso MV. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers. Distrib. 2015;21:548–559. doi: 10.1111/ddi.12320. DOI

Martin J-L, Maris V, Simberloff DS. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA. 2016;113:6105–6112. doi: 10.1073/pnas.1525003113. PubMed DOI PMC

Czech B, Krausman P, Devers P. Economic associations among causes of species endangerment in the United States. Bioscience. 2000;50:593–601. doi: 10.1641/0006-3568(2000)050[0593:EAACOS]2.0.CO;2. DOI

CBD. First draft of the post-2020 global biodiversity framework. https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021).

Roll U, et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 2017;1:1677–1682. doi: 10.1038/s41559-017-0332-2. PubMed DOI

Ficetola GF, et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 2014;41:211–221. doi: 10.1111/jbi.12206. DOI

Aiello‐Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38:541–545. doi: 10.1111/ecog.01132. DOI

Erfanian MB, Sagharyan M, Memariani F, Ejtehadi H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 2021;11:9159. doi: 10.1038/s41598-021-88577-x. PubMed DOI PMC

Brown JL, Cameron A, Yoder AD, Vences M. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. Nat. Commun. 2014;5:5046. doi: 10.1038/ncomms6046. PubMed DOI

Gaston KJ. Rarity as double jeopardy. Nature. 1998;394:229–230. doi: 10.1038/28288. DOI

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI

Li X, Liu X, Kraus F, Tingley R, Li Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 2016;14:411–417. doi: 10.1002/fee.1321. DOI

Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling? Ecography. 2014;37:191–203. doi: 10.1111/j.1600-0587.2013.00205.x. DOI

Xin X, Wu T, Zhang J. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 2013;4:41–49. doi: 10.3724/SP.J.1248.2013.00041. DOI

Voldoire A, et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 2013;40:2091–2121. doi: 10.1007/s00382-011-1259-y. DOI

Watanabe S, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011;4:845–872. doi: 10.5194/gmd-4-845-2011. DOI

Mi C, et al. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc. R. Soc. Lond. B. Biol. Sci. 2022;289:20221074. PubMed PMC

Naimi B, Araújo M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography. 2016;39:368–375. doi: 10.1111/ecog.01881. DOI

Holt BG, et al. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–78. doi: 10.1126/science.1228282. PubMed DOI

Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 2012;3:327–338. doi: 10.1111/j.2041-210X.2011.00172.x. DOI

Andrade AFA, de, Velazco SJE, Júnior PDM. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Modell. Softw. 2020;125:104615. doi: 10.1016/j.envsoft.2019.104615. DOI

Senay SD, Worner SP, Ikeda T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLos ONE. 2013;8:e71218. doi: 10.1371/journal.pone.0071218. PubMed DOI PMC

Thuiller W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 2003;9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x. PubMed DOI PMC

Williams JN, et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 2009;15:565–576. doi: 10.1111/j.1472-4642.2009.00567.x. DOI

Graham CH, et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008;45:239–247. doi: 10.1111/j.1365-2664.2007.01408.x. DOI

Elith J, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI

Mi C, Huettmann F, Guo Y, Han X, Wen L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj. 2017;5:e2849. doi: 10.7717/peerj.2849. PubMed DOI PMC

Drake JM, Randin C, Guisan A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 2006;43:424–432. doi: 10.1111/j.1365-2664.2006.01141.x. DOI

Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) J. Appl. Ecol. 2006;43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x. DOI

McPherson J, Jetz W, Rogers DJ. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 2004;41:811–823. doi: 10.1111/j.0021-8901.2004.00943.x. DOI

Wang B, et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 2017;24:2403–2415. doi: 10.1111/gcb.14034. PubMed DOI

Gallardo B, et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 2017;23:5331–5343. doi: 10.1111/gcb.13798. PubMed DOI

Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography. 2009;32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x. DOI

UNEP-WCMC, I. and. The world database on protected areas (WDPA). https://www.protectedplanet.net/en#4_43.25_111_0 (2014).

Asamoah EF, Beaumont LJ, Maina JM. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change. 2021;11:1105–1110. doi: 10.1038/s41558-021-01223-2. DOI

Brennan, A. et al. Functional connectivity of the world’s protected areas. Science376, 1101–1104 (2022). PubMed

You Z, et al. Pitfall of big databases. Proc. Natl Acad. Sci. USA. 2018;115:201813323. doi: 10.1073/pnas.1813323115. PubMed DOI PMC

Nelson A, Chomitz KM. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE. 2011;6:e22722. doi: 10.1371/journal.pone.0022722. PubMed DOI PMC

Albuquerque F, Beier P. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE. 2015;10:e0119905. doi: 10.1371/journal.pone.0119905. PubMed DOI PMC

Tang CQ, et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 2018;9:4488. doi: 10.1038/s41467-018-06837-3. PubMed DOI PMC

Kier G, Barthlott W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 2001;10:1513–1529. doi: 10.1023/A:1011812528849. DOI

Albuquerque F, Gregory A. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE. 2017;12:e0174179. doi: 10.1371/journal.pone.0174179. PubMed DOI PMC

Jennings MD. Gap analysis: concepts, methods, and recent results. Landsc. Ecol. 2000;15:5–20. doi: 10.1023/A:1008184408300. DOI

Romero‐Muñoz A, et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography. 2020;43:954–966. doi: 10.1111/ecog.05053. DOI

Brooks TM, et al. Global biodiversity conservation priorities. Science. 2006;313:58–61. doi: 10.1126/science.1127609. PubMed DOI

See more in PubMed

figshare
10.6084/m9.figshare.20958190.v1

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...