• This record comes from PubMed

Wnt signaling from Gli1-expressing apical stem/progenitor cells is essential for the coordination of tooth root development

. 2023 Apr 11 ; 18 (4) : 1015-1029. [epub] 20230316

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
BB/W00240X/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Links

PubMed 36931279
PubMed Central PMC10147554
DOI 10.1016/j.stemcr.2023.02.004
PII: S2213-6711(23)00051-6
Knihovny.cz E-resources

Stem cell regulation plays a crucial role during development and homeostasis. Here, an essential source of Wnts from Gli1+ stem/progenitor cells was identified in the murine molar. Loss of Wnt production in Gli1+ apical stem/progenitor cells led to loss of Axin2 at the root apex, mis-regulation of SOX9, loss of BMP and Hh signaling, and truncation of root development. In the absence of Wnt signals, the root epithelium lost its integrity and epithelial identity. This phenotype could be partially mimicked by loss of Sox9 in the Gli1 population. Stabilization of Wnt signaling in the apical papilla led to rapid unordered differentiation of hard tissues and fragmentation of the epithelial root sheath. Wnt signaling from Gli1+ stem/progenitor cells, therefore, orchestrates root development, coordinating mesenchymal and epithelial interactions via SOX9 to regulate stem/progenitor cell expansion and differentiation. Our results demonstrate that disparate stem/progenitor cell populations are unified in their fundamental signaling interactions.

See more in PubMed

Ahn S., Joyner A.L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell. 2004;118:505–516. doi: 10.1016/j.cell.2004.07.023. PubMed DOI

Bae C.H., Kim T.H., Ko S.O., Lee J.C., Yang X., Cho E.S. Wntless regulates dentin apposition and root elongation in the mandibular molar. J. Dent. Res. 2015;94:439–445. doi: 10.1177/0022034514567198. PubMed DOI PMC

Bänziger C., Soldini D., Schütt C., Zipperlen P., Hausmann G., Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125:509–522. doi: 10.1016/j.cell.2006.02.049. PubMed DOI

Barker N., Rookmaaker M.B., Kujala P., Ng A., Leushacke M., Snippert H., van deWetering M., Tan S., Van Es J.H., Huch M., et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2012;2:540–552. doi: 10.1016/j.celrep.2012.08.018. PubMed DOI

Beederman M., Lamplot J.D., Nan G., Wang J., Liu X., Yin L., Li R., Shui W., Zhang H., Kim S.H., et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J. Biomed. Sci. Eng. 2013;6:32–52. doi: 10.4236/jbise.2013.68A1004. PubMed DOI PMC

Blache P., van de Wetering M., Duluc I., Domon C., Berta P., Freund J.-N., Clevers H., Jay P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell Biol. 2004;166:37–47. doi: 10.1083/jcb.200311021. PubMed DOI PMC

Carpenter A.C., Rao S., Wells J.M., Campbell K., Lang R.A. Generation of mice with a conditional null allele for wntless. Genesis. 2010;48:554–558. doi: 10.1002/dvg.20651. PubMed DOI PMC

Clevers H., Loh K.M., Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346:1248012. doi: 10.1126/science.1248012. PubMed DOI

Degirmenci B., Valenta T., Dimitrieva S., Hausmann G., Basler K. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature. 2018;558:449–453. doi: 10.1038/s41586-018-0190-3. PubMed DOI

Farin H.F., Jordens I., Mosa M.H., Basak O., Korving J., Tauriello D.V.F., de Punder K., Angers S., Peters P.J., Maurice M.M., Clevers H. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340–343. doi: 10.1038/nature16937. PubMed DOI

Feng J., Jing J., Li J., Zhao H., Punj V., Zhang T., Xu J., Chai Y. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development. 2017;144:2560–2569. doi: 10.1242/dev.150136. PubMed DOI PMC

Flanagan D., Austin C., Vincan E., Phesse T. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes. 2018;9:178. doi: 10.3390/genes9040178. PubMed DOI PMC

Fons Romero J.M., Star H., Lav R., Watkins S., Harrison M., Hovorakova M., Headon D., Tucker A.S. The impact of the eda pathway on tooth root development. J. Dent. Res. 2017;96:1290–1297. doi: 10.1177/0022034517725692. PubMed DOI PMC

Grigoriadis A.E., Wang Z.,Q., Cecchini M.G., Hofstetter W., Felix R., Fleisch H.A., Wagner E.F. C-fos: a key regulator of osteoclast-macrophage lineage determination and bone remodelling. Science. 1994;266:443–448. PubMed

Harada N., Tamai Y., Ishikawa T., Sauer B., Takaku K., Oshima M., Taketo M.M. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 1999;18:5931–5942. doi: 10.1093/emboj/18.21.5931. PubMed DOI PMC

Harnack C., Berger H., Antanaviciute A., Vidal R., Sauer S., Simmons A., Meyer T.F., Sigal M. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat. Commun. 2019;10:4368. doi: 10.1038/s41467-019-12349-5. PubMed DOI PMC

Huang X., Bringas P., Slavkin H.C., Chai Y. Fate of HERS during tooth root development. Dev. Biol. 2009;334:22–30. doi: 10.1016/j.ydbio.2009.06.034. PubMed DOI PMC

Huang X., Xu X., Bringas P., Hung Y.P., Chai Y. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development. J. Bone Miner. Res. 2010;25:1167–1178. doi: 10.1359/jbmr.091103. PubMed DOI PMC

Jussila M., Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb. Perspect. Biol. 2012;4:a008425. doi: 10.1101/cshperspect.a008425. PubMed DOI PMC

Kawasaki K., Kawasaki M., Watanabe M., Idrus E., Nagai T., Oommen S., Maeda T., Hagiwara N., Que J., Sharpe P.T., Ohazama A. Expression of Sox genes in tooth development. Int. J. Dev. Biol. 2015;59:471–478. doi: 10.1387/ijdb.150192ao. PubMed DOI PMC

Kim T.H., Bae C.H., Lee J.C., Ko S.O., Yang X., Jiang R., Cho E.S. β-Catenin is required in odontoblasts for tooth root formation. J. Dent. Res. 2013;92:215–221. doi: 10.1177/0022034512470137. PubMed DOI

Kist R., Schrewe H., Balling R., Scherer G. Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis. 2002;32:121–123. doi: 10.1002/gene.10050. PubMed DOI

Kramann R., Goettsch C., Wongboonsin J., Iwata H., Schneider R.K., Kuppe C., Kaesler N., Chang-Panesso M., Machado F.G., Gratwohl S., et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell. 2016;19:628–642. doi: 10.1016/j.stem.2016.08.001. PubMed DOI PMC

Krivanek J., Soldatov R.A., Kastriti M.E., Chontorotzea T., Herdina A.N., Petersen J., Szarowska B., Landova M., Matejova V.K., Holla L.I., et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat. Commun. 2020;11:4816. doi: 10.1038/s41467-020-18512-7. PubMed DOI PMC

Li J., Parada C., Chai Y. Cellular and molecular mechanisms of tooth root development. Development. 2017;144:374–384. doi: 10.1242/dev.137216. PubMed DOI PMC

Liu G., Vijayakumar S., Grumolato L., Arroyave R., Qiao H., Akiri G., Aaronson S.A. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J. Cell Biol. 2009;185:67–75. doi: 10.1083/jcb.200810137. PubMed DOI PMC

Liu Y., Feng J., Li J., Zhao H., Ho T.-V., Chai Y. An Nfic-hedgehog signaling cascade regulates tooth root development. Development. 2015:127068. doi: 10.1242/dev.127068. PubMed DOI PMC

Lohi M., Tucker A.S., Sharpe P.T. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev. Dyn. 2010;239:160–167. doi: 10.1002/dvdy.22047. PubMed DOI

Lustig B., Jerchow B., Sachs M., Weiler S., Pietsch T., Karsten U., van de Wetering M., Clevers H., Schlag P.M., Birchmeier W., Behrens J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol. 2002;22:1184–1193. doi: 10.1128/MCB.22.4.1184-1193.2002. PubMed DOI PMC

Ma Y., Jing J., Feng J., Yuan Y., Wen Q., Han X., He J., Chen S., Ho T.-V., Chai Y. Ror2-mediated non-canonical wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development. 2020:196360. doi: 10.1242/dev.196360. PubMed DOI PMC

Madisen L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., Jones A.R., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. doi: 10.1038/nn.2467. PubMed DOI PMC

Men Y., Wang Y., Yi Y., Jing D., Luo W., Shen B., Stenberg W., Chai Y., Ge W.-P., Feng J.Q., Zhao H. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force. Dev. Cell. 2020;54:639–654.e6. doi: 10.1016/j.devcel.2020.06.006. PubMed DOI

Muzumdar M.D., Tasic B., Miyamichi K., Li L., Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605. doi: 10.1002/dvg.20335. PubMed DOI

Nakatomi M., Morita I., Eto K., Ota M.S. Sonic hedgehog signaling is important in tooth root development. J. Dent. Res. 2006;85:427–431. doi: 10.1177/154405910608500506. PubMed DOI

Nelson W.J., Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303:1483–1487. doi: 10.1126/science.1094291. PubMed DOI PMC

Oka K., Morokuma M., Imanaka-Yoshida K., Sawa Y., Isokawa K., Honda M.J. Cellular turnover in epithelial rests of Malassez in the periodontal ligament of the mouse molar. Eur. J. Oral Sci. 2012;120:484–494. doi: 10.1111/eos.12003. PubMed DOI

Plaks V., Brenot A., Lawson D.A., Linnemann J.R., Van Kappel E.C., Wong K.C., de Sauvage F., Klein O.D., Werb Z. Lgr5-Expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep. 2013;3:70–78. doi: 10.1016/j.celrep.2012.12.017. PubMed DOI PMC

Renvoisé E., Michon F. An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Front. Physiol. 2014;5:324. doi: 10.3389/fphys.2014.00324. PubMed DOI PMC

Sarkar L., Sharpe P.T. Expression of Wnt signalling pathway genes during tooth development. Mech. Dev. 1999;85:197–200. doi: 10.1016/S0925-4773(99)00095-7. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Shi Y., He G., Lee W.-C., McKenzie J.A., Silva M.J., Long F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat. Commun. 2017;8:2043. doi: 10.1038/s41467-017-02171-2. PubMed DOI PMC

Sonoyama W., Liu Y., Yamaza T., Tuan R.S., Wang S., Shi S., Huang G.T.-J. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod. 2008;34:166–171. doi: 10.1016/j.joen.2007.11.021. PubMed DOI PMC

Valenta T., Degirmenci B., Moor A.E., Herr P., Zimmerli D., Moor M.B., Hausmann G., Cantù C., Aguet M., Basler K. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 2016;15:911–918. doi: 10.1016/j.celrep.2016.03.088. PubMed DOI

Vidal V.P., Chaboissier M.-C., Lutzkendorf S., Cotsarelis G., Mill P., Hui C.-C., Ortonne N., Ortonne J.-P., Schedl A. Sox9 is essential for outer root sheath differentiation and he formation of he hair stem cell comparmen. Current Biol. 2005;9:1340–1351. PubMed

Wang J., Jiang Y., Xie X., Zhang S., Xu C., Zhou Y., Feng J.Q. The identification of critical time windows of postnatal root elongation in response to Wnt/β-catenin signaling. Oral Dis. 2022;28:442–451. doi: 10.1111/odi.13753. PubMed DOI

Yang J., Wang S.K., Choi M., Reid B.M., Hu Y., Lee Y.L., Herzog C.R., Kim-Berman H., Lee M., Benke P.J., et al. Taurodontism, variations in tooth number and misshapen crowns in Wnt10a null mice and human kindreds. Mol. Genet. Genomic Med. 2015;3:40–58. PubMed PMC

Yang S., Choi H., Kim T.H., Jeong J.K., Liu Y., Harada H., Cho E.S. Cell dynamics in Hertwig’s epithelial root sheath are regulated by β-catenin activity during tooth root development. J. Cell. Physiol. 2021;236:5387–5398. doi: 10.1002/jcp.30243. PubMed DOI PMC

Zeichner-David M., Oishi K., Su Z., Zakartchenko V., Chen L.-S., Arzate H., Bringas P. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev. Dyn. 2003;228:651–663. doi: 10.1002/dvdy.10404. PubMed DOI

Zhang R., Yang G., Wu X., Xie J., Yang X., Li T. Disruption of wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int. J. Biol. Sci. 2013;9:228–236. doi: 10.7150/ijbs.5476. PubMed DOI PMC

Zhao H., Feng J., Ho T.-V., Grimes W., Urata M., Chai Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat. Cell Biol. 2015;17:386–396. doi: 10.1038/ncb3139. PubMed DOI PMC

Zhao J., Faure L., Adameyko I., Sharpe P.T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells. 2021;39:92–102. doi: 10.1002/stem.3288. PubMed DOI

Zhong Z., Zylstra-Diegel C.R., Schumacher C.A., Baker J.J., Carpenter A.C., Rao S., Yao W., Guan M., Helms J.A., Lane N.E., et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc. Natl. Acad. Sci. USA. 2012;109:E2197–E2204. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...