Wnt signaling from Gli1-expressing apical stem/progenitor cells is essential for the coordination of tooth root development
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/W00240X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
36931279
PubMed Central
PMC10147554
DOI
10.1016/j.stemcr.2023.02.004
PII: S2213-6711(23)00051-6
Knihovny.cz E-resources
- Keywords
- Hh signaling, Sox9, Wnt signaling, development, homeostasis, stem cells, tooth defects, tooth development,
- MeSH
- Cell Differentiation genetics MeSH
- Stem Cells * metabolism MeSH
- Mice MeSH
- Zinc Finger Protein GLI1 genetics metabolism MeSH
- Wnt Signaling Pathway * MeSH
- Tooth Root metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Zinc Finger Protein GLI1 MeSH
Stem cell regulation plays a crucial role during development and homeostasis. Here, an essential source of Wnts from Gli1+ stem/progenitor cells was identified in the murine molar. Loss of Wnt production in Gli1+ apical stem/progenitor cells led to loss of Axin2 at the root apex, mis-regulation of SOX9, loss of BMP and Hh signaling, and truncation of root development. In the absence of Wnt signals, the root epithelium lost its integrity and epithelial identity. This phenotype could be partially mimicked by loss of Sox9 in the Gli1 population. Stabilization of Wnt signaling in the apical papilla led to rapid unordered differentiation of hard tissues and fragmentation of the epithelial root sheath. Wnt signaling from Gli1+ stem/progenitor cells, therefore, orchestrates root development, coordinating mesenchymal and epithelial interactions via SOX9 to regulate stem/progenitor cell expansion and differentiation. Our results demonstrate that disparate stem/progenitor cell populations are unified in their fundamental signaling interactions.
Centre for Craniofacial and Regenerative Biology King's College London London UK
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
See more in PubMed
Ahn S., Joyner A.L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell. 2004;118:505–516. doi: 10.1016/j.cell.2004.07.023. PubMed DOI
Bae C.H., Kim T.H., Ko S.O., Lee J.C., Yang X., Cho E.S. Wntless regulates dentin apposition and root elongation in the mandibular molar. J. Dent. Res. 2015;94:439–445. doi: 10.1177/0022034514567198. PubMed DOI PMC
Bänziger C., Soldini D., Schütt C., Zipperlen P., Hausmann G., Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125:509–522. doi: 10.1016/j.cell.2006.02.049. PubMed DOI
Barker N., Rookmaaker M.B., Kujala P., Ng A., Leushacke M., Snippert H., van deWetering M., Tan S., Van Es J.H., Huch M., et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2012;2:540–552. doi: 10.1016/j.celrep.2012.08.018. PubMed DOI
Beederman M., Lamplot J.D., Nan G., Wang J., Liu X., Yin L., Li R., Shui W., Zhang H., Kim S.H., et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J. Biomed. Sci. Eng. 2013;6:32–52. doi: 10.4236/jbise.2013.68A1004. PubMed DOI PMC
Blache P., van de Wetering M., Duluc I., Domon C., Berta P., Freund J.-N., Clevers H., Jay P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell Biol. 2004;166:37–47. doi: 10.1083/jcb.200311021. PubMed DOI PMC
Carpenter A.C., Rao S., Wells J.M., Campbell K., Lang R.A. Generation of mice with a conditional null allele for wntless. Genesis. 2010;48:554–558. doi: 10.1002/dvg.20651. PubMed DOI PMC
Clevers H., Loh K.M., Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346:1248012. doi: 10.1126/science.1248012. PubMed DOI
Degirmenci B., Valenta T., Dimitrieva S., Hausmann G., Basler K. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature. 2018;558:449–453. doi: 10.1038/s41586-018-0190-3. PubMed DOI
Farin H.F., Jordens I., Mosa M.H., Basak O., Korving J., Tauriello D.V.F., de Punder K., Angers S., Peters P.J., Maurice M.M., Clevers H. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340–343. doi: 10.1038/nature16937. PubMed DOI
Feng J., Jing J., Li J., Zhao H., Punj V., Zhang T., Xu J., Chai Y. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development. 2017;144:2560–2569. doi: 10.1242/dev.150136. PubMed DOI PMC
Flanagan D., Austin C., Vincan E., Phesse T. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes. 2018;9:178. doi: 10.3390/genes9040178. PubMed DOI PMC
Fons Romero J.M., Star H., Lav R., Watkins S., Harrison M., Hovorakova M., Headon D., Tucker A.S. The impact of the eda pathway on tooth root development. J. Dent. Res. 2017;96:1290–1297. doi: 10.1177/0022034517725692. PubMed DOI PMC
Grigoriadis A.E., Wang Z.,Q., Cecchini M.G., Hofstetter W., Felix R., Fleisch H.A., Wagner E.F. C-fos: a key regulator of osteoclast-macrophage lineage determination and bone remodelling. Science. 1994;266:443–448. PubMed
Harada N., Tamai Y., Ishikawa T., Sauer B., Takaku K., Oshima M., Taketo M.M. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 1999;18:5931–5942. doi: 10.1093/emboj/18.21.5931. PubMed DOI PMC
Harnack C., Berger H., Antanaviciute A., Vidal R., Sauer S., Simmons A., Meyer T.F., Sigal M. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat. Commun. 2019;10:4368. doi: 10.1038/s41467-019-12349-5. PubMed DOI PMC
Huang X., Bringas P., Slavkin H.C., Chai Y. Fate of HERS during tooth root development. Dev. Biol. 2009;334:22–30. doi: 10.1016/j.ydbio.2009.06.034. PubMed DOI PMC
Huang X., Xu X., Bringas P., Hung Y.P., Chai Y. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development. J. Bone Miner. Res. 2010;25:1167–1178. doi: 10.1359/jbmr.091103. PubMed DOI PMC
Jussila M., Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb. Perspect. Biol. 2012;4:a008425. doi: 10.1101/cshperspect.a008425. PubMed DOI PMC
Kawasaki K., Kawasaki M., Watanabe M., Idrus E., Nagai T., Oommen S., Maeda T., Hagiwara N., Que J., Sharpe P.T., Ohazama A. Expression of Sox genes in tooth development. Int. J. Dev. Biol. 2015;59:471–478. doi: 10.1387/ijdb.150192ao. PubMed DOI PMC
Kim T.H., Bae C.H., Lee J.C., Ko S.O., Yang X., Jiang R., Cho E.S. β-Catenin is required in odontoblasts for tooth root formation. J. Dent. Res. 2013;92:215–221. doi: 10.1177/0022034512470137. PubMed DOI
Kist R., Schrewe H., Balling R., Scherer G. Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis. 2002;32:121–123. doi: 10.1002/gene.10050. PubMed DOI
Kramann R., Goettsch C., Wongboonsin J., Iwata H., Schneider R.K., Kuppe C., Kaesler N., Chang-Panesso M., Machado F.G., Gratwohl S., et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell. 2016;19:628–642. doi: 10.1016/j.stem.2016.08.001. PubMed DOI PMC
Krivanek J., Soldatov R.A., Kastriti M.E., Chontorotzea T., Herdina A.N., Petersen J., Szarowska B., Landova M., Matejova V.K., Holla L.I., et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat. Commun. 2020;11:4816. doi: 10.1038/s41467-020-18512-7. PubMed DOI PMC
Li J., Parada C., Chai Y. Cellular and molecular mechanisms of tooth root development. Development. 2017;144:374–384. doi: 10.1242/dev.137216. PubMed DOI PMC
Liu G., Vijayakumar S., Grumolato L., Arroyave R., Qiao H., Akiri G., Aaronson S.A. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J. Cell Biol. 2009;185:67–75. doi: 10.1083/jcb.200810137. PubMed DOI PMC
Liu Y., Feng J., Li J., Zhao H., Ho T.-V., Chai Y. An Nfic-hedgehog signaling cascade regulates tooth root development. Development. 2015:127068. doi: 10.1242/dev.127068. PubMed DOI PMC
Lohi M., Tucker A.S., Sharpe P.T. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev. Dyn. 2010;239:160–167. doi: 10.1002/dvdy.22047. PubMed DOI
Lustig B., Jerchow B., Sachs M., Weiler S., Pietsch T., Karsten U., van de Wetering M., Clevers H., Schlag P.M., Birchmeier W., Behrens J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol. 2002;22:1184–1193. doi: 10.1128/MCB.22.4.1184-1193.2002. PubMed DOI PMC
Ma Y., Jing J., Feng J., Yuan Y., Wen Q., Han X., He J., Chen S., Ho T.-V., Chai Y. Ror2-mediated non-canonical wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development. 2020:196360. doi: 10.1242/dev.196360. PubMed DOI PMC
Madisen L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., Jones A.R., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. doi: 10.1038/nn.2467. PubMed DOI PMC
Men Y., Wang Y., Yi Y., Jing D., Luo W., Shen B., Stenberg W., Chai Y., Ge W.-P., Feng J.Q., Zhao H. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force. Dev. Cell. 2020;54:639–654.e6. doi: 10.1016/j.devcel.2020.06.006. PubMed DOI
Muzumdar M.D., Tasic B., Miyamichi K., Li L., Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605. doi: 10.1002/dvg.20335. PubMed DOI
Nakatomi M., Morita I., Eto K., Ota M.S. Sonic hedgehog signaling is important in tooth root development. J. Dent. Res. 2006;85:427–431. doi: 10.1177/154405910608500506. PubMed DOI
Nelson W.J., Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303:1483–1487. doi: 10.1126/science.1094291. PubMed DOI PMC
Oka K., Morokuma M., Imanaka-Yoshida K., Sawa Y., Isokawa K., Honda M.J. Cellular turnover in epithelial rests of Malassez in the periodontal ligament of the mouse molar. Eur. J. Oral Sci. 2012;120:484–494. doi: 10.1111/eos.12003. PubMed DOI
Plaks V., Brenot A., Lawson D.A., Linnemann J.R., Van Kappel E.C., Wong K.C., de Sauvage F., Klein O.D., Werb Z. Lgr5-Expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep. 2013;3:70–78. doi: 10.1016/j.celrep.2012.12.017. PubMed DOI PMC
Renvoisé E., Michon F. An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Front. Physiol. 2014;5:324. doi: 10.3389/fphys.2014.00324. PubMed DOI PMC
Sarkar L., Sharpe P.T. Expression of Wnt signalling pathway genes during tooth development. Mech. Dev. 1999;85:197–200. doi: 10.1016/S0925-4773(99)00095-7. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Shi Y., He G., Lee W.-C., McKenzie J.A., Silva M.J., Long F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat. Commun. 2017;8:2043. doi: 10.1038/s41467-017-02171-2. PubMed DOI PMC
Sonoyama W., Liu Y., Yamaza T., Tuan R.S., Wang S., Shi S., Huang G.T.-J. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod. 2008;34:166–171. doi: 10.1016/j.joen.2007.11.021. PubMed DOI PMC
Valenta T., Degirmenci B., Moor A.E., Herr P., Zimmerli D., Moor M.B., Hausmann G., Cantù C., Aguet M., Basler K. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 2016;15:911–918. doi: 10.1016/j.celrep.2016.03.088. PubMed DOI
Vidal V.P., Chaboissier M.-C., Lutzkendorf S., Cotsarelis G., Mill P., Hui C.-C., Ortonne N., Ortonne J.-P., Schedl A. Sox9 is essential for outer root sheath differentiation and he formation of he hair stem cell comparmen. Current Biol. 2005;9:1340–1351. PubMed
Wang J., Jiang Y., Xie X., Zhang S., Xu C., Zhou Y., Feng J.Q. The identification of critical time windows of postnatal root elongation in response to Wnt/β-catenin signaling. Oral Dis. 2022;28:442–451. doi: 10.1111/odi.13753. PubMed DOI
Yang J., Wang S.K., Choi M., Reid B.M., Hu Y., Lee Y.L., Herzog C.R., Kim-Berman H., Lee M., Benke P.J., et al. Taurodontism, variations in tooth number and misshapen crowns in Wnt10a null mice and human kindreds. Mol. Genet. Genomic Med. 2015;3:40–58. PubMed PMC
Yang S., Choi H., Kim T.H., Jeong J.K., Liu Y., Harada H., Cho E.S. Cell dynamics in Hertwig’s epithelial root sheath are regulated by β-catenin activity during tooth root development. J. Cell. Physiol. 2021;236:5387–5398. doi: 10.1002/jcp.30243. PubMed DOI PMC
Zeichner-David M., Oishi K., Su Z., Zakartchenko V., Chen L.-S., Arzate H., Bringas P. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev. Dyn. 2003;228:651–663. doi: 10.1002/dvdy.10404. PubMed DOI
Zhang R., Yang G., Wu X., Xie J., Yang X., Li T. Disruption of wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int. J. Biol. Sci. 2013;9:228–236. doi: 10.7150/ijbs.5476. PubMed DOI PMC
Zhao H., Feng J., Ho T.-V., Grimes W., Urata M., Chai Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat. Cell Biol. 2015;17:386–396. doi: 10.1038/ncb3139. PubMed DOI PMC
Zhao J., Faure L., Adameyko I., Sharpe P.T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells. 2021;39:92–102. doi: 10.1002/stem.3288. PubMed DOI
Zhong Z., Zylstra-Diegel C.R., Schumacher C.A., Baker J.J., Carpenter A.C., Rao S., Yao W., Guan M., Helms J.A., Lane N.E., et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc. Natl. Acad. Sci. USA. 2012;109:E2197–E2204. PubMed PMC