Edges of Layered FePSe3 Exhibit Increased Electrochemical and Electrocatalytic Activity Compared to Basal Planes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36936378
PubMed Central
PMC10017023
DOI
10.1021/acsaelm.2c01493
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Transition metal trichalcogenphosphites (MPX3), belonging to the class of 2D materials, are potentially viable electrocatalysts for the hydrogen evolution reaction (HER). Many 2D and layered materials exhibit different magnitudes of electrochemical and electrocatalytic activity at their edge and basal sites. To find out whether edges or basal planes are the primary sites for catalytic processes at these compounds, we studied the local electrochemical and electrocatalytic activity of FePSe3, an MPX3 representative that was previously found to be catalytically active. Using scanning electrochemical microscopy, we discovered that electrochemical processes and the HER are occurring at an increased rate at edge-like defects of FePSe3 crystals. We correlate our observations using optical microscopy, confocal laser scanning microscopy, scanning electron microscopy, and electron-dispersive X-ray spectroscopy. These findings have profound implications for the application of these materials for electrochemistry as well as for understanding general rules governing the electrochemical performance of layered compounds.
New Technologies Research Centre University of West Bohemia Univerzitní 8 Plzeň 30100 Czech Republic
Zobrazit více v PubMed
Wang M.; Zhang L.; He Y.; Zhu H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363. 10.1039/D0TA12152E. DOI
Anasori B.; Lukatskaya M. R.; Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.10.1038/natrevmats.2016.98. DOI
Khan K.; Tareen A. K.; Aslam M.; Wang R.; Zhang Y.; Mahmood A.; Ouyang Z.; Zhang H.; Guo Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. 10.1039/C9TC04187G. DOI
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI
Gusmão R.; Sofer Z.; Bouša D.; Pumera M. Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angew. Chem., Int. Ed. 2017, 56, 14417–14422. 10.1002/anie.201706389. PubMed DOI
Pumera M.; Sofer Z. 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Adv. Mater. 2017, 29, 1605299.10.1002/adma.201605299. PubMed DOI
Sturala J.; Sofer Z.; Pumera M. Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angew. Chem., Int. Ed. 2019, 58, 7551–7557. 10.1002/anie.201900811. PubMed DOI
Beladi-Mousavi S. M.; Pumera M. 2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chem. Soc. Rev. 2018, 47, 6964–6989. 10.1039/C8CS00425K. PubMed DOI
Chia X.; Eng A. Y. S.; Ambrosi A.; Tan S. M.; Pumera M. Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chem. Rev. 2015, 115, 11941–11966. 10.1021/acs.chemrev.5b00287. PubMed DOI
Chia X.; Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921. 10.1038/s41929-018-0181-7. DOI
Eng A. Y. S.; Ambrosi A.; Sofer Z.; Šimek P.; Pumera M. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198. 10.1021/nn503832j. PubMed DOI
Toh R. J.; Sofer Z.; Pumera M. Catalytic properties of group 4 transition metal dichalcogenides (MX2; M = Ti, Zr, Hf; X = S, Se, Te). J. Mater. Chem. A 2016, 4, 18322–18334. 10.1039/C6TA08089H. DOI
Wang Z.; Wu H.-H.; Li Q.; Besenbacher F.; Li Y.; Zeng X. C.; Dong M. Reversing Interfacial Catalysis of Ambipolar WSe 2 Single Crystal. Adv. Sci. 2020, 7, 1901382.10.1002/advs.201901382. PubMed DOI PMC
Hu F.; Yu D.; Ye M.; Wang H.; Hao Y.; Wang L.; Li L.; Han X.; Peng S. Lattice-Matching Formed Mesoporous Transition Metal Oxide Heterostructures Advance Water Splitting by Active Fe-O-Cu Bridges. Adv. Energy Mater. 2022, 12, 2200067.10.1002/aenm.202200067. DOI
Huang H.; Yu D.; Hu F.; Huang S.-C.; Song J.; Chen H.-Y.; Li L. L.; Peng S. Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single-Atom for Metal-Air Batteries. Angew. Chem., Int. Ed. 2022, 61, e20211606810.1002/anie.202116068. PubMed DOI
Deng L.; Hu F.; Ma M.; Huang S.-C.; Xiong Y.; Chen H.-Y.; Li L.; Peng S. Electronic Modulation Caused by Interfacial Ni-O-M (M=Ru, Ir, Pd) Bonding for Accelerating Hydrogen Evolution Kinetics. Angew. Chem., Int. Ed. 2021, 60, 22276–22282. 10.1002/anie.202110374. PubMed DOI
Kang Z.; Khan M. A.; Gong Y.; Javed R.; Xu Y.; Ye D.; Zhao H.; Zhang J. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 6089–6108. 10.1039/D0TA11735H. DOI
Seh Z. W.; Fredrickson K. D.; Anasori B.; Kibsgaard J.; Strickler A. L.; Lukatskaya M. R.; Gogotsi Y.; Jaramillo T. F.; Vojvodic A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589–594. 10.1021/acsenergylett.6b00247. DOI
Qin T.; Wang Z.; Wang Y.; Besenbacher F.; Otyepka M.; Dong M. Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. Nano-Micro Lett. 2021, 13, 183.10.1007/s40820-021-00710-7. PubMed DOI PMC
Muller G. A.; Cook J. B.; Kim H.-S.; Tolbert S. H.; Dunn B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917. 10.1021/nl504764m. PubMed DOI
Ghosh K.; Pumera M. Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale 2021, 13, 5744–5756. 10.1039/D0NR06479C. PubMed DOI
Liu Y.; Wu J.; Hackenberg K. P.; Zhang J.; Wang Y. M.; Yang Y.; Keyshar K.; Gu J.; Ogitsu T.; Vajtai R.; Lou J.; Ajayan P. M.; Wood B. C.; Yakobson B. I. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 2, 17127.10.1038/nenergy.2017.127. DOI
Li L.; Yu D.; Li P.; Huang H.; Xie D.; Lin C.-C.; Hu F.; Chen H.-Y.; Peng S. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy Environ. Sci. 2021, 14, 6419–6427. 10.1039/D1EE02538D. DOI
Samal R.; Sanyal G.; Chakraborty B.; Rout C. S. Two-dimensional transition metal phosphorous trichalcogenides (MPX3): a review on emerging trends, current state and future perspectives. J. Mater. Chem. A 2021, 9, 2560–2591. 10.1039/D0TA09752G. DOI
Mayorga-Martinez C. C.; Sofer Z.; Sedmidubský D.; Huber Š.; Eng A. Y. S.; Pumera M. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Appl. Mater. Interfaces 2017, 9, 12563–12573. 10.1021/acsami.6b16553. PubMed DOI
Gusmão R.; Sofer Z.; Pumera M. Exfoliated Layered Manganese Trichalcogenide Phosphite (MnPX 3 , X = S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution. Adv. Funct. Mater. 2019, 29, 1805975.10.1002/adfm.201805975. DOI
Gusmão R.; Sofer Z.; Sedmidubský D.; Huber Š.; Pumera M. The Role of the Metal Element in Layered Metal Phosphorus Triselenides upon Their Electrochemical Sensing and Energy Applications. ACS Catal. 2017, 7, 8159–8170. 10.1021/acscatal.7b02134. DOI
Sanna M.; Ng S.; Pumera M. Layered transition metal selenophosphites for visible light photoelectrochemical production of hydrogen. Electrochem. Commun. 2021, 129, 107077.10.1016/j.elecom.2021.107077. DOI
Barua M.; Ayyub M. M.; Vishnoi P.; Pramoda K.; Rao C. N. R. Photochemical HER activity of layered metal phospho-sulfides and -selenides. J. Mater. Chem. A 2019, 7, 22500–22506. 10.1039/C9TA06044H. DOI
Song J. Sub-2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100618.10.1002/adfm.202100618. DOI
Banks C. E.; Davies T. J.; Wildgoose G. G.; Compton R. G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 829–841. 10.1039/b413177k. PubMed DOI
Wang L.; Sofer Z.; Pumera M. Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect?. ACS Nano 2020, 14, 21–25. 10.1021/acsnano.9b00184. PubMed DOI
Güell A. G.; Cuharuc A. S.; Kim Y.-R.; Zhang G.; Tan S.; Ebejer N.; Unwin P. R. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 2015, 9, 3558–3571. 10.1021/acsnano.5b00550. PubMed DOI
Yuan W.; Zhou Y.; Li Y.; Li C.; Peng H.; Zhang J.; Liu Z.; Dai L.; Shi G. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248.10.1038/srep02248. PubMed DOI PMC
Bentley C. L.; Kang M.; Maddar F. M.; Li F.; Walker M.; Zhang J.; Unwin P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593. 10.1039/c7sc02545a. PubMed DOI PMC
Jaramillo T. F.; Jørgensen K. P.; Bonde J.; Nielsen J. H.; Horch S.; Chorkendorff I. Identification of Active Edge Sites for Electrochemical H 2 Evolution from MoS 2 Nanocatalysts. Science 2007, 317, 100–102. 10.1126/science.1141483. PubMed DOI
Takahashi Y.; Kobayashi Y.; Wang Z.; Ito Y.; Ota M.; Ida H.; Kumatani A.; Miyazawa K.; Fujita T.; Shiku H.; Korchev Y. E.; Miyata Y.; Fukuma T.; Chen M.; Matsue T. High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. Angew. Chem., Int. Ed. 2020, 59, 3601–3608. 10.1002/anie.201912863. PubMed DOI
Tan S. M.; Ambrosi A.; Sofer Z.; Huber Š.; Sedmidubský D.; Pumera M. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2Exhibiting Highly Anisotropic Properties. Chemistry 2015, 21, 7170–7178. 10.1002/chem.201500435. PubMed DOI
Tao B.; Unwin P. R.; Bentley C. L. Nanoscale Variations in the Electrocatalytic Activity of Layered Transition-Metal Dichalcogenides. J. Phys. Chem. C 2020, 124, 789–798. 10.1021/acs.jpcc.9b10279. DOI
Wert S.; Iffelsberger C.; Novčić K. A.; Matysik F.-M.; Pumera M. Edges are more electroactive than basal planes in synthetic bulk crystals of TiS2 and TiSe2. Appl. Mater. Today 2022, 26, 101309.10.1016/j.apmt.2021.101309. DOI
Sofer Z.; Sedmidubský D.; Huber Š.; Luxa J.; Bouša D.; Boothroyd C.; Pumera M. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem., Int. Ed. 2016, 55, 3382–3386. 10.1002/anie.201511309. PubMed DOI
Marvan P.; Huber Š.; Luxa J.; Mazánek V.; Sedmidubský D.; Sofer Z.; Pumera M. Edge vs. basal plane electrochemistry of layered pnictogens (As, Sb, Bi): Does edge always offer faster electron transfer?. Appl. Mater. Today 2019, 16, 179–184. 10.1016/j.apmt.2019.05.009. DOI
Djire A.; Wang X.; Xiao C.; Nwamba O. C.; Mirkin M. V.; Neale N. R. Basal Plane Hydrogen Evolution Activity from Mixed Metal Nitride MXenes Measured by Scanning Electrochemical Microscopy. Adv. Funct. Mater. 2020, 30, 2001136.10.1002/adfm.202001136. DOI
Das T.; Alam K.; Chakraborty S.; Sen P. Probing active sites on MnPSe3 and FePSe3 tri-chalcogenides as a design strategy for better hydrogen evolution reaction catalysts. Int. J. Hydrogen Energy 2021, 46, 37928–37938. 10.1016/j.ijhydene.2021.09.074. DOI
Bentley C. L.; Edmondson J.; Meloni G. N.; Perry D.; Shkirskiy V.; Unwin P. R. Nanoscale Electrochemical Mapping. Anal. Chem. 2019, 91, 84–108. 10.1021/acs.analchem.8b05235. PubMed DOI
https://www.2dsemiconductors.com/FePSe3/#description, accessed Aug 30, 2022.