Recent Progress in Emerging Two-Dimensional Transition Metal Carbides
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34417663
PubMed Central
PMC8379312
DOI
10.1007/s40820-021-00710-7
PII: 10.1007/s40820-021-00710-7
Knihovny.cz E-zdroje
- Klíčová slova
- Energy conversation and storage, Large-scale synthesis, Phase diagram, Superconductivity, Two-dimensional transition metal carbides,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.
Zobrazit více v PubMed
Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013;340:1226419. doi: 10.1126/science.1226419. DOI
Novoselov AKGKS, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Lin L, Deng B, Sun J, Peng H, Liu Z. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018;118:9281–9343. doi: 10.1021/acs.chemrev.8b00325. PubMed DOI
Wang Z-G, Chen Y-F, Li P-J, Hao X, Liu J-B, et al. Flexible graphene-based electroluminescent devices. ACS Nano. 2011;5:7149–7154. doi: 10.1021/nn2018649. PubMed DOI
Wang X, Jones A, Seyler K, Tran V, Jia Y, et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 2014;10:517–521. doi: 10.1038/nnano.2015.71. PubMed DOI
Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, et al. Two-dimensional molybdenum Carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016;1:589–594. doi: 10.1021/acsenergylett.6b00247. DOI
Yuan W, Cheng L, An Y, Wu H, Yao N, et al. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018;6:8976–8982. doi: 10.1021/acssuschemeng.8b01348. DOI
Zhang P, Wang F, Yu M, Zhuang X, Feng X. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 2018;47:7426–7451. doi: 10.1039/C8CS00561C. PubMed DOI
Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014;43:6537–6554. doi: 10.1039/C4CS00102H. PubMed DOI
Wang Z, Liu J, Hao X, Wang Y, Chen Y, et al. Investigating the stability of molecule doped graphene field effect transistors. New J. Chem. 2019;43:15275–15279. doi: 10.1039/C9NJ03537K. DOI
Wang Z, Xiong X, Li J, Dong M. Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys. 2021;16:100290. doi: 10.1016/j.mtphys.2020.100290. DOI
Ayari A, Cobas E, Ogundadegbe O, Fuhrer MS. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007;101:014507. doi: 10.1063/1.2407388. DOI
Li LH, Chen Y, Behan G, Zhang H, Petravic M, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 2011;21:11862–11866. doi: 10.1039/C1JM11192B. DOI
Özdemir M, Çekil C, Atasever Ö, Ozdemir B, Yarar Z, et al. Electron transport properties of silicene: Intrinsic and dirty cases with screening effects. J. Mol. Struct. 2019;1199:126878. doi: 10.1016/j.molstruc.2019.126878. DOI
Wang Z, Li Q, Besenbacher F, Dong M. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 2016;28:10224–10229. doi: 10.1002/adma.201602889. PubMed DOI
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Levy RB, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science. 1973;181:547. doi: 10.1126/science.181.4099.547. PubMed DOI
Claridge J, York A, Brungs A, Márquez-Alvarez C, Sloan J, et al. New catalysts for the conversion of methane to synthesis gas: molybdenum and tungsten carbide. J. Catal. 1998;180:85–100. doi: 10.1006/jcat.1998.2260. DOI
Kitchin J, Nørskov J, Barteau M, Chen J. Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catal. Today. 2005;105:66–73. doi: 10.1016/j.cattod.2005.04.008. DOI
Frey NC, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y, et al. Surface-engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano. 2019;13:2831–2839. doi: 10.1021/acsnano.8b09201. PubMed DOI
Ashton M, Mathew K, Hennig RG, Sinnott SB. Predicted surface composition and thermodynamic stability of mxenes in solution. J. Phys. Chem. C. 2016;120:3550–3556. doi: 10.1021/acs.jpcc.5b11887. DOI
Kan Z, Wen M, Meng Q, Hu C, Li X, et al. Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surf. Coat. Tech. 2012;212:185–191. doi: 10.1016/j.surfcoat.2012.09.046. DOI
Nedfors N, Tengstrand O, Lewin E, Furlan A, Eklund P, et al. Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Tech. 2011;206:354–359. doi: 10.1016/j.surfcoat.2011.07.021. DOI
Pechen EV, Krasnosvobodtsev SI, Shabanova NP, Ekimov EV, Varlashkin AV, et al. Tunneling and critical-magnetic-field study of superconducting NbC thin films. Physica C. 1994;235–240:2511–2512. doi: 10.1016/0921-4534(94)92476-7. DOI
Kostenko MG, Lukoyanov AV, Valeeva AA. Vacancy ordered structures in a nonstoichiometric niobium carbide NbC0.83. Mendeleev Commun. 2019;29:707–709. doi: 10.1016/j.mencom.2019.11.037. DOI
Smith J, Carlson O, de Avillez R. ChemInform abstract: The niobium-carbon system. ChemInform. 1987 doi: 10.1002/chin.198736371. DOI
Cuppari M, Santos S. Physical properties of the NbC carbide. Metals. 2016;6:250. doi: 10.3390/met6100250. DOI
Lipatnikov V, Lengauer W, Ettmayer P, Keil E, Groboth G, et al. Effects of vacancy ordering on structure and properties of vanadium carbide. J. Alloys Compounds. 1997;261:192–197. doi: 10.1016/S0925-8388(97)00224-7. DOI
Shacklette LW, Williams WS. Influence of order–disorder on the electrical resistivity of vanadium carbide. Phys. Rev. B. 1973 doi: 10.1103/PhysRevB.7.5041. DOI
Chong X, Jiang Y, Zhou R, Feng J. Electronic structure, mechanical and thermal properties of V-C binary compounds. RSC Adv. 2014;4:44959–44971. doi: 10.1039/C4RA07543A. DOI
Lipatnikov VN, Gusev AI, Ettmayer P, Lengauer W. Phase transformations in non-stoichiometric vanadium carbide. J. Phys. Condensed Matter. 1999;11:163–184. doi: 10.1088/0953-8984/11/1/014. DOI
Fan XS, Yang Z, Yuduo Z, Che H. Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique. Surf. Coat. Tech. 2010;205:641–646. doi: 10.1016/j.surfcoat.2010.07.065. DOI
Zhong Y, Xia X, Shi F, Zhan J, Tu J, et al. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016;3:1500286. doi: 10.1002/advs.201500286. PubMed DOI PMC
Zhao X, Sun W, Geng D, Fu W, Dan J, et al. Edge segregated polymorphism in 2D molybdenum carbide. Adv. Mater. 2019;31:1808343. doi: 10.1002/adma.201808343. PubMed DOI
Dai C, Chen Y, Jing X, Xiang L, Yang D, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano. 2017;11:12696–12712. doi: 10.1021/acsnano.7b07241. PubMed DOI
Liu H, Zhu J, Lai Z, Zhao R, He D. A first-principles study on structural and electronic properties of Mo2C. Scripta Mater. 2009;60:949–952. doi: 10.1016/j.scriptamat.2009.02.010. DOI
Tuo M, Xu C, Mu H, Bao X, Wang Y, et al. Ultrathin 2D Transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics. 2018;5:1808–1816. doi: 10.1021/acsphotonics.7b01428. DOI
Jeon J, Choi H, Choi S, Park J-H, Lee BH, et al. Hybrid photodetectors: transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 2019;29:1970329. doi: 10.1002/adfm.201970329. DOI
Hugosson HW, Eriksson O, Jansson U, Johansson B. Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B. 2001;63:134108. doi: 10.1103/PhysRevB.63.134108. DOI
Lipatnikov VN, Rempel AA, Gusev AI. Atomic ordering and hardness of nonstoichiometric titanium carbide. Int. J. Refract. Met. Hard Mater. 1997;15:61–64. doi: 10.1016/S0263-4368(96)00020-0. DOI
Li XJ, He LL, Li YS, Yang Q, Hirose A. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate. Mater. Charact. 2017;123:227–232. doi: 10.1016/j.matchar.2016.11.035. DOI
Yu B, Huang A, Chen D, Srinivas K, Zhang X, et al. In situ construction of Mo2C quantum dots-decorated cnt networks as a multifunctional electrocatalyst for advanced lithium–sulfur batteries. Small. 2021;17:2100460. doi: 10.1002/smll.202100460. PubMed DOI
Goretzki H. Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys. Phys. Status Solidi B. 1967;20:K141–K143. doi: 10.1002/pssb.19670200260. DOI
Ji B, Fan S, Ma X, Hu K, Wang L, et al. Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon. 2020;165:150–162. doi: 10.1016/j.carbon.2020.04.041. DOI
Dzhalabadze NV, Éristavi BG, Maisuradze NI, Tskhovrebashvili KK, Kuteliya ÉR. Structural transformations in titanium carbide during diamond grinding. Powder Metall. Metal Ceram. 1999;38:292–296. doi: 10.1007/BF02675778. DOI
Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016;26:4162–4168. doi: 10.1002/adfm.201600357. DOI
Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C. 2017;5:2488–2503. doi: 10.1039/C7TC00140A. DOI
Kuang M, Huang W, Hegde C, Fang W, Tan X, et al. Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Mater. Horizons. 2020;7:32–53. doi: 10.1039/C9MH01094G. DOI
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014;9:768–779. doi: 10.1038/nnano.2014.207. PubMed DOI
Zada S, Dai W, Kai Z, Lu H, Meng X, et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 2020;59:6601–6606. doi: 10.1002/anie.201916748. PubMed DOI
Jastrzebska A, Szuplewska A, Rozmysłowska-Wojciechowska A, Mitrzak J, Wojciechowski T, et al. Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustain. Chem. Eng. 2020;8:7942–7951. doi: 10.1021/acssuschemeng.0c01609. DOI
Klug JA, Proslier T, Elam JW, Cook RE, Hiller JM, et al. Atomic layer deposition of amorphous niobium carbide-based thin film superconductors. J. Phys. Chem. C. 2011;115:25063–25071. doi: 10.1021/jp207612r. DOI
Pisana S, Braganca PM, Marinero EE, Gurney BA. Tunable nanoscale graphene magnetometers. Nano Lett. 2010;10:341–346. doi: 10.1021/nl903690y. PubMed DOI
Barboza APM, Chacham H, Oliveira CK, Fernandes TFD, Ferreira EHM, et al. Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 2012;12:2313–2317. doi: 10.1021/nl300183e. PubMed DOI
Yang J, Naguib M, Ghidiu M, Pan L-M, Gu J, et al. Two-dimensional nb-based M4C3 solid solutions (MXenes) J. Am. Ceram. Soc. 2016;99:660–666. doi: 10.1111/jace.13922. DOI
Verger L, Xu C, Natu V, Cheng H-M, Ren W, et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid St. Mater. Sci. 2019;23:149–163. doi: 10.1016/j.cossms.2019.02.001. DOI
Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341:1502. doi: 10.1126/science.1241488. PubMed DOI
Ren A, Zou J, Lai H, Huang Y, Yuan L, et al. Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 2020;7:1901–1911. doi: 10.1039/D0MH00537A. DOI
Zhang C, Anasori B, Seral-Ascaso A, Park S-H, McEvoy N, et al. Transparent, Flexible, and conductive 2d titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017;29:1702678. doi: 10.1002/adma.201702678. PubMed DOI
Radovic M, Barsoum M, Phases MAX. Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 2013;92:20–27.
Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Inter. Ed. 2018;57:15491–15495. doi: 10.1002/anie.201809662. PubMed DOI
Zhou J, Zha X, Chen FY, Ye Q, Eklund P, et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Inter. Ed. 2016;55:5008–5013. doi: 10.1002/anie.201510432. PubMed DOI
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. Two-dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 2014;26:982–982. doi: 10.1002/adma.201470041. PubMed DOI
Ghidiu M, Lukatskaya M, Zhao M-Q, Gogotsi Y, Barsoum M. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78–81. doi: 10.1038/nature13970. PubMed DOI
Liu F, Zhou A, Chen J, Jia J, Zhou W, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 2017;416:781–789. doi: 10.1016/j.apsusc.2017.04.239. DOI
Liu F, Zhou J, Wang S, Wang B, Shen C, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-Ion batteries. J. Electrochem. Soc. 2017;164:A709–A713. doi: 10.1149/2.0641704jes. DOI
Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014;26:2374–2381. doi: 10.1021/cm500641a. PubMed DOI PMC
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, et al. MXene materials: effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016;2:1600255. doi: 10.1002/aelm.201670068. DOI
Yi J, Li J, Huang S, Hu L, Miao L, et al. Ti2CTx MXene-based all-optical modulator. InfoMat. 2020;2:601–609. doi: 10.1002/inf2.12052. DOI
Zhang C, Cui L, Abdolhosseinzadeh S, Heier J. Two-dimensional MXenes for lithium-sulfur batteries. InfoMat. 2020;2:613–638. doi: 10.1002/inf2.12080. DOI
He QX, Wang B, Wang L, Hu Q, Zhou A. Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte. Chin. Chem. Lett. 2020;31:984–987. doi: 10.1016/j.cclet.2019.08.025. DOI
Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat. Energy. 2017;2:17089. doi: 10.1038/nenergy.2017.89. DOI
Guan Y, Jiang S, Cong Y, Wang J, Dong Z, et al. A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes. 2D Mater. 2020;7:025010. doi: 10.1088/2053-1583/ab6706. DOI
Xin Y, Yu Y-X. Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Design. 2017;130:512–520. doi: 10.1016/j.matdes.2017.05.052. DOI
Wang Z, Li Q, Chen Y, Cui B, Li Y, et al. The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater. 2018;10:703–712. doi: 10.1038/s41427-018-0062-1. DOI
Pang S-Y, Io W-F, Wong L-W, Zhao J, Hao J. Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network. Adv. Sci. 2020;7:1903680. doi: 10.1002/advs.201903680. PubMed DOI PMC
Pinto D, Anasori B, Avireddy H, Shuck CE, Hantanasirisakul K, et al. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes. J. Mater. Chem. A. 2020;8:8957–8968. doi: 10.1039/D0TA01798A. DOI
Bloom D, Grant N. The system chromium-carbon. JOM. 1950;2:41–46. doi: 10.1007/BF03398977. DOI
Naguib M. MXenes: A new family of two-dimensional materials and its application as electrodes for Li-ion batteries. Dissertations Theses Gradworks. 2015;45:787–799.
Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2014;53:6407–6410. doi: 10.1002/anie.201402998. PubMed DOI
Luo J, Matios E, Wang H, Tao X, Li W. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat. 2020;2:1057–1076. doi: 10.1002/inf2.12118. DOI
Mashtalir O, Naguib M, Mochalin V, Dall'Agnese Y, Heon M, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013;4:1716. doi: 10.1038/ncomms2664. PubMed DOI
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, et al. Two-dimensional, ordered, double transition metals carbides (MXenes) ACS Nano. 2015;9:9507–9516. doi: 10.1021/acsnano.5b03591. PubMed DOI
Omomo Y, Sasaki T, Wang L, Watanabe M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. ChemInform. 2003 doi: 10.1002/chin.200324215. PubMed DOI
Naguib M, Unocic R, Armstrong B, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015;44:9353. doi: 10.1039/C5DT01247C. PubMed DOI
Mashtalir O, Lukatskaya MR, Zhao M-Q, Barsoum MW, Gogotsi Y. Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Adv. Mater. 2015;27:3501–3506. doi: 10.1002/adma.201500604. PubMed DOI
Reina A, Jia X, Ho J, Nezich D, Son H, et al. Few-Layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9:30–35. doi: 10.1021/nl901829a. PubMed DOI
Wang X, Feng H, Wu Y, Jiao L. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013;135:5304–5307. doi: 10.1021/ja4013485. PubMed DOI
Xu C, Wang L, Liu Z, Chen L, Guo J, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI
C. Xu, L. Chen, Z. Liu, H.-M. Cheng, W. Ren, Bottom-Up synthesis of 2D transition metal carbides and nitrides. 2D Metal Carbides and Nitrides (MXenes) (2019), pp. 89–109
Geng D, Zhao X, Chen Z, Sun W, Fu W, et al. Direct synthesis of large-area 2D Mo2C on In situ grown graphene. Adv. Mater. 2017;29:1700072. doi: 10.1002/adma.201700072. PubMed DOI
Geng D, Zhao X, Li L, Song P, Tian B, et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 2016;4:011012. doi: 10.1088/2053-1583/aa51b7. DOI
Zhang C, Wang Z, Tu R, Dong M, Li J, et al. Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 2019;499:143998. doi: 10.1016/j.apsusc.2019.143998. DOI
Xu C, Song S, Liu Z, Chen L, Wang L, et al. Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano. 2017;11:5906–5914. doi: 10.1021/acsnano.7b01638. PubMed DOI
Zhang C, Wang Z, Tu R, Dong M, Li J, et al. Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 2020;499:143998. doi: 10.1016/j.apsusc.2019.143998. DOI
Ikenoue T, Yoshida T, Miyake M, Kasada R, Hirato T. Fabrication and mechanical properties of tungsten carbide thin films via mist chemical vapor deposition. J. Alloys Compounds. 2020;829:154567. doi: 10.1016/j.jallcom.2020.154567. DOI
Rebenne HE, Bhat DG. Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance. Surf. Coat. Tech. 1994;63:1–13. doi: 10.1016/S0257-8972(05)80002-7. DOI
Volpe L, Boudart M. Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides. J. Solid State Chem. 1985;59:332–347. doi: 10.1016/0022-4596(85)90301-9. DOI
Claridge JB, York APE, Brungs AJ, Green MLH. Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors. Chem. Mater. 2000;12:132–142. doi: 10.1021/cm9911060. DOI
Peters AT. Ullmann's encyclopedia of industrial chemistry: vols A5–A7. VCH Verlagsgesellschaft, Weinheim, FRG, 1986. vols A5 (ISBN 3-527-20105-X; xv + 556 pp) Dyes Pigm. 1988;9:165–166. doi: 10.1016/0143-7208(88)80015-9. DOI
Teixeira da Silva VLS, Ko EI, Schmal M, Oyama ST. Synthesis of niobium carbide from niobium oxide aerogels. Chem. Mater. 1995;7:179–184. doi: 10.1021/cm00049a027. DOI
Teixeira da Silva VLS, Schmal M, Oyama ST. Niobium carbide synthesis from niobium oxide: study of the synthesis conditions, kinetics, and solid-state transformation mechanism. J. Solid State Chem. 1996;123:168–182. doi: 10.1006/jssc.1996.0165. DOI
Kapoor R, Oyama ST. Synthesis of high surface area vanadium nitride. J. Solid State Chem. 1992;99:303–312. doi: 10.1016/0022-4596(92)90318-P. DOI
Choi JG, Oh HG, Baek YS. Tantalum carbide hydrodenitrogenation catalysts. J. Ind. Eng. Chem. 1998;4:94–98.
Fei L, Gan X, Ng SM, Wang H, Xu M, et al. Observable two-step nucleation mechanism in solid-state formation of tungsten carbide. ACS Nano. 2019;13:681–688. doi: 10.1021/acsnano.8b07864. PubMed DOI
Biira S, Thabethe T, Bissett H, Ntsoane T, Malherbe JB. Investigating the thermal stability of the chemical vapour deposited zirconium carbide layers. J. Alloys Compounds. 2020;834:155003. doi: 10.1016/j.jallcom.2020.155003. DOI
Sun W, Kuang X, Liang H, Xia X, Zhang Z, et al. Mechanical properties of tantalum carbide from high-pressure/high-temperature synthesis and first-principles calculations. Phys. Chem. Chem. Phys. 2020;22:5018–5023. doi: 10.1039/C9CP06819H. PubMed DOI
Zou G, Wang H, Mara N, Luo H, Li N, et al. Chemical solution deposition of epitaxial carbide films. J. Am. Chem. Soc. 2010;132:2516–2517. doi: 10.1021/ja9102315. PubMed DOI
Jilek RE, Bauer E, Burrell AK, McCleskey TM, Jia Q, et al. Preparation of epitaxial uranium dicarbide thin films by polymer-assisted deposition. Chem. Mater. 2013;25:4373–4377. doi: 10.1021/cm402655p. DOI
Backhaus-Ricoult M. Oxidation behavior of SiC-whisker-reinforced alumina-zirconia composites. J. Am. Ceram. Soc. 1991;74:1793–1802. doi: 10.1111/j.1151-2916.1991.tb07790.x. DOI
Lewin E, Råsander M, Klintenberg M, Bergman A, Eriksson O, et al. Design of the lattice parameter of embedded nanoparticles. Chem. Phys. Lett. 2010;496:95–99. doi: 10.1016/j.cplett.2010.07.013. DOI
Shtansky DV, Levashov EA, Sheveiko AN, Moore JJ. Synthesis and characterization of Ti-Si-C-N films. Metall. Mater. Trans. A. 1999;30:2439–2447. doi: 10.1007/s11661-999-0252-0. DOI
Kan Z, Wena M, Chengb G, Lia X, Meng Q, et al. Reactive magnetron sputtering deposition and characterization of niobium carbide films. Vacuum. 2014;99:233–241. doi: 10.1016/j.vacuum.2013.06.012. DOI
Shiryaev SA, Atamanov M, Guseva M, Martynenko Y, Mitin A, et al. Production and properties of metal-carbon composite coatings with a nanocrystalline structure. Tech. Phys. 2002;47:238–243. doi: 10.1134/1.1451974. DOI
Yang D, Su Z, Chen Y, Srinivas K, Gao J, et al. Electronic modulation of hierarchical spongy nanosheets toward efficient and stable water electrolysis. Small. 2021;17:2006881. doi: 10.1002/smll.202006881. PubMed DOI
Wang J, Liu S, Wang Y, Wang T, Shang S, et al. Magnetron-sputtering deposited molybdenum carbide MXene thin films as a saturable absorber for passively Q-switched lasers. J. Mater. Chem. C. 2020;8:1608–1613. doi: 10.1039/C9TC06117G. DOI
Chorley RW, Lednor PW. Synthetic routes to high surface area non-oxide materials. Adv. Mater. 1991;3:474–485. doi: 10.1002/adma.19910031004. DOI
Nguyen TP, Tuan Nguyen DM, Tran DL, Le HK, Vo D-VN, et al. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 2020;486:110850. doi: 10.1016/j.mcat.2020.110850. DOI
Wang Z, Wu H-H, Li Q, Besenbacher F, Li Y, et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. 2020;7:1901382. doi: 10.1002/advs.201901382. PubMed DOI PMC
Wang Z, Li Q, Xu H, Dahl-Petersen C, Yang Q, et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634–643. doi: 10.1016/j.nanoen.2018.04.067. DOI
Gao G, O’Mullane AP, Du A. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017;7:494–500. doi: 10.1021/acscatal.6b02754. DOI
Wan J, Wang C, Qian T, Gu X, He M. First-principles study of vanadium carbides as electrocatalysts for hydrogen and oxygen evolution reactions. RSC Adv. 2019;9:37467–37473. doi: 10.1039/c9ra06539c. PubMed DOI PMC
Tian L, Min S, Wang F, Zhang Z. Enhanced photocatalytic hydrogen evolution on TiO2 employing vanadium carbide as an efficient and stable cocatalyst. Int. J. Hydrogen Energy. 2020;45:1878–1889. doi: 10.1016/j.ijhydene.2019.11.094. DOI
Hu Z, Chen C, Meng H, Wang R, Shen P, et al. Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. Electrochem. Commun. 2011;13:763–765. doi: 10.1016/j.elecom.2011.03.004. DOI
Guo L, Liu Y, Teng X, Niu Y, Gong S, et al. Self-supported vanadium carbide by an electropolymerization-assisted method for efficient hydrogen production. Chemsuschem. 2020;13:3671–3678. doi: 10.1002/cssc.202000769. PubMed DOI
Yoon Y, Tiwari AP, Choi M, Novak TG, Song W, et al. Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene. Adv. Funct. Mater. 2019;29:1903443. doi: 10.1002/adfm.201903443. DOI
Du C-F, Sun X, Yu H, Fang W, Jing Y, et al. V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat. 2020;2:950–959. doi: 10.1002/inf2.12078. DOI
Jansson U, Lewin E. Sputter deposition of transition-metal carbide films — a critical review from a chemical perspective. Thin Solid Films. 2013;536:1–24. doi: 10.1016/j.tsf.2013.02.019. DOI
Chen W-F, Wang C-H, Sasaki K, Marinkovic N, Xu W, et al. Highly active, durable, and nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013;6:943. doi: 10.1039/C2EE23891H. DOI
Chen Z, Guo T, Wu Z, Wang D. Boron triggers the phase transformation of MoxC (α-MoC1-x/β-Mo2C) for enhanced hydrogen production. Nanotechnology. 2019 doi: 10.1088/1361-6528/ab5a25. PubMed DOI
Han N, Yang KR, Lu Z, Li Y, Xu W, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018;9:924. doi: 10.1038/s41467-018-03429-z. PubMed DOI PMC
Lin L, Chen M, Wu L. Synthesis of molybdenum–tungsten bimetallic carbide hollow spheres as pH-Universal electrocatalysts for efficient hydrogen evolution reaction. Adv. Mater. Interfaces. 2018;5:1801302. doi: 10.1002/admi.201801302. DOI
Chen J, Ren B, Cui H, Wang C. Constructing pure phase tungsten-based bimetallic carbide nanosheet as an efficient bifunctional electrocatalyst for overall water splitting. Small. 2020;16:1907556. doi: 10.1002/smll.201907556. PubMed DOI
Wang L, Liu Z, Zhu S, Shao M, Yang B, et al. Tungsten carbide and cobalt modified nickel nanoparticles supported on multiwall carbon nanotubes as highly efficient electrocatalysts for urea oxidation in alkaline electrolyte. ACS Appl. Mater. Interfaces. 2018;10:41338–41343. doi: 10.1021/acsami.8b14397. PubMed DOI
Kui K, Xi K, Pu Z, Mu S. Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy. 2017;36:374–380. doi: 10.1016/j.nanoen.2017.04.057. DOI
Huang W, Meng H, Gao Y, Wang J, Yang C, et al. Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst. J. Mater. Chem. A. 2019;7:18538–18546. doi: 10.1039/C9TA03151K. DOI
Li S, Tuo P, Xie J, Zhang X, Xu J, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy. 2018;47:512–518. doi: 10.1016/j.nanoen.2018.03.022. DOI
Wang C, Wei S, Chen S, Cao D, Song L. Delaminating vanadium carbides for Zinc-ion storage: hydrate precipitation and H+/Zn2+ Co-action mechanism. Small Methods. 2019;3:1900495. doi: 10.1002/smtd.201900495. DOI
Liao L, Wang S, Xiao J, Bian X, Zhang Y, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014;7:387–392. doi: 10.1039/C3EE42441C. DOI
Ma L, Ting LRL, Molinari V, Giordano C, Yeo BS. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI
Handoko AD, Fredrickson KD, Anasori B, Convey KW, Johnson LR, et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 2018;1:173–180. doi: 10.1021/acsaem.7b00054. DOI
Kou Z, Xi K, Pu Z, Mu S. Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy. 2017;36:374–380. doi: 10.1016/j.nanoen.2017.04.057. DOI
Valencia DP, Yate L, Aperador W, Li Y, Coy E. High electrocatalytic response of ultra-refractory ternary alloys of Ta-Hf-C carbide toward hydrogen evolution reaction in acidic media. J. Phys. Chem. C. 2018;122:25433–25440. doi: 10.1021/acs.jpcc.8b08123. DOI
Qiao L, Zhu A, Zeng W, Dong R, Tan P, et al. Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. J. Mater. Chem. A. 2020;8:2453–2462. doi: 10.1039/C9TA10682K. DOI
Du C-F, Dinh KN, Liang Q, Zheng Y, Luo Y, et al. Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 2018;8:1801127. doi: 10.1002/aenm.201801127. DOI
Das D, Santra S, Nanda KK. In situ fabrication of a Nickel/Molybdenum carbide-anchored N-doped graphene/CNT hybrid: an efficient (pre)catalyst for OER and HER. ACS Appl. Mater. Interf. 2018;10:35025–35038. doi: 10.1021/acsami.8b09941. PubMed DOI
Fan H, Yu H, Zhang Y, Zheng Y, Luo Y, et al. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem. Int. Ed. 2017;56:12566–12570. doi: 10.1002/anie.201706610. PubMed DOI
Zhao L, Dong B, Li S, Zhou L, Lai L, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano. 2017;11:5800–5807. doi: 10.1021/acsnano.7b01409. PubMed DOI
Gao S, Chen H, Liu Y, Li G-D, Gao R, et al. Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorg. Chem. Front. 2019;6:940–947. doi: 10.1039/C8QI01360H. DOI
Yoon Y, Tiwari AP, Lee M, Choi M, Song W, et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A. 2018;6:20869–20877. doi: 10.1039/C8TA08197B. DOI
Zang X, Chen W, Zou X, Hohman JN, Yang L, et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018;30:1805188. doi: 10.1002/adma.201805188. PubMed DOI
Mondal A, Sinha K, Paul A, Srivastava DN, Panda AB. Large scale synthesis of Mo2C nanoparticle incorporated carbon nanosheet (Mo2C–C) for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy. 2020;45:18623–18634. doi: 10.1016/j.ijhydene.2019.09.051. DOI
Jiang Y, Sun T, Xie X, Jiang W, Li J, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem. 2019;12:1368–1373. doi: 10.1002/cssc.201803032. PubMed DOI
Zhou Y, Ma R, Li P, Chen Y, Liu Q, et al. Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. J. Mater. Chem. A. 2016;4:8204–8210. doi: 10.1039/C6TA01601D. DOI
Wang L, Li Z, Wang K, Dai Q, Lei C, et al. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy. 2020;74:104850. doi: 10.1016/j.nanoen.2020.104850. DOI
Burueva DB, Smirnov AA, Bulavchenko OA, Prosvirin IP, Gerasimov EY, et al. Pairwise parahydrogen addition over molybdenum carbide catalysts. Top. Catal. 2020;63:2–11. doi: 10.1007/s11244-019-01211-z. DOI
Xiao T, York A, Williams V, Almegren H, Hanif A, et al. Preparation of molybdenum carbides using butane and their catalytic performance. Chem. Mater. 2000 doi: 10.1021/cm001157t. DOI
Deeva EB, Kurlov A, Abdala PM, Lebedev D, Kim SM, et al. In Situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: implications for the catalytic activity in the water–gas shift reaction. Chem. Mater. 2019;31:4505–4513. doi: 10.1021/acs.chemmater.9b01105. DOI
Pajares A, Prats H, Romero A, Viñes F, de la Piscina PR, et al. Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts. App. Catal. B-Environ. 2020;267:118719. doi: 10.1016/j.apcatb.2020.118719. DOI
Lee E, VahidMohammadi A, Yoon YS, Beidaghi M, Kim D-J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sensors. 2019;4:1603–1611. doi: 10.1021/acssensors.9b00303. PubMed DOI
Zhao L, Wang K, Wei W, Wang L, Han W. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat. 2019;1:407–416. doi: 10.1002/inf2.12032. DOI
Sun S, Wang M, Chang X, Jiang Y, Zhang D, et al. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuators B Chem. 2020;304:127274. doi: 10.1016/j.snb.2019.127274. DOI
Li W, Yang Y, Zhang G, Zhang Y-W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015;15:1691–1697. doi: 10.1021/nl504336h. PubMed DOI
Jin H, Xin S, Chuang C, Li W, Wang H, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science. 2020;370:192. doi: 10.1126/science.aav5842. PubMed DOI
Ma P, Fang D, Liu Y, Shang Y, Shi Y, et al. MXene-Based materials for electrochemical sodium-ion storage. Adv. Sci. 2021 doi: 10.1002/advs.202003185. PubMed DOI PMC
Naguib M, Halim J, Lu J, Cook KM, Hultman L, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J. Am. Chem. Soc. 2013;135:15966–15969. doi: 10.1021/ja405735d. PubMed DOI
Lin Z, Rozier P, Duployer B, Taberna P-L, Anasori B, et al. Electrochemical and In-situ X-ray diffraction Studies of Ti3C2Tx MXene in Ionic liquid Electrolyte. Electrochem. Commun. 2016 doi: 10.1016/j.elecom.2016.08.023. DOI
Zhou J, Lin S, Huang Y, Tong P, Zhao B, et al. Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem. Eng. J. 2019;373:203–212. doi: 10.1016/j.cej.2019.05.037. DOI
Zhao J, Wen J, Bai L, Xiao J, Zheng R, et al. One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Trans. 2019;48:14433–14439. doi: 10.1039/C9DT03260F. PubMed DOI
Shen S, Xia X, Zhong Y, Deng S, Xie D, et al. Implanting niobium carbide into trichoderma spore carbon: a new advanced host for sulfur cathodes. Adv. Mater. 2019;31:1900009. doi: 10.1002/adma.201900009. PubMed DOI
Wenlong C, Li G, Zhang K, Xiao G, Wang C, et al. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2017;28:1704865. doi: 10.1002/adfm.201704865. DOI
VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano. 2017;11:11135–11144. doi: 10.1021/acsnano.7b05350. PubMed DOI
Yu J, Li M, Wang X, Yang Z. Promising high-performance supercapacitor electrode materials from MnO2 Nanosheets@Bamboo leaf carbon. ACS Omega. 2020;5:16299–16306. doi: 10.1021/acsomega.0c02169. PubMed DOI PMC
Zhao Y, Fang Q, Zhu X, Xue L, Ni M, et al. Structure reinforced birnessite with an extended potential window for supercapacitors. J. Mater. Chem. A. 2020;8:8969–8978. doi: 10.1039/D0TA01480J. DOI
Wang Z, Liu J, Hao X, Wang Y, Chen Y, et al. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J. Chem. 2020;44:13377–13381. doi: 10.1039/D0NJ02105A. DOI
Xiao J, Zhan H, Wang X, Xu Z-Q, Xiong Z, et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotech. 2020;15:683–689. doi: 10.1038/s41565-020-0704-7. PubMed DOI
Dong H, Xiao P, Jin N, Wang B, Liu Y, et al. Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem. 2021;8:957–962. doi: 10.1002/celc.202100142. DOI
Li Y, Shao H, Lin Z, Lu J, Liu L, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020;19:894–899. doi: 10.1038/s41563-020-0657-0. PubMed DOI
Shan Q, Mu X, Alhabeb M, Shuck CE, Pang D, et al. Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochem. Commun. 2018;96:103–107. doi: 10.1016/j.elecom.2018.10.012. DOI
Lv G, Wang J, Shi Z, Fan L. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater. Lett. 2018;219:45–50. doi: 10.1016/j.matlet.2018.02.016. DOI
Nam S, Umrao S, Oh S, Shin KH, Park HS, et al. Sonochemical self-growth of functionalized titanium carbide nanorods on Ti3C2 nanosheets for high capacity anode for lithium-ion batteries. Compos. Part B-Eng. 2020;181:107583. doi: 10.1016/j.compositesb.2019.107583. DOI
Ren CE, Zhao M-Q, Makaryan T, Halim J, Boota M, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-Ion storage. ChemElectroChem. 2016;3:689–693. doi: 10.1002/celc.201600059. DOI
Zhao S, Meng X, Zhu K, Du F, Chen G, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 2017;8:42–48. doi: 10.1016/j.ensm.2017.03.012. DOI
Ma L, Chen T, Zhu G, Hu Y, Lu H, et al. Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. J. Mater. Chem. A. 2016;4:15041–15048. doi: 10.1039/C6TA06692E. DOI
Liu Y-T, Zhang P, Sun N, Anasori B, Zhu Q-Z, et al. Self-Assembly of Transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018;30:1707334. doi: 10.1002/adma.201707334. PubMed DOI
Zhang C, Kim SJ, Ghidiu M, Zhao M-Q, Barsoum MW, et al. Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Funct. Mater. 2016;26:4143–4151. doi: 10.1002/adfm.201600682. DOI
Zhang H, Cui H, Li J, Liu Y, Yang Y, et al. Frogspawn inspired hollow Fe3C@N–C as an efficient sulfur host for high-rate lithium–sulfur batteries. Nanoscale. 2019;11:21532–21541. doi: 10.1039/C9NR07388D. PubMed DOI
Zhou F, Li Z, Luo X, Wu T, Jiang B, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li–S batteries. Nano Lett. 2018;18:1035–1043. doi: 10.1021/acs.nanolett.7b04505. PubMed DOI
Chen T, Li M, Song S, Kim P, Bae J. Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy. 2020;71:104549. doi: 10.1016/j.nanoen.2020.104549. DOI
Zhao X, Wang Z, Dong J, Huang T, Zhang Q, et al. Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J. Power Sources. 2020;470:228356. doi: 10.1016/j.jpowsour.2020.228356. DOI
Zhang H, Liu J, Tian Z, Ye Y, Cai Y, et al. A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon. 2016;100:590–599. doi: 10.1016/j.carbon.2016.01.047. DOI
Wang X, Li H, Li H, Lin S, Ding W, et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020;30:0190302. doi: 10.1002/adfm.201910302. DOI
Shi M, Zhao L, Song X, Liu J, Zhang P, et al. Highly conductive Mo2C nanofibers encapsulated in ultrathin MnO2 nanosheets as a self-supported electrode for high-performance capacitive energy storage. ACS Appl. Mater. Interf. 2016;8:32460–32467. doi: 10.1021/acsami.6b10637. PubMed DOI
Chen J, Li Z, Ni F, Ouyang W, Fang X. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horizons. 2020;7:1828–1833. doi: 10.1039/D0MH00394H. DOI
Montazeri K, Currie M, Verger L, Dianat P, Barsoum MW, et al. Beyond gold: Spin-Coated Ti3C2-based MXene photodetectors. Adv. Mater. 2019;31:1903271. doi: 10.1002/adma.201903271. PubMed DOI
Yang Y, Jeon J, Park J-H, Jeong MS, Lee BH, et al. Plasmonic transition metal carbide electrodes for high-performance inse photodetectors. ACS Nano. 2019;13:8804–8810. doi: 10.1021/acsnano.9b01941. PubMed DOI
Ren A, Zou J, Lai H, Huang Y, Yuan L, et al. Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons. 2020;7:1901–1911. doi: 10.1039/D0MH00537A. DOI
Kang Z, Ma Y, Tan X, Zhu M, Zheng Z, et al. MXene–Silicon van der waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 2017;3:1700165. doi: 10.1002/aelm.201700165. DOI
Gao L, Chen H, Zhang F, Mei S, Zhang Y, et al. Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods. 2020 doi: 10.1002/smtd.202000250. DOI
Jeon J, Choi H, Choi S, Park J-H, Lee BH, et al. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Electron. Mater. 2019;29:1905384. doi: 10.1002/adfm.201905384. DOI
Hao L, Du Y, Wang Z, Wu Y, Xu H, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity. Nanoscale. 2020;12:7358–7365. doi: 10.1039/D0NR00319K. PubMed DOI
Xu H, Hao L, Liu H, Dong S, Wu Y, et al. Flexible SnSe Photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces. 2020;12:35250–35258. doi: 10.1021/acsami.0c09561. PubMed DOI
Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI
Ren X, Huo M, Wang M, Lin H, Zhang X, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano. 2019;13:6438–6454. doi: 10.1021/acsnano.8b09327. PubMed DOI
Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI
Ren W, Liu Z, Xu C, Wang C, Song S, et al. Grain boundaries and tilt angle-dependent transport properties of 2D Mo2C superconductor. Nano Lett. 2019;19:857–865. doi: 10.1021/acs.nanolett.8b04065. PubMed DOI
Jin S, Su T, Hu Q, Zhou A. Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C. Mater. Res. Lett. 2020;8:158–164. doi: 10.1080/21663831.2020.1724204. DOI
Porrati F, Barth S, Sachser R, Dobrovolskiy OV, Seybert A, et al. Crystalline niobium carbide superconducting nanowires prepared by focused ion beam direct writing. ACS Nano. 2019;13:6287–6296. doi: 10.1021/acsnano.9b00059. PubMed DOI
Wang Z, Wu H-H, Li Q, Besenbacher F, Zeng XC, et al. Self-scrolling MoS2 metallic wires. Nanoscale. 2018;10:18178–18185. doi: 10.1039/C8NR04611E. PubMed DOI
Hao M, Xu C, Liu Z, Wang C, Liu Z, et al. Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Phys. Rev. B. 2020;101:115422. doi: 10.1103/PhysRevB.101.115422. DOI
Cheng Y, Wu X, Zhang Z, Sun Y, Zhao Y, et al. Thermo-mechanical correlation in two-dimensional materials. Nanoscale. 2021;13:1425–1442. doi: 10.1039/D0NR06824A. PubMed DOI
Zhang G, Zhang Y-W. Thermal properties of two-dimensional materials. Chin. Phys. B. 2017;26:034401. doi: 10.1088/1674-1056/26/3/034401. DOI
Lu X, Zhang Q, Liao J, Chen H, Fan Y, et al. High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 Matrix. Adv. Energy Mater. 2020;10:1902986. doi: 10.1002/aenm.201902986. DOI
Hong S, Zou G, Kim H, Huang D, Wang P, et al. Photothermoelectric response of Ti3C2Tx MXene confined ion channels. ACS Nano. 2020;14:9042–9049. doi: 10.1021/acsnano.0c04099. PubMed DOI PMC
Kim JH, Park GS, Kim Y-J, Choi E, Kang J, et al. Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano. 2021;15:8860–8869. doi: 10.1021/acsnano.1c01448. PubMed DOI
Wang J, Zhang Z, Zhu J, Tian M, Zheng S, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat. Commun. 2020;11:3540. doi: 10.1038/s41467-020-17373-4. PubMed DOI PMC
Xu D, Zhu X, Luo X, Guo Y, Liu Y, et al. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport. Environ. Sci. Technol. 2021;55:1270–1278. doi: 10.1021/acs.est.0c06835. PubMed DOI
Rajavel K, Yu X, Zhu P, Hu Y, Sun R, et al. Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Appl. Mater. Interfaces. 2020;12:49737–49747. doi: 10.1021/acsami.0c12835. PubMed DOI
Aïssa B, Sinopoli A, Ali A, Zakaria Y, Zekri A, et al. Nanoelectromagnetic of a highly conductive 2D transition metal carbide (MXene)/Graphene nanoplatelets composite in the EHF M-band frequency. Carbon. 2021;173:528–539. doi: 10.1016/j.carbon.2020.11.024. DOI
Liu S, Liu J, Liu X, Shang J, Xu L, et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 2021;16:331–336. doi: 10.1038/s41565-020-00818-8. PubMed DOI
Phuong Doan TH, Hong WG, Noh J-S. Palladium nanoparticle-decorated multi-layer Ti3C2Tx dual-functioning as a highly sensitive hydrogen gas sensor and hydrogen storage. RSC Adv. 2021;11:7492–7501. doi: 10.1039/D0RA10879K. PubMed DOI PMC
Zhu W, Panda S, Lu C, Ma Z, Khan D, et al. Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl. Mater. Interfaces. 2020;12:50333–50343. doi: 10.1021/acsami.0c12767. PubMed DOI