Functional and Taxonomic Diversity of Anaerobes in Supraglacial Microbial Communities

. 2023 Mar 20 ; 11 (2) : e0100422. [epub] 20230320

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36939373

Cryoconite holes are small ponds present on the surface of most glaciers filled with meltwater and sediment at the bottom. Although they are characterized by extreme conditions, they host bacterial communities with high taxonomic and functional biodiversity. Despite that evidence for a potential niche for anaerobic microorganisms and anaerobic processes has recently emerged, the composition of the microbial communities of the cryoconite reported so far has not shown the relevant presence of anaerobic taxa. We hypothesize that this is due to the lower growth yield of anaerobes compared to aerobic microorganisms. In this work, we aim at evaluating whether the anaerobic bacterial community represents a relevant fraction of the biodiversity of the cryoconite and at describing its structure and functions. We collected sediment samples from cryoconite holes on the Forni Glacier (Italy) and sequenced both 16S rRNA amplicon genes and 16S rRNA amplicon transcripts at different times of the day along a clear summer day. Results showed that a relevant fraction of taxa has been detected only by 16S rRNA transcripts and was undetectable in 16S rRNA gene amplicons. Furthermore, in the transcript approach, anaerobic taxa were overrepresented compared with DNA sequencing. The metatranscriptomics approach was used also to investigate the expression of the main metabolic functions. Results showed the occurrence of syntrophic and commensalism relationships among fermentative bacteria, hydrogenothrophs, and consumers of fermentation end products, which have never been reported so far in cryoconite. IMPORTANCE Recent evidence disclosed the presence of a potential niche for anaerobic microorganisms and anaerobic processes in supraglacial sediments (cryoconite), but a detailed description of the structure and functions of the anaerobic population is still lacking. This work used rRNA and mRNA sequencing and demonstrated that anaerobes are very active in these environments and represent a relevant albeit neglected part of the ecosystem functions in these environments.

Zobrazit více v PubMed

Cook J, Edwards A, Takeuchi N, Irvine-Fynn T. 2015. Cryoconite: the dark biological secret of the cryosphere. Prog Phys Geogr 40:66–111. doi:10.1177/0309133315616574. DOI

Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK. 2011. Global distribution of polaromonas phylotypes–evidence for a highly successful dispersal capacity. PLoS One 6:e23742. doi:10.1371/journal.pone.0023742. PubMed DOI PMC

Poniecka EA. Physiological capabilities of cryoconite hole microorganisms. 2020. Front Microbiol 11:1–14. doi:10.3389/fmicb.2020.00001. PubMed DOI PMC

Franzetti A, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Mayer C, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R. 2016. Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. ISME J 10:2984–2988. doi:10.1038/ismej.2016.72. PubMed DOI PMC

Poniecka EA, Bagshaw EA, Tranter M, Sass H, Williamson CJ, Anesio AM. 2018. Rapid development of anoxic niches in supraglacial ecosystems. Arctic Antarct Alp Res 50:1. doi:10.1080/15230430.2017.1420859. DOI

Buda J, Poniecka EA, Rozwalak P, Ambrosini R, Bagshaw EA, Franzetti A, Klimaszyk P, Nawrot A, Pietryka M, Richter D, Zawierucha K. 2022. Is oxygenation related to the decomposition of organic matter in cryoconite holes? Ecosystems 25:1510–1521. doi:10.1007/s10021-021-00729-2. DOI

Capdeville B, Nguyen KM. 1990. Kinetics and modelling of aerobic and anerobic film growth. Water Sci Technol 22:149–170. doi:10.2166/wst.1990.0077. DOI

Fountain AG, Campbell JL, Schuur EA, Stammerjohn SE, Williams ME, Ducklow HW. 2012. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62:405–415. doi:10.1525/bio.2012.62.4.11. DOI

Stibal M, Šabacká M, Žárský J. 2012. Biological processes on glacier and ice sheet surfaces. Nat Geosci 5:771–774. doi:10.1038/ngeo1611. DOI

Pittino F, Maglio M, Gandolfi I, Azzoni RS, Diolaiuti G, Ambrosini R, Franzetti A. 2018. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Ann Glaciol 59:1–9. doi:10.1017/aog.2018.16. DOI

Segawa T, Yonezawa T, Edwards A, Akiyoshi A, Tanaka S, Uetake J, Irvine-Fynn T, Fukui K, Li Z, Takeuchi N. 2017. Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. J Biogeogr 44:2849–2861. doi:10.1111/jbi.13089. DOI

Margesin R, Zacke G, Schinner F. 2002. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arctic Antarct Alp Res 34:88–93. doi:10.1080/15230430.2002.12003472. DOI

Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. 2008. Glacial ecosystems. Ecol Monogr 78:41–67. doi:10.1890/07-0187.1. DOI

Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS. 2015. Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7:293–300. doi:10.1111/1758-2229.12246. PubMed DOI

Segawa T, Takeuchi N, Mori H, Rathnayake RMLD, Li Z, Akiyoshi A, et al.. 2020. Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers. FEMS Microbiol Ecol 96:199. doi:10.1093/femsec/fiaa199. PubMed DOI

Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. 2001. Combined use of 16S ribosomal DNA and 16S rRNA To study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884. doi:10.1128/AEM.67.4.1874-1884.2001. PubMed DOI PMC

Eichler S, Christen R, Höltje C, Westphal P, Bötel J, Brettar I, Mehling A, Höfle MG. 2006. Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol 72:1858–1872. doi:10.1128/AEM.72.3.1858-1872.2006. PubMed DOI PMC

Gentile G, Giuliano L, D'Auria G, Smedile F, Azzaro M, De Domenico M, Yakimov MM. 2006. Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ Microbiol 8:2150–2161. doi:10.1111/j.1462-2920.2006.01097.x. PubMed DOI

Razzauti M, Galan M, Bernard M, Maman S, Klopp C, Charbonnel N, et al.. 2015. A comparison between transcriptome sequencing and 16S metagenomics for detection of bacterial pathogens in wildlife. PLoS Negl Trop Dis 9:e0003929. doi:10.1371/journal.pntd.0003929. PubMed DOI PMC

De Vrieze J, Pinto AJ, Sloan WT, Ijaz UZ. 2018. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6:1–13. doi:10.1186/s40168-017-0383-2. PubMed DOI PMC

Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. 2015. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690. doi:10.1038/nrmicro3522. PubMed DOI

Christner BC, Kvitko BH, Reeve JN. 2003. Molecular identification of bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183. doi:10.1007/s00792-002-0309-0. PubMed DOI

Ambrosini R, Musitelli F, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Mayer C, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Franzetti A. 2017. Diversity and assembling processes of bacterial communities in cryoconite holes of a karakoram glacier. Microb Ecol 73:827–837. doi:10.1007/s00248-016-0914-6. PubMed DOI

Franzetti A, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R. 2017. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier. PLoS One 12:e0174786. doi:10.1371/journal.pone.0174786. PubMed DOI PMC

Anesio AM, Sattler B, Foreman C, Telling J, Hodson A, Tranter M, Psenner R. 2010. Carbon fluxes through bacterial communities on glacier surfaces. Ann Glaciol 51:32–40. doi:10.3189/172756411795932092. DOI

Zawierucha K, Buda J, Azzoni RS, Niśkiewicz M, Franzetti A, Ambrosini R. 2019. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquat Ecol 53:543–556. doi:10.1007/s10452-019-09707-2. DOI

Zawierucha K, Trzebny A, Buda J, Bagshaw E, Franzetti A, Dabert M, et al.. 2022. Trophic and symbiotic links between obligate-glacier water bears (Tardigrada) and cryoconite microorganisms. PLoS One 17:e0262039. doi:10.1371/journal.pone.0262039. PubMed DOI PMC

Segawa T, Ishii S, Ohte N, Akiyoshi A, Yamada A, Maruyama F, Li Z, Hongoh Y, Takeuchi N. 2014. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environ Microbiol 16:3250–3262. doi:10.1111/1462-2920.12543. PubMed DOI

Zdanowski MK, Bogdanowicz A, Gawor J, Gromadka R, Wolicka D, Grzesiak J. 2016. Enrichment of cryoconite hole anaerobes: implications for the subglacial microbiome. Microb Ecol 73:532–538. doi:10.1007/s00248-016-0886-6. PubMed DOI PMC

Franzetti A, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R. 2017. Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environ Microbiol Rep 9:71–78. doi:10.1111/1758-2229.12499. PubMed DOI

Zhang G, Cao T, Ying J, Yang Y, Ma L. 2014. Diversity and novelty of actinobacteria in Arctic marine sediments. Antonie Van Leeuwenhoek 105:743–754. doi:10.1007/s10482-014-0130-7. PubMed DOI

Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Rivière D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Médigue C, Weissenbach J, Le Paslier D. 2008. “Candidatus Cloacamonas Acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190:2572. doi:10.1128/JB.01248-07. PubMed DOI PMC

Koblížek M. 2015. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870. doi:10.1093/femsre/fuv032. PubMed DOI

Hell R, Dahl C, Knaff D, Leustek T. 2008. Sulfur metabolism in phototrophic organisms. Springer, New York.

Chen Y, Liu Y, Liu K, Ji M, Li Y. 2022. Snowstorm enhanced the deterministic processes of the microbial community in cryoconite at Laohugou Glacier, Tibetan Plateau. Front Microbiol 12:784273. doi:10.3389/fmicb.2021.784273. PubMed DOI PMC

Gray MA, Pratte ZA, Kellogg CA. 2013. Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiol Ecol 83:468–477. doi:10.1111/1574-6941.12008. PubMed DOI

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869. PubMed DOI PMC

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07. PubMed DOI PMC

Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. doi:10.1093/bioinformatics/bts174. PubMed DOI

Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119. PubMed DOI PMC

Kanehisa M, Goto S. 2000. KEGG : Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27. PubMed DOI PMC

Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560. doi:10.1101/gr.120618.111. PubMed DOI PMC

Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385. doi:10.1186/1471-2105-12-385. PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup . 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033. PubMed DOI PMC

R Development Core Team 3.0.1. 2013. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x. DOI

Gini C. 1912. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statische.

Legendre P, Legendre L. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716. PubMed DOI

De Caceres M, Legendre P, Moretti M. 2010. Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684. doi:10.1111/j.1600-0706.2010.18334.x. DOI

Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...