• This record comes from PubMed

Identification of residues in the first transmembrane domain of the P2X7 that regulates receptor trafficking, sensitization, and dye uptake function

. 2023 Jun ; 165 (6) : 874-891. [epub] 20230421

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
272122 Charles University Grant Agency
918120 Charles University Grant Agency
CA21130 European Cooperation in Science and Technology
CZ.1.05/1.1.00/02.0109 Ministry of Education, Youth and Sports of the Czech Republic within the LQ1604 National Sustainability Program II (Project BIOCEV-FAR)

P2X receptors (P2X1-7) are trimeric ion channels activated by extracellular ATP. Each P2X subunit contains two transmembrane helices (TM1 and TM2). We substituted all residues in TM1 of rat P2X7 with alanine or leucine one by one, expressed mutants in HEK293T cells, and examined the pore permeability by recording both membrane currents and fluorescent dye uptake in response to agonist application. Alanine substitution of G27, K30, H34, Y40, F43, L45, M46, and D48 inhibited agonist-stimulated membrane current and dye uptake, and all but one substitution, D48A, prevented surface expression. Mutation V41A partially reduced both membrane current and dye uptake, while W31A and A44L showed reduced dye uptake not accompanied by reduced membrane current. Mutations T28A, I29A, and L33A showed small changes in agonist sensitivity, but they had no or small impact on dye uptake function. Replacing charged residues with residues of the same charge (K30R, H34K, and D48E) rescued receptor function, while replacement with residues of opposite charge inhibited (K30E and H34E) or potentiated (D48K) receptor function. Prolonged stimulation with agonist-induced current facilitation and a leftward shift in the dose-response curve in the P2X7 wild-type and most functional mutants, but sensitization was absent in the W31A, L33A, and A44L. Detailed analysis of the decay of responses revealed two kinetically distinct mechanisms of P2X7 deactivation: fast represents agonist unbinding, and slow might represent resetting of the receptor to the resting closed state. These results indicate that conserved and receptor-specific TM1 residues control surface expression of the P2X7 protein, non-polar residues control receptor sensitization, and D48 regulates intrinsic channel properties.

See more in PubMed

Adinolfi, E., Cirillo, M., Woltersdorf, R., Falzoni, S., Chiozzi, P., Pellegatti, P., Callegari, M. G., Sandona, D., Markwardt, F., Schmalzing, G., & Di Virgilio, F. (2010). Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. The FASEB Journal, 24(9), 3393-3404.

Allsopp, R. C., El Ajouz, S., Schmid, R., & Evans, R. J. (2011). Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: Mapping agonist binding and channel gating. The Journal of Biological Chemistry, 286(33), 29207-29217.

Allsopp, R. C., & Evans, R. J. (2015). Contribution of the Juxtatransmembrane intracellular regions to the time course and permeation of ATP-gated P2X7 receptor ion channels. The Journal of Biological Chemistry, 290(23), 14556-14566.

Bhattacharya, A., Lord, B., Grigoleit, J. S., He, Y., Fraser, I., Campbell, S. N., Taylor, N., Aluisio, L., O'Connor, J. C., Papp, M., Chrovian, C., Carruthers, N., Lovenberg, T. W., & Letavic, M. A. (2018). Neuropsychopharmacology of JNJ-55308942: Evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology, 43(13), 2586-2596.

Bianchi, B. R., Lynch, K. J., Touma, E., Niforatos, W., Burgard, E. C., Alexander, K. M., Park, H. S., Yu, H., Metzger, R., Kowaluk, E., Jarvis, M. F., & van Biesen, T. (1999). Pharmacological characterization of recombinant human and rat P2X receptor subtypes. European Journal of Pharmacology, 376(1-2), 127-138.

Browne, L. E., Compan, V., Bragg, L., & North, R. A. (2013). P2X7 receptor channels allow direct permeation of nanometer-sized dyes. The Journal of Neuroscience, 33(8), 3557-3566.

Burnstock, G. (2006). Purinergic signalling-an overview. Novartis Foundation Symposium, 276, 26-48 discussion 48-57, 275-281.

Caohuy, H., Jozwik, C., & Pollard, H. B. (2009). Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway. Journal of Biological Chemistry, 284(37), 25241-25253.

Caseley, E. A., Muench, S. P., & Jiang, L. H. (2017). Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies. Purinergic Signal, 13(1), 135-141.

Coddou, C., Yan, Z., Obsil, T., Huidobro-Toro, J. P., & Stojilkovic, S. S. (2011). Activation and regulation of purinergic P2X receptor channels. Pharmacological Reviews, 63(3), 641-683.

Collo, G., Neidhart, S., Kawashima, E., Kosco-Vilbois, M., North, R. A., & Buell, G. (1997). Tissue distribution of the P2X7 receptor. Neuropharmacology, 36(9), 1277-1283.

Colquhoun, D. (1998). Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. British Journal of Pharmacology, 125(5), 924-947.

Denlinger, L. C., Sommer, J. A., Parker, K., Gudipaty, L., Fisette, P. L., Watters, J. W., Proctor, R. A., Dubyak, G. R., & Bertics, P. J. (2003). Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function. Journal of Immunology, 171(3), 1304-1311.

Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L., & Falzoni, S. (2017). The P2X7 receptor in infection and inflammation. Immunity, 47(1), 15-31.

Di Virgilio, F., Schmalzing, G., & Markwardt, F. (2018). The elusive P2X7 macropore. Trends in Cell Biology, 28(5), 392-404.

Egan, T. M., Haines, W. R., & Voigt, M. M. (1998). A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. The Journal of Neuroscience, 18(7), 2350-2359.

Egan, T. M., & Khakh, B. S. (2004). Contribution of calcium ions to P2X channel responses. The Journal of Neuroscience, 24(13), 3413-3420.

Gorodeski, G. I. (2009). P2X7-mediated chemoprevention of epithelial cancers. Expert Opinion on Therapeutic Targets, 13(11), 1313-1332.

Haines, W. R., Voigt, M. M., Migita, K., Torres, G. E., & Egan, T. M. (2001). On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor. The Journal of Neuroscience, 21(16), 5885-5892.

Harkat, M., Peverini, L., Cerdan, A. H., Dunning, K., Beudez, J., Martz, A., Calimet, N., Specht, A., Cecchini, M., Chataigneau, T., & Grutter, T. (2017). On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proceedings of the National Academy of Sciences of the United States of America, 114(19), E3786-E3795.

Hattori, M., & Gouaux, E. (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature, 485(7397), 207-212.

Hibell, A. D., Thompson, K. M., Simon, J., Xing, M., Humphrey, P. P., & Michel, A. D. (2001). Species- and agonist-dependent differences in the deactivation-kinetics of P2X7 receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 363(6), 639-648.

Iglesias, R., Locovei, S., Roque, A., Alberto, A. P., Dahl, G., Spray, D. C., & Scemes, E. (2008). P2X7 receptor-Pannexin1 complex: Pharmacology and signaling. American Journal of Physiology. Cell Physiology, 295(3), C752-C760.

Inoue, K., & Tsuda, M. (2021). Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochemical Pharmacology, 187, 114309.

Ishchenko, Y., Novosolova, N., Khafizov, K., Bart, G., Timonina, A., Fayuk, D., Skorinkin, A., & Giniatullin, R. (2017). Reconstructed serine 288 in the left flipper region of the rat P2X7 receptor stabilizes nonsensitized states. Biochemistry, 56(26), 3394-3402.

Jelassi, B., Anchelin, M., Chamouton, J., Cayuela, M. L., Clarysse, L., Li, J., Gore, J., Jiang, L. H., & Roger, S. (2013). Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis, 34(7), 1487-1496.

Jelinkova, I., Vavra, V., Jindrichova, M., Obsil, T., Zemkova, H. W., Zemkova, H., & Stojilkovic, S. S. (2008). Identification of P2X(4) receptor transmembrane residues contributing to channel gating and interaction with ivermectin. Pflügers Archiv, 456(5), 939-950.

Jiang, L. H., Rassendren, F., Spelta, V., Surprenant, A., & North, R. A. (2001). Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. The Journal of Biological Chemistry, 276(18), 14902-14908.

Jiang, L. H., Rassendren, F., Surprenant, A., & North, R. A. (2000). Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. The Journal of Biological Chemistry, 275(44), 34190-34196.

Jindrichova, M., Bhattacharya, A., Rupert, M., Skopek, P., Obsil, T., & Zemkova, H. (2015). Functional characterization of mutants in the transmembrane domains of the rat P2X7 receptor that regulate pore conductivity and agonist sensitivity. Journal of Neurochemistry, 133(6), 815-827.

Jindrichova, M., Khafizov, K., Skorinkin, A., Fayuk, D., Bart, G., Zemkova, H., & Giniatullin, R. (2011). Highly conserved tyrosine 37 stabilizes desensitized states and restricts calcium permeability of ATP-gated P2X3 receptor. Journal of Neurochemistry, 119(4), 676-685.

Jindrichova, M., Vavra, V., Obsil, T., Stojilkovic, S. S., & Zemkova, H. (2009). Functional relevance of aromatic residues in the first transmembrane domain of P2X receptors. Journal of Neurochemistry, 109(3), 923-934.

Karasawa, A., Michalski, K., Mikhelzon, P., & Kawate, T. (2017). The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife, 6, 1-22.

Kawate, T., Michel, J. C., Birdsong, W. T., & Gouaux, E. (2009). Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature, 460(7255), 592-598.

Khadra, A., Tomic, M., Yan, Z., Zemkova, H., Sherman, A., & Stojilkovic, S. S. (2013). Dual gating mechanism and function of P2X7 receptor channels. Biophysical Journal, 104(12), 2612-2621.

Khakh, B. S., Bao, X. R., Labarca, C., & Lester, H. A. (1999). Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nature Neuroscience, 2(4), 322-330.

Khakh, B. S., & Egan, T. M. (2005). Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics. The Journal of Biological Chemistry, 280(18), 6118-6129.

Khakh, B. S., & North, R. A. (2006). P2X receptors as cell-surface ATP sensors in health and disease. Nature, 442(7102), 527-532.

Klapperstuck, M., Buttner, C., Schmalzing, G., & Markwardt, F. (2001). Functional evidence of distinct ATP activation sites at the human P2X(7) receptor. The Journal of Physiology, 534(Pt 1), 25-35.

Kopp, R., Krautloher, A., Ramirez-Fernandez, A., & Nicke, A. (2019). P2X7 interactions and signaling-making head or tail of it. Frontiers in Molecular Neuroscience, 12, 183.

Koshimizu, T., Koshimizu, M., & Stojilkovic, S. S. (1999). Contributions of the C-terminal domain to the control of P2X receptor desensitization. The Journal of Biological Chemistry, 274(53), 37651-37657.

Lara, R., Adinolfi, E., Harwood, C. A., Philpott, M., Barden, J. A., Di Virgilio, F., & McNulty, S. (2020). P2X7 in cancer: From molecular mechanisms to therapeutics. Frontiers in Pharmacology, 11, 793.

Li, M., Chang, T. H., Silberberg, S. D., & Swartz, K. J. (2008). Gating the pore of P2X receptor channels. Nature Neuroscience, 11(8), 883-887.

Li, Z., Migita, K., Samways, D. S., Voigt, M. M., & Egan, T. M. (2004). Gain and loss of channel function by alanine substitutions in the transmembrane segments of the rat ATP-gated P2X2 receptor. The Journal of Neuroscience, 24(33), 7378-7386.

Lukacs, G. L., Segal, G., Kartner, N., Grinstein, S., & Zhang, F. (1997). Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochemical Journal, 328(Pt 2), 353-361.

Mackenzie, A. B., Young, M. T., Adinolfi, E., & Surprenant, A. (2005). Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. The Journal of Biological Chemistry, 280(40), 33968-33976.

Mansoor, S. E., Lu, W., Oosterheert, W., Shekhar, M., Tajkhorshid, E., & Gouaux, E. (2016). X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature, 538(7623), 66-71.

McCarthy, A. E., Yoshioka, C., & Mansoor, S. E. (2019). Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization. Cell, 179(3), 659-670 e613.

Monif, M., Reid, C. A., Powell, K. L., Smart, M. L., & Williams, D. A. (2009). The P2X7 receptor drives microglial activation and proliferation: A trophic role for P2X7R pore. The Journal of Neuroscience, 29(12), 3781-3791.

Nicke, A., Baumert, H. G., Rettinger, J., Eichele, A., Lambrecht, G., Mutschler, E., & Schmalzing, G. (1998). P2X1 and P2X3 receptors form stable trimers: A novel structural motif of ligand-gated ion channels. The EMBO Journal, 17(11), 3016-3028.

Nicke, A., Kuan, Y. H., Masin, M., Rettinger, J., Marquez-Klaka, B., Bender, O., Gorecki, D. C., Murrell-Lagnado, R. D., & Soto, F. (2009). A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. The Journal of Biological Chemistry, 284(38), 25813-25822.

North, R. (1996). P2X receptors: A third major class of ligand-gated ion channels. Ciba Foundation Symposium, 198, 91-105.

Oken, A. C., Krishnamurthy, I., Savage, J. C., Lisi, N. E., Godsey, M. H., & Mansoor, S. E. (2022). Molecular pharmacology of P2X receptors: Exploring Druggable domains revealed by structural biology. Frontiers in Pharmacology, 13, 925880.

Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B., & Posmantur, R. (2003). P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. The Journal of Biological Chemistry, 278(15), 13309-13317.

Pelegrin, P., & Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. The EMBO Journal, 25(21), 5071-5082.

Pippel, A., Stolz, M., Woltersdorf, R., Kless, A., Schmalzing, G., & Markwardt, F. (2017). Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proceedings of the National Academy of Sciences of the United States of America, 114(11), E2156-E2165.

Rassendren, F., Buell, G. N., Virginio, C., Collo, G., North, R. A., & Surprenant, A. (1997). The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. The Journal of Biological Chemistry, 272(9), 5482-5486.

Rettinger, J., & Schmalzing, G. (2004). Desensitization masks nanomolar potency of ATP for the P2X1 receptor. The Journal of Biological Chemistry, 279(8), 6426-6433.

Riedel, T., Lozinsky, I., Schmalzing, G., & Markwardt, F. (2007). Kinetics of P2X7 receptor-operated single channels currents. Biophysical Journal, 92(7), 2377-2391.

Riedel, T., Schmalzing, G., & Markwardt, F. (2007). Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents. Biophysical Journal, 93(3), 846-858.

Roger, S., Pelegrin, P., & Surprenant, A. (2008). Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. The Journal of Neuroscience, 28(25), 6393-6401.

Rokic, M. B., Stojilkovic, S. S., Vavra, V., Kuzyk, P., Tvrdonova, V., & Zemkova, H. (2013). Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor. PLoS One, 8(3), e59411.

Rupert, M., Bhattacharya, A., Stillerova, V. T., Jindrichova, M., Mokdad, A., Boue-Grabot, E., & Zemkova, H. (2020). Role of conserved residues and F322 in the extracellular vestibule of the rat P2X7 receptor in its expression, function and dye uptake ability. International Journal of Molecular Sciences, 21(22), 1-19.

Samways, D. S., & Egan, T. M. (2007). Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family. The Journal of General Physiology, 129(3), 245-256.

Samways, D. S., Khakh, B. S., & Egan, T. M. (2012). Allosteric modulation of Ca2+ flux in ligand-gated Cation Channel (P2X4) by actions on lateral portals. The Journal of Biological Chemistry, 287(10), 7594-7602.

Samways, D. S., Migita, K., Li, Z., & Egan, T. M. (2008). On the role of the first transmembrane domain in cation permeability and flux of the ATP-gated P2X2 receptor. The Journal of Biological Chemistry, 283(8), 5110-5117.

Sperlagh, B., & Illes, P. (2014). P2X7 receptor: An emerging target in central nervous system diseases. Trends in Pharmacological Sciences, 35(10), 537-547.

Steinberg, T. H., Newman, A. S., Swanson, J. A., & Silverstein, S. C. (1987). ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. The Journal of Biological Chemistry, 262(18), 8884-8888.

Sun, C., Heid, M. E., Keyel, P. A., & Salter, R. D. (2013). The second transmembrane domain of P2X7 contributes to dilated pore formation. PLoS One, 8(4), e61886.

Surprenant, A., Rassendren, F., Kawashima, E., North, R. A., & Buell, G. (1996). The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science, 272(5262), 735-738.

Vial, C., Roberts, J. A., & Evans, R. J. (2004). Molecular properties of ATP-gated P2X receptor ion channels. Trends in Pharmacological Sciences, 25(9), 487-493.

Virginio, C., MacKenzie, A., North, R. A., & Surprenant, A. (1999). Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. The Journal of Physiology, 519(Pt 2), 335-346.

Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A., & Surprenant, A. (1999). Pore dilation of neuronal P2X receptor channels. Nature Neuroscience, 2(4), 315-321.

Vultaggio-Poma, V., Falzoni, S., Salvi, G., Giuliani, A. L., & Di Virgilio, F. (2022). Signalling by extracellular nucleotides in health and disease. Biochimica et Biophysica Acta Molecular Cell Research, 1869(5), 119237.

Yan, Z., Khadra, A., Li, S., Tomic, M., Sherman, A., & Stojilkovic, S. S. (2010). Experimental characterization and mathematical modeling of P2X7 receptor channel gating. The Journal of Neuroscience, 30(42), 14213-14224.

Yan, Z., Li, S., Liang, Z., Tomic, M., & Stojilkovic, S. S. (2008). The P2X7 receptor channel pore dilates under physiological ion conditions. The Journal of General Physiology, 132(5), 563-573.

Zemkova, H., He, M. L., Koshimizu, T. A., & Stojilkovic, S. S. (2004). Identification of ectodomain regions contributing to gating, deactivation, and resensitization of purinergic P2X receptors. The Journal of Neuroscience, 24(31), 6968-6978.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...