Effect of titanium nanostructured surface on fibroblast behavior
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36960876
DOI
10.1002/jbm.a.37531
Knihovny.cz E-resources
- Keywords
- cell morphology, cell viability, fibroblast, ion release, titanium nanotubes,
- MeSH
- Fibroblasts MeSH
- Humans MeSH
- Nanostructures * MeSH
- Surface Properties MeSH
- Wettability MeSH
- Titanium * pharmacology chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Titanium * MeSH
As the consumption of implants increases, so do the requirements for individual types of implants, for example, improved biocompatibility or longevity. Therefore, the nano-modification of the titanium surface is often chosen. The aim was to characterize the modified surface with a focus on medical applications. The titanium surface was modified by the anodic oxidation method to form nanotubes. Subsequently, the material was characterized and analyzed for medical applications-surface morphology, surface wettability, chemical composition, and release of ions into biological fluids. A human gingival fibroblasts (HGFb) cell line was used in the viability study. A homogeneous layer of nanotubes of defined dimensions was formed on the titanium surface, ensuring the material's biocompatibility-the preparation conditions influence the resulting properties of the nanostructured surface. Nanostructured titanium exhibited more suitable characteristics (e.g., wettability, roughness, ion release) for biological applications than compared to pure titanium. It was possible to understand the behavior of the modified layer on the titanium surface and its effect on cell behavior. Another contribution of this work is the combination of material characterization (ion release) with the study of cytocompatibility (direct contact of cells with metals).
See more in PubMed
Abdullah M, Kamarudin SK. Titanium dioxide nanotubes (TNT) in energy and environmental applications: an overview. Renew Sustain Energy Rev. 2017;76:212-225. [cited 2019 Aug 27]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1364032117300643
Kim S, Jung M, Kim M, Choi J. Bi-functional anodic TiO 2 oxide: nanotubes for wettability control and barrier oxide for uniform coloring. Appl Surf Sci. 2017;407:353-360. [cited 2019 Aug 19]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433217305391
Genchi GG, Cao Y, Desai TA. TiO 2 nanotube arrays as smart platforms for biomedical applications. Smart Nanoparticles Biomed. 2018;143-157. [cited 2019 Aug 21]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128141564000100
Hang R, Liu Y, Zhao L, et al. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications. Sci Rep. 2015;4:7547. [cited May 10, 2018] Available from: http://www.nature.com/articles/srep07547
Khudhair D, Bhatti A, Li Y, et al. Anodization parameters influencing the morphology and electrical properties of TiO 2 nanotubes for living cell interfacing and investigations. Mater Sci Eng C. 2016;59:1125-1142. [cited 2019 Aug 12]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493115304677
Sasikumar Y, Indira K, Rajendran N. Surface modification Methods for titanium and its alloys and their corrosion behavior in biological environment: a review. J Bio- Tribo-Corros. 2019;5:36. [cited 2019 Aug 19]. Available from: 10.1007/s40735-019-0229-5
Lewandowska Ż, Piszczek P, Radtke A, Jędrzejewski T, Kozak W, Sadowska B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci Mater Med. 2015. [cited 2019 Jul 23]. Available from: 10.1007/s40735-019-0229-5;26:163.
Saha S, Kumar R, Pramanik K, Biswas A. Interaction of osteoblast -TiO 2 nanotubes in vitro: the combinatorial effect of surface topography and other physico-chemical factors governs the cell fate. Appl Surf Sci. 2018;449:152-165. [cited 2019 Aug 19]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433218301727
Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Jt J. 2018;100-B:9-16. [cited 2019 Aug 19]. Available from: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1
Benea L, Mardare-Danaila E, Mardare M, Celis J-P. Preparation of titanium oxide and hydroxyapatite on Ti-6Al-4V alloy surface and electrochemical behaviour in bio-simulated fluid solution. Corros Sci. 2014;80:331-338. [cited May 28, 2018]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0010938X13005416
Sul Y-T, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329-346. [cited 2018 Jun 1]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1350453301000509
Cao H, Liu X. Activating titanium oxide coatings for orthopedic implants. Surf Coat Technol. 2013;233:57-64. [cited May 29, 2018]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0257897213001205
Hilario F, Roche V, Nogueira RP, AMJ J. Influence of morphology and crystalline structure of TiO 2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochimica Acta. 2017;245:337-349. [cited 2019 Aug 21]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013468617311568
Rutkunas V, Bukelskiene V, Sabaliauskas V, Balciunas E, Malinauskas M, Baltriukiene D. Assessment of human gingival fibroblast interaction with dental implant abutment materials. J Mater Sci Mater Med. 2015. [cited 2021 Jul 28]. Available from: 10.1007/s10856-015-5481-8;26:1-9.
Marino CEB, de Oliveira EM, Rocha-Filho RC, Biaggio SR. On the stability of thin-anodic-oxide films of titanium in acid phosphoric media. Corros Sci. 2001;43:1465-1476. [cited May 28, 2018]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0010938X00001621
Indira K, Mudali UK, Nishimura T, Rajendran N. A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J Bio- Tribo-Corros. 2015;1:28. [cited 2019 Jul 2]. Available from: 10.1007/s40735-015-0024-x
Das R, Ambardekar V, Pratim Bandyopadhyay P. Titanium dioxide and its applications in mechanical, electrical, optical, and biomedical fields. In: Muhammad Ali H, ed. Titan Dioxide - Adv Appl. IntechOpen; 2022 [cited 2022 Jun 18]. Available from: https://www.intechopen.com/chapters/78113
Wang G, Wang S, Yang X, et al. Fretting wear and mechanical properties of surface-nanostructural titanium alloy bone plate. Surf Coat Technol. 2021;405:126512 [cited 2022 Jun 18]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0257897220311816
Liu X, Chu PK, Ding C. Surface nano-functionalization of biomaterials. Mater Sci Eng R Rep. 2010;70:275-302. [cited May 28, 2021]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927796X10000756
Yang Y, Wang K, Gu X, Leong KW. Biophysical regulation of cell behavior-cross talk between substrate stiffness and Nanotopography. Engineering. 2017;3:36-54. [cited 2022 Mar 1]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095809917301546
Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI. Evolution of anodised titanium for implant applications. Heliyon. 2021;7:e07408 [cited 2022 Feb 1]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405844021015115
Liu X, Zhou X, Li S, et al. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts. Int J Nanomedicine. 2014;9:1185-1198.
Apaza-Bedoya K, Tarce M, Benfatti CAM, et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: a scoping review. J Periodontal Res. 2017;52:946-954. [cited 2021 Jul 28]. Available from: 10.1111/jre.12469
Rodrigues D, Valderrama P, Wilson T, et al. Titanium corrosion mechanisms in the Oral environment: a retrieval study. Materials. 2013;6:5258-5274. [cited 2022 Mar 2]. Available from: http://www.mdpi.com/1996-1944/6/11/5258
Wachi T, Shuto T, Shinohara Y, Matono Y, Makihira S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology. 2015;327:1-9. [cited 2022 Mar 2]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300483X14002121
Ferrà-Cañellas M, Llopis-Grimalt M, Monjo M, Ramis J. Tuning nanopore diameter of titanium surfaces to improve human gingival fibroblast response. Int J Mol Sci. 2018;19:2881 [cited May 25, 2021]. Available from: http://www.mdpi.com/1422-0067/19/10/2881
Dias-Netipanyj MF, Sopchenski L, Gradowski T, Elifio-Esposito S, Popat KC, Soares P. Crystallinity of TiO2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation. J Mater Sci Mater Med. 2020;31:94 [cited May 28, 2021]. Available from: 10.1007/s10856-020-06431-4
Kulkarni M, Mazare A, Gongadze E, et al. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26:062002 [cited May 28, 2021]. Available from: 10.1088/0957-4484/26/6/062002
Jimbo R, Albrektsson T. Long-term clinical success of minimally and moderately rough Oral implants: a review of 71 studies with 5 years or more of follow-up. Implant Dent. 2015;24:62-69. [cited 2022 Mar 2]. Available from:. https://journals.lww.com/00008505-201502000-00012
Albrektsson T, Canullo L, Cochran D, De Bruyn H. “Peri-Implantitis”: a complication of a foreign body or a man-made “disease”. Facts and fiction: peri-Implantitis: facts and fiction. Clin Implant Dent Relat Res. 2016;18:840-849. [cited 2022 Mar 2]. Available from: 10.1111/cid.12427
Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28:3188-3197. [cited 2022 Mar 1]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961207002347
Yang W, Xi X, Shen X, Liu P, Hu Y, Cai K. Titania nanotubes dimensions-dependent protein adsorption and ITS effect on the growth of osteoblasts: TiNTs dimensions-dependent protein adsorption and its effects. J Biomed Mater Res A. 2014;102:3598-3608. [cited 2022 Mar 1]. Available from: 10.1002/jbm.a.35021
Neupane M, Park IS, Bae T, Yi H, Watari F, Lee MH. Synthesis and morphology of TiO2 nanotubes by anodic oxidation using surfactant based fluorinated electrolyte. J Electrochem Soc. 2011;158:C242-C245.
Wang Z, Ren B. Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination. J Coat Technol Res. 2022;19:967-975.
Baker E, Vara A, Salisbury M, et al. Titania nanotube morphologies for osseointegration via models of in vitro osseointegrative potential and in vivo intramedullary fixation. J Biomed Mater Res B Appl Biomater. 2020;108:1483-1493.
Li Y, Wang S, Dong Y, et al. Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: a high throughput study using gradient TiO2 nanotubes. Bioact Mater. 2020;5:1062-1070.
Daniel M, Eleršič K, Filova E, Judl T, Fojt J. Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Comput Methods Biomech Biomed Engin. 2022;26:1-10.
Vrchovecká K, Weiser A, Přibyl J, et al. A release of Ti-ions from nanostructured titanium oxide surfaces. Surf Interfaces. 2022;29:101699.
Asa'ad F, Thomsen P, Kunrath MF. The role of titanium particles and ions in the pathogenesis of peri-Implantitis. J Bone Metab. 2022;29:145-154.
Pettersson M, Pettersson J, Johansson A, Molin TM. Titanium release in peri-implantitis. J Oral Rehabil. 2019;46:179-188.
Dalai S, Pakrashi S, Suresh Kumar RS, Chandrasekaran N, Mukherjee A. A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res. 2012;1:116.
Mlinaric M, Durgo K, Katić V, Spalj S. Cytotoxicity and oxidative stress induced by nickel and titanium ions from dental alloys on cells of gastrointestinal tract. Toxicol Appl Pharmacol. 2019;383:114784.
Batool SA, Salman Maqbool M, Javed MA, Niaz A, Rehman MAU. A review on the fabrication and characterization of Titania nanotubes obtained via electrochemical anodization. Surfaces. 2022;5:456-480.
Fu Y, Mo A. A review on the electrochemically self-organized Titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res Lett. 2018;13:187.
Kim K, Lee B-A, Piao X-H, Chung H-J, Kim Y-J. Surface characteristics and bioactivity of an anodized titanium surface. J Periodontal Implant Sci. 2013;43:198-205.
Cao C, Yan J, Zhang Y, Zhao L. Stability of titania nanotube arrays in aqueous environment and the related factors. Sci Rep. 2016;6:23065.
D. Hardcastle F, Ishihara H, Sharma R, S. Biris A. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen- annealing temperature. J Mater Chem - Royal Society of Chemistry. 2011;21:6337-6345.
Chang W-Y, Fang T-H, Chiu Z-W, Hsiao Y-J, Ji L-W. Nanomechanical properties of array TiO2 nanotubes. Microporous Mesoporous Mater. 2011;145:87-92.
Janmey PA, Fletcher DA, Reinhart-King CA. Stiffness sensing by cells. Physiol Rev. 2020;100:695-724.
Mutreja I, Ye Z, Aparicio C. Chapter 19 - cell responses to titanium and titanium alloys. In: Mozafari M, ed. Handb Biomater Biocompat. Woodhead Publishing; 2020 [cited 2023 Feb 8]. Available from:. https://www.sciencedirect.com/science/article/pii/B9780081029671000207
Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5:351-370.
Kim KS, Park H-K, Lee J-W, Kim YI, Shin MK. Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Res Tech. 2015;78:277-282.
Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants - ScienceDirect. [cited 2023 Feb 8]. Available from: https://www.sciencedirect.com/science/article/pii/S1742706121001689
Guida L, Oliva A, Basile MA, Giordano M, Nastri L, Annunziata M. Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces. J Dent. 2013;41:900-907.
Xu X, Li Z, Cai L, Calve S, Neu CP. Mapping the nonreciprocal micromechanics of individual cells and the surrounding matrix within living tissues. Sci Rep. 2016;6:24272.
Zhou P, Mao F, He F, et al. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants. Colloids Surf B Biointerfaces. 2019;178:515-524.