Analysis of Bacterial Pathogens Causing Complicating HAP in Patients with Secondary Peritonitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5103
National Institute of virology and bacteriology (Programme EXCELES)
FNOL, 00098892
Ministry of Health Czech Republic - Conceptual Development of Research Organisation
PubMed
36978393
PubMed Central
PMC10044605
DOI
10.3390/antibiotics12030527
PII: antibiotics12030527
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, etiology, peritonitis, pneumonia,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diffuse peritonitis is an acute abdominal condition characterized by high mortality. The main treatment modality is surgery, requiring a subsequent prolonged hospital stay. These patients are, among other things, at risk of developing hospital-acquired pneumonia (HAP), which considerably worsens their treatment outcomes. This study aimed to extend the existing knowledge by providing more detailed microbiological characteristics of complicating HAP in patients with secondary peritonitis, including the identification of isolated bacterial pathogens and their potential sources. METHODS: The 2015-2019 retrospective study comprised all patients with an intraoperatively confirmed diagnosis of secondary diffuse peritonitis who were classified in accordance with the quick Sepsis Related Organ Failure Assessment scoring system. RESULTS: HAP developed in 15% of patients. The 90-day mortality rates were 53% and 24% in patients with and without HAP; respectively. The most frequent pathogens responsible for HAP were Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae complex and Enterococcus faecalis. Multidrug resistance to antibiotics was found in 38% of bacterial pathogens. Clonal spread of these bacterial pathogens among patients was not detected. Rather, the endogenous characteristic of HAP was confirmed. CONCLUSIONS: The initial antibiotic therapy of complicating HAP in patients with secondary peritonitis must be effective mainly against enterobacteria, including strains with the production of ESBL and AmpC beta-lactamases, Pseudomonas aeruginosa and Enterococcus faecalis. The study further highlighted the importance of monitoring the respiratory tract bacterial microflora in patients with secondary peritonitis. The results should be used for initial antibiotic treatment of complicating HAP instances.
Zobrazit více v PubMed
Skipworth R., Fearon K. Acute abdomen: Peritonitis. Surgery. 2008;26:98–101. doi: 10.1016/j.mpsur.2008.01.004. DOI
Lopez N., Kobayashi L., Coimbra R. A Comprehensive review of abdominal infections. World J. Emerg. Surg. 2011;6:7. doi: 10.1186/1749-7922-6-7. PubMed DOI PMC
Clements T.W., Tolonen M., Ball C.G., Kirkpatrick A.W. Secondary Peritonitis and Intra-Abdominal Sepsis: An Increasingly Global Disease in Search of Better Systemic Therapies. Scand. J. Surg. 2021;110:139–149. doi: 10.1177/1457496920984078. PubMed DOI
Mazuski J.E., Solomkin J.S. Intra-abdominal infections. Surg. Clin. N. Am. 2009;89:421–437. doi: 10.1016/j.suc.2008.12.001. PubMed DOI
Eckmann C., Dryden M., Montravers P., Kozlov R., Sganga G. Antimicrobial treatment of “complicated” intra-abdominal infections and the new IDSA guidelines—A commentary and an alternative European approach according to clinical definitions. Eur. J. Med. Res. 2011;16:115–126. doi: 10.1186/2047-783X-16-3-115. PubMed DOI PMC
Li P.K.-T., Szeto C.C., Piraino B., De Arteaga J., Fan S., Figueiredo A.E., Fish D.N., Goffin E., Kim Y.-L., Salzer W., et al. ISPD Peritonitis Recommendations: 2016 Update on Prevention and Treatment. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2016;36:481–508. doi: 10.3747/pdi.2016.00078. PubMed DOI PMC
Gauzit R., Péan Y., Barth X., Mistretta F., Lalaude O., for the Top Study Team Epidemiology, Management, and Prognosis of Secondary Non-Postoperative Peritonitis: A French Prospective Observational Multicenter Study. Surg. Infect. 2009;10:119–127. doi: 10.1089/sur.2007.092. PubMed DOI
Heredia-Rodríguez M., Peláez M.T., Fierro I., Gómez-Sánchez E., Gómez-Pesquera E., Lorenzo M., Álvarez-González F.J., Bustamante-Munguira J., Eiros J.M., Bermejo-Martin J.F., et al. Impact of ventilator-associated pneumonia on mortality and epidemiological features of patients with secondary peritonitis. Ann. Intensiv. Care. 2016;6:34. doi: 10.1186/s13613-016-0137-5. PubMed DOI PMC
Koenig S.M., Truwit J.D. Ventilator-Associated Pneumonia: Diagnosis, Treatment, and Prevention. Clin. Microbiol. Rev. 2006;19:637–657. doi: 10.1128/CMR.00051-05. PubMed DOI PMC
Uvizl R., Hanulik V., Husickova V., Sedlakova M.H., Adamus M., Kolar M. Hospital-acquired pneumonia in icu patients. Biomed. Pap. 2011;155:373–378. doi: 10.5507/bp.2011.067. PubMed DOI
American Thoracic Society and the Infectious Diseases Society of America Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005;171:388–416. doi: 10.1164/rccm.200405-644ST. PubMed DOI
Richardson J.D., DeCamp M.M., Garrison R.N., Fry D.E. Pulmonary infection complicating intra-abdominal sepsis: Clinical and experimental observations. Ann. Surg. 1982;195:732–738. doi: 10.1097/00000658-198206000-00009. PubMed DOI PMC
Mustard R.A., Bohnen J.M., Rosati C., Schouten B.D. Pneumonia complicating abdominal sepsis. An independent risk factor for mortality. Arch. Surg. 1991;126:170–175. doi: 10.1001/archsurg.1991.01410260058008. PubMed DOI
Thompson C., Makary M.A., Dorman T., Pronovost P.J. Clinical and Economic Outcomes of Hospital Acquired Pneumonia in Intra-Abdominal Surgery Patients. Ann. Surg. 2006;243:547–552. doi: 10.1097/01.sla.0000207097.38963.3b. PubMed DOI PMC
Kalil A.C., Metersky M.L., Klompas M., Muscedere J., Sweeney D.A., Palmer L.B., Napolitano L.M., O’Grady N.P., Bartlett J.G., Carratalà J., et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Inf. Dis. 2016;63:61–111. doi: 10.1093/cid/ciw353. PubMed DOI PMC
Torres A., Niederman M.S., Chastre J., Ewig S., Fernandez-Vandellos P., Hanberger H., Kollef M., Bassi G.L., Luna C.M., Martin-Loeches I., et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the Management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European. Eur. Respir. J. 2017;50:1700582. doi: 10.1183/13993003.00582-2017. PubMed DOI
Herkel T., Uvizl R., Doubravská L., Adamus M., Gabrhelik T., Sedlakova M.H., Kolar M., Hanulik V., Pudova V., Langova K., et al. Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. 2016;160:448–455. doi: 10.5507/bp.2016.014. PubMed DOI
Pudová V., Working Group. Sedláková M.H., Kolář M. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia. Curr. Microbiol. 2016;73:312–316. doi: 10.1007/s00284-016-1058-0. PubMed DOI
Luna C.M., Vujacich P., Niederman M.S., Vay C., Gherardi C., Matera J., Jolly E.C. Impact of BAL Data on the Therapy and Outcome of Ventilator-Associated Pneumonia. Chest. 1997;111:676–685. doi: 10.1378/chest.111.3.676. PubMed DOI
Jang K.-S., Kim Y.H. Rapid and robust MALDI-TOF MS techniques for microbial identification: A brief overview of their diverse applications. J. Microbiol. 2018;56:209–216. doi: 10.1007/s12275-018-7457-0. PubMed DOI
European Committee on Antimicrobial Susceptibility Testing. [(accessed on 10 February 2023)]. Available online: http://www.eucast.org.
Sedlakova M.H., Hanulik V., Chroma M., Hricova K., Kolar M., Latal T., Schaumann R., Rodloff A.C. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice. Med. Sci. Monit. 2011;17:BR147–BR152. doi: 10.12659/MSM.881761. PubMed DOI PMC
Dallenne C., Da Costa A., Decré D., Favier C., Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010;65:490–495. doi: 10.1093/jac/dkp498. PubMed DOI
Mlynarcik P., Dolejska M., Vagnerova I., Kutilová I., Kolar M. Detection of clinically important β-lactamases by using PCR. FEMS Microbiol. Lett. 2021;368:fnab068. doi: 10.1093/femsle/fnab068. PubMed DOI
Pérez-Pérez F.J., Hanson N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002;40:2153–2162. doi: 10.1128/JCM.40.6.2153-2162.2002. PubMed DOI PMC
Dutka-Malen S., Evers S., Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995;33:24–27. doi: 10.1128/jcm.33.1.24-27.1995. PubMed DOI PMC
Magiorakos A.-P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI
Husickova V., Cekanova L., Chroma M., Htoutou-Sedlakova M., Hricova K., Kolar M. Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomed. Pap. 2012;156:348–353. doi: 10.5507/bp.2012.039. PubMed DOI
Zakaria A.M., Hassuna N.A. Modified PFGE protocol for improving typeability of DNA degradation susceptible nosocomial Klebsiella pneumoniae. J. Med. Microbiol. 2019;68:1787–1792. doi: 10.1099/jmm.0.001093. PubMed DOI
Špička P., Chudáček J., Řezáč T., Starý L., Horáček R., Klos D. Prognostic significance of simple scoring systems in the prediction of diffuse peritonitis morbidity and mortality. Life. 2022;12:487. doi: 10.3390/life12040487. PubMed DOI PMC
Boeck L., Eggimann P., Smyrnios N., Pargger H., Thakkar N., Siegemund M., Morgenthaler N.G., Rakic J., Tamm M., Stolz D. The Sequential Organ Failure Assessment score and copeptin for predicting survival in ventilator-associated pneumonia. J. Crit. Care. 2012;27:523.e1–523.e9. doi: 10.1016/j.jcrc.2011.07.081. PubMed DOI
Riché F.C., Dray X., Laisné M.-J., Matéo J., Raskine L., Pors M.-J.S.-L., Payen D., Valleur P., Cholley B.P. Factors associated with septic shock and mortality in generalized peritonitis: Comparison between community-acquired and postoperative peritonitis. Crit. Care. 2009;13:R99. doi: 10.1186/cc7931. PubMed DOI PMC
Inui T., Haridas M., Claridge J.A., Malangoni M.A. Mortality for intra-abdominal infection is associated with intrinsic risk factors rather than the source of infection. Surgery. 2009;146:654–662. doi: 10.1016/j.surg.2009.06.051. PubMed DOI
Kolář M. Bacterial Infections, Antimicrobial Resistance and Antibiotic Therapy. Life. 2022;12:468. doi: 10.3390/life12040468. PubMed DOI PMC